Skip to main content
. 2023 Dec 16;10(1):e23591. doi: 10.1016/j.heliyon.2023.e23591

Table 3.

The optimized hyperparameter values and the corresponding ranges for an optimal parameter grid search.

Model Hyperparameters Range Optimal Parameter Value
CBR depth (10, 18) 16
learning_rate (0.01, 0.1) 0.1
iterations (30, 50, 100) 100
RFR n_estimators (30, 50, 100, 150) 150
min_samples_split (0.6, 2, 3) 2
max_features (‘sqrt’, ‘log2’, 0.6,1.0) log2
XgBR learning_rate (0.05, 0.20) 0.20
n_estimators (500, 1500, 2000) 2000
KNNR n_neighbors (3, 10, 1) 6
weights (‘uniform’, ‘distance’) ‘distance’
MLPR max_iter (1000, 2000) 1000
hidden_layer_sizes ((150,100,50),(200,150,100)) (200,150,100)
alpha (0.05, 0.001) 0.05
DTR criterion ('squared_error', 'friedman_mse', 'absolute_error', 'poisson') 'squared_error'
max_depth (5, 20) 17