Table 3.
The optimized hyperparameter values and the corresponding ranges for an optimal parameter grid search.
| Model | Hyperparameters | Range | Optimal Parameter Value |
|---|---|---|---|
| CBR | depth | (10, 18) | 16 |
| learning_rate | (0.01, 0.1) | 0.1 | |
| iterations | (30, 50, 100) | 100 | |
| RFR | n_estimators | (30, 50, 100, 150) | 150 |
| min_samples_split | (0.6, 2, 3) | 2 | |
| max_features | (‘sqrt’, ‘log2’, 0.6,1.0) | log2 | |
| XgBR | learning_rate | (0.05, 0.20) | 0.20 |
| n_estimators | (500, 1500, 2000) | 2000 | |
| KNNR | n_neighbors | (3, 10, 1) | 6 |
| weights | (‘uniform’, ‘distance’) | ‘distance’ | |
| MLPR | max_iter | (1000, 2000) | 1000 |
| hidden_layer_sizes | ((150,100,50),(200,150,100)) | (200,150,100) | |
| alpha | (0.05, 0.001) | 0.05 | |
| DTR | criterion | ('squared_error', 'friedman_mse', 'absolute_error', 'poisson') | 'squared_error' |
| max_depth | (5, 20) | 17 |