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Abstract
Photorespiration, an essential component of plant metabolism, was upregulated under abiotic stress conditions, such as high 
light or drought. One of the signals for such upregulation was the rise in reactive oxygen species (ROS). Photorespiration was 
expected to mitigate oxidative stress by reducing ROS levels. However, it was unclear if ROS levels would increase when 
photorespiration was lowered. Our goal was to examine the redox status in leaves when photorespiratory metabolism was 
restricted under low O2 (medium flushed with N2 gas) or by adding aminooxyacetic acid (AOA), a photorespiratory inhibitor. 
We examined the impact of low O2 and AOA in leaves of Arabidopsis thaliana under dark, moderate, or high light. Down-
regulation of typical photorespiratory enzymes, including catalase (CAT), glycolate oxidase (GO), and phosphoglycolate 
phosphatase (PGLP) under low O2 or with AOA confirmed the lowering of photorespiratory metabolism. A marked increase 
in ROS levels (superoxide and H2O2) indicated the induction of oxidative stress. Thus, our results demonstrated for the first 
time that restricted photorespiratory conditions increased the extent of oxidative stress. We propose that photorespiration is 
essential to sustain normal ROS levels and optimize metabolism in cellular compartments of Arabidopsis leaves.
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Introduction

Abiotic or biotic stress often modulates metabolic com-
ponents, including photorespiration, by raising reactive 
oxygen species (ROS) levels. Exposure to such stress can 
harm the photosynthetic machinery over time, especially 
photosystem II, leading to photoinhibition (Gururani et al. 
2015; Szymańska et al. 2017; Gunell et al. 2023). Although 
it is a significant source of ROS by itself, photorespiration 
could help to restrict ROS levels (Voss et al. 2013; Sunil 
et al. 2019). Photorespiration utilized ATP/NADPH/reduced 
ferredoxin, thus forming a sink for excess energy. Strong 
photorespiratory flux helped avoid excessive reduction and 
photoinhibition of the chloroplastic electron transport chain 
(Saji et al. 2017; Huang et al. 2019). Thus, it was clear that 
photorespiratory metabolism was upregulated in response 

to elevated ROS levels under oxidative or photo-oxidative 
stress (Sunil et al. 2019; Bapatla et al. 2021). Though it 
implied that any restriction of photorespiration should 
increase the cellular ROS levels, there were no studies to 
prove or disprove such a possibility. We, therefore, attempted 
to examine the consequences of restricted photorespiration 
in ROS levels of leaves. In contrast to the extensive literature 
on the minimization of ROS/oxidative stress by photores-
piration, very few attempts were made to assess the conse-
quences of reduced photorespiration on the redox status of 
plant leaves.

Several methods were employed to restrict photorespira-
tion. These included photorespiratory mutants, high CO2, 
low O2, and photorespiratory inhibitors. Each strategy has 
its advantages as well as drawbacks. Exposure to elevated 
CO2 required a sealed growing chamber with CO2 levels of 
at least 3000 µL/L (Queval et al. 2007). The oxygen content 
of the medium could be reduced by nitrogen purging, low-
pressure boiling, and sonication (Butler et al. 1994). Purging 
the solution for 20 to 30 min with N2 gas was the quickest 
and most efficient technique to reduce the amount of O2 in 
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the solution (Riazunnisa et al. 2006; Ershova et al. 2011; 
Vergara et al. 2012).

Photorespiration was limited by inhibitors that interfered 
with the enzymes or transporters in particular organelles. 
Examples are isonicotinyl hydrazide (INH), glycine hydroxa-
mate (GHA), aminoacetonitrile (AAN), aminooxyacetic acid 
(AOA), α-hydroxy-2-pyridinemethansulfonic acid (HPMS), 
and sodium fluoride (NaF). Among these, AAN, GHA, and 
INH interfered with glycine conversion to serine (Riazun-
nisa et al. 2006; Kleczkowski et al. 1987; Kang et al. 2018). 
NaF inhibited PGLP activity, whereas HPMS interfered with 
the glycolate oxidase (Hewitt et al. 1990). AOA blocked 
glycine oxidation to inhibit the photorespiratory pathway 
(Kleczkowski et al. 1987; Han et al. 2018).

Photorespiratory mutants lacking essential genes were 
another approach for studying photorespiration (Timm and 
Bauwe 2013; Eisenhut et al. 2019). Most of these photores-
piratory mutants could not grow in regular air, except hpr1 
(Wang et al. 2022). As a result, the photorespiratory mutants 
needed to be raised at high CO2. When these plants were 
moved from high CO2 to normal air, they manifested stress 
symptoms, including chlorotic and bleached leaves (Timm 
et al. 2012).

After evaluating available techniques reported in the lit-
erature, we employed lowered O2 and treatment with a pho-
torespiratory inhibitor. There were no attempts to examine 
the status of photorespiration in lowered O2/anoxia. A few 
reports showed the effect of photorespiratory inhibitors on 
photosynthesis, but none of them checked the ROS levels 
under such suppressed photorespiratory conditions (Riazun-
nisa et al. 2006; Kang et al. 2018). Ours is the first attempt to 
assess the redox status of leaves when the photorespiratory 
metabolism was interrupted by AOA or low O2. We are also 
the first to demonstrate photorespiration’s inverse relation-
ship with leaf ROS levels. The status of key photorespira-
tory enzymes and ROS levels were evaluated in Arabidopsis 
leaves on treatment with low O2 and AOA and exposing 
leaves to dark, ML, and HL. The photorespiratory enzymes 
in different organelles, such as CAT, GO, and PGLP, were 
downregulated. A marked increase in ROS levels (superox-
ide and H2O2) was noticed, reflecting the induction of severe 
oxidative stress. Our results emphasize that photorespiration 
helps to minimize ROS levels, while restricted photorespira-
tion leads to an increase in ROS and oxidative stress.

Materials and methods

Plant growth

Seeds of Arabidopsis thaliana wild type (Columbia) 
(from Arabidopsis Biological Resource Centre, Ohio State 
University, Columbus, Ohio) were sown in a mixture of 

vermiculite, perlite, and soilrite (1:1:1) in plastic disposable 
pots and kept at 4˚C in the dark for 48 h. The seedings were 
transferred to the pots, and the plants were grown. After 30 
days of germination, individual plants were transferred into 
the disposable pots containing soil mixture and raised under 
a photoperiod of 8 h light/16 h dark and a temperature of 
20–22˚C. The nutrient solution was applied twice a week, 
as suggested by Somerville (1982). Seven to eight-week-old 
plants provided the leaves for the experiments.

For treatment at low O2, the Petri dishes were sealed with 
parafilm, and the incubation medium (2 mM potassium 
phosphate buffer pH 6.5, 1 mM KCl, and 1 mM CaCl2) was 
purged with N2 gas for 30 min. In the case of AOA, leaves 
were incubated in dark or moderate light (ML, 150 µmol 
m−2 s−1) or high light (HL, 600 µmol m−2 s−1) for 3 h. At 
the end of treatment, leaves were frozen, stored in liquid N2, 
and to be used later.

Chemicals/Antibodies/Primers

AOA and premix-BCIP/NBT solutions were from Sigma 
Aldrich (USA). Antibodies and primers of photorespiratory 
enzymes were from Agrisera AB (Sweden) and Allied Sci-
entific Products (India), respectively. Others were of analyti-
cal grade from India.

Levels of ROS (H2O2 and superoxide)

Nitroblue tetrazolium chloride (NBT) and 3,3’-diamin-
obenzidine (DAB) were used to monitor the accumulation 
of superoxide or H2O2, respectively. Superoxide or H2O2 lev-
els were quantified as described (Kwon et al. 2013; Bapatla 
et al. 2021). Standard curves generated with known amounts 
of H2O2/NBT were used for calculations.

Assays of photorespiratory enzymes

The extraction from leaves (100 mg) and enzyme assays 
were as described (Bapatla et al. 2021). The principles were: 
GO – glycolate oxidation to glyoxylate (Yamaguchi and 
Nishimura 2000); catalase - consumption of H2O2 monitored 
at A240nm (Patterson et al. 1984) and PGLP – hydrolysis of 
phosphoglycolate releasing Pi (Somerville and Ogren 1979).

Glycolate oxidase (GO) activity

100 mg of leaves were homogenized in extraction buffer con-
taining 100 mM HEPES-KOH (pH 7.2), 1 mM EDTA, and 
10 mM 2-mercaptoethanol. After centrifugation at 10,000 g 
for 10 min at 4˚C, the supernatant was collected and used 
for enzyme assay. The reaction mixture contains 100 mM 
triethanolamine (pH 7.8), 0.75 mM oxidized GSSH, 4 mM 
phenylhydrazine, 3 mM EDTA, 2.3 mM sodium glycolate, 
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and supernatant equivalent to 12.5 µg chlorophyll. The reac-
tion was monitored for the increase in absorbance for five 
minutes at A324 nm. The phenylhydrazine extinction coef-
ficient (16.8 mM−1 cm−1) was used to calculate the enzyme 
activity (Yamaguchi and Nishimura 2000).

Catalase (CAT) activity

100 mg of leaves were homogenized in an extraction buffer 
containing 50 mM phosphate buffer (pH 7.0). After centrifu-
gation at 10,000 g for 10 min at 4˚C, the supernatant was 
collected and used for enzyme assay. The reaction mixture 
contains 50 mM phosphate buffer (pH 7.0), 20 mM H2O2, 
and a supernatant equivalent to 25 µg chlorophyll. The reac-
tion was monitored for the decrease in absorbance for three 
minutes at A240 nm. The molar extinction coefficient of H2O2 
(43.6 M−1 cm−1) was used to calculate the enzyme activity 
(Patterson et al. 1984).

Phosphoglycolate phosphatase (PGLP) activity

100 mg of leaves were homogenized in extraction buffer 
containing 10 mM HEPES (pH 7.0) at 4˚C. After centrifu-
gation at 20,000 g for 10 min at 4˚C, the supernatant was 
collected and used for enzyme assay. The reaction mixture 
contains 40 mM sodium cacodylate (pH 6.3), 5 mM HEPES, 
0.5 mM EDTA, 5 mM ZnSO4 and a supernatant equivalent 
to 12.5 µg chlorophyll. The reaction was started by add-
ing 2 mM phosphoglycolate. After five minutes at 25˚C, the 
reaction was stopped by adding acid molybdate reagent [1:6 
mixture of 10% (w/v) ascorbate and 0.42% (w/v) ammo-
nium molybdenum in 1 N sulfuric acid]. The samples were 
incubated at 45˚C for 20 min, and the released phosphate 
was measured at A820 nm. A standard curve with known 
phosphate concentrations was used to determine the enzyme 
activity (Somerville and Ogren 1979).

Chlorophyll and protein estimation

Chlorophyll was determined by extraction into 80% (v/v) 
acetone (Arnon 1949). Protein was estimated by the Brad-
ford assay. A standard curve with a known concentration of 
BSA was used to calculate the protein concentration (Brad-
ford 1976).

Protein and transcript levels

The protein levels of photorespiratory enzymes were stud-
ied by Western blotting. The quantification of protein band 
intensities was done by Image J software. Ponceau-stained 
gels of Rubisco large subunit were used for normalization 
(Bapatla et al. 2021).

The extraction of RNA, cDNA synthesis, and sqRT-PCR 
using primer sequences (Supplementary Table  1) were 
described earlier (Bapatla et al. 2021). We optimized the 
number of cycles required for amplification of photorespi-
ratory genes (CAT1, CAT2, GOX1, GOX2, and PGLP1) 
and actin-8 genes. We did not get much amplification of 
photorespiratory genes and actin 8 on 32, 34, or 36 cycles. 
However, the amplification was good at 40 cycles. Image J 
was used to quantify the transcript level, normalized with 
actin 8.

Replication and significance

The presented data were averages ± SE from at least three 
experiments conducted on different days. ANOVA was used 
to derive P values. A P value of less than 0.05 was consid-
ered significant.

Results

Changes in typical photorespiratory enzymes: 
activities and protein levels

Among the enzymes studied, PGLP was chloroplastic, while 
GO and CAT were in peroxisomes. The activities of CAT 
and PGLP were lowered with AOA (photorespiratory inhibi-
tor) treatment or low O2, compared to control. The activity 
of GO was either marginally enhanced or decreased under 
low O2, or by AOA (Fig. 1).

To validate the enzyme assay data, we checked the pro-
tein levels of GO and CAT under restricted photorespiration. 
The protein level of PGLP was not checked due to the non-
availability of antibodies. Treatment with AOA decreased 
the GO and CAT proteins, particularly under ML and HL, 
compared to that of the respective control (Fig. 2). Similarly, 
the protein levels of CAT were decreased in ML on exposure 
to low O2. However, the GO protein levels were marginally 
increased under HL (Fig. 3).

Transcripts of photorespiratory enzymes

To further validate the enzyme and protein data, we have 
checked the transcript levels of CAT1, CAT2, GOX1, 
GOX2, and PGLP1 under restricted photorespiratory 
conditions. The transcripts of CAT2, GOX1, and GOX2 
decreased when treated with AOA compared to the control. 
The downregulation of these transcripts was pronounced 
under HL. Similarly, the transcripts of CAT1 and PGLP1 
were also downregulated by AOA under HL (Fig. 4). When 
treated with low O2, the transcripts of CAT1, CAT2, and 
PGLP1 were downregulated under ML and HL conditions. 
In contrast, transcripts of GOX1/GOX2 were upregulated 
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Fig. 1   The activities of key photorespiratory enzymes, peroxisomal 
CAT/ glycolate oxidase (GO) A/B, chloroplastic phosphoglycolate 
phosphatase (PGLP) C,  in leaves on treatment with aminooxyacetic 
acid (AOA) or low O2 for 3 h under dark, moderate light  (ML, 150 

µmol m−2 s−1), or high light (HL, 600 µmol m−2 s−1). Data were aver-
ages ± SE of three independent experiments. Wherever relevant, the 
significance of AOA or low O2 effects compared to control are indi-
cated. *P < 0.05; **P < 0.01, ***P < 0.001

Fig. 2   The protein levels of GO and CAT on exposure to AOA. 
Ponceau staining was done to show equal loading (Top Panel). The 
proteins levels were normalized using Rubisco large subunit and 

quantified by Image J (Bottom Panel). Other details, including the 
significance were as in Fig. 1 and Materials and Methods



1855Physiology and Molecular Biology of Plants (December 2023) 29(12):1851–1861	

1 3

(Fig. 5). The fold-change of the transcripts was calculated 
after normalization with reference to actin 8.

ROS accumulation in leaves

Superoxide and H2O2 levels increased markedly in ML 
and HL, as indicated by NBT or DAB staining (Fig. 6). 
Superoxide content of leaves rose by 2 to 3-fold with 
AOA or low O2 (Fig. 7A). Similar to this, DAB staining 
revealed that the H2O2 level in Arabidopsis leaves was also 
enhanced by 2 to 3-fold when treated with AOA or low 
O2 under HL (Fig. 7B). The levels of superoxide were far 
higher than those of H2O2 in Arabidopsis leaves.

Discussion

Upregulation of photorespiration under abiotic or biotic 
stress was well established. It was envisaged that such 
upregulation could adapt to the oxidative stress challenge 
(Voss et al. 2013; Sunil et al. 2019). However, whether 
photorespiration can modulate leaf redox in return was 
unclear. The present article is the first attempt to assess the 
redox status of leaves when the photorespiratory metabo-
lism is interrupted.

Evidence of suppression of selected 
photorespiratory enzyme components

Two approaches to limit photorespiration were employed, 
namely low O2 and incubation with AOA. Low O2 levels 
were caused by purging with N2 gas that slowed the activity 
of RuBP oxygenase. On the other hand, AOA blocked the 
glycine oxidation to ammonia, a critical step in the photores-
piratory pathway. We focussed on CAT/GO in peroxisomes 
and PGLP in chloroplasts. Marked suppression of enzyme 
components related to GO, CAT, and PGLP confirmed that 
the photorespiratory metabolism was restricted under low 
O2 (Figs. 1, 3 and 5). Similarly, the use of AOA too ensured 
the down-regulation of photorespiration (Figs. 1, 2 and 4).

The existing literature on the pattern of GO activity under 
low O2 or hypoxia was ambiguous. There was a marked 
upregulation of GO gene expression in Arabidopsis under 
hypoxia (Engqvist et al. 2015). When roots were flooded, 
creating anoxia, there was a decrease in the GO activity in 
barley and common bean plants (Yordanova et al. 2003; 
Posso et al. 2018). Since these studies on the responses to 
low O2 (anoxia) focussed on roots, they may not all be rele-
vant, as we studied leaves. Studies made with rice and Hibis-
cus hamabo seedlings observed a slight transient increase 
in GO activity, followed by a decrease (Igamberdiev et al. 
1991; Wu et al. 2013). Our results demonstrated a down-
regulation of not only CAT but also PGLP under low O2, 

Fig. 3   The protein levels of GO and CAT on exposure to low O2. 
Ponceau staining was done to show equal loading (Top Panel). The 
proteins levels were normalized using Rubisco large subunit and 

quantified by Image J (Bottom Panel). Other details, including the 
significance were as in Fig. 1 and Materials and Methods
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confirming that the use of low O2 was effective in lowering 
photorespiratory metabolism in Arabidopsis leaves.

Similarly, there were attempts to restrict photorespi-
ration using suitable inhibitors. For e.g., AOA and PPT 
treatment decreased photosynthesis and stomatal con-
ductance/ transpiration while decreasing the CAT and 
Rubisco activity in Zea mays, Amaranthus palmeri, and 

Chlamydomonas reinhardtii (González-Moro et al. 1993, 
1997; Coetzer and Al-Khatib 2001; Goyal 2002). Glyci-
date, an inhibitor of glycolate synthesis, restricted pho-
torespiration and increased the photosynthetic rate in 
tobacco (Zelitch 1974). Our observations with AOA com-
plement the earlier work that an appropriate compound can 
restrict photorespiration.

Fig. 4   The transcript levels of CAT1, CAT2, GOX1, GOX2, and 
PGLP1 on exposure to AOA under dark, moderate, or high light (Top 
Panel). The fold-change was calculated after normalization with ref-

erence to actin 8 (Bottom Panel). Other details, including the signifi-
cance were as in Fig. 1 and Materials and Methods
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Fig. 5   The transcript levels of CAT1, CAT2, GOX1, GOX2, and 
PGLP1 on exposure to low O2 under dark, moderate, or high light 
(Top Panel). The fold-change was calculated after normalization with 

reference to Actin 8 (Bottom Panel). Other details, including the sig-
nificance were as in Fig. 1 and Materials and Methods
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ROS accumulation under restricted photorespiration

Whether the incubation was in the dark or in the light, the 
levels of ROS (H2O2 and superoxide) increased consider-
ably when photorespiration was restricted by low O2 or 
AOA (Figs. 6 and 7). The majority of the reports typi-
cally indicated an increase in ROS under hypoxia in sev-
eral plants: pea, soybean, Arabidopsis thaliana, rice, and 
tobacco (Ershova et al. 2011; Kamal and Komatsu 2015; 
Paradiso et al. 2016; Liu et al. 2017; Yamauchi et al. 2017; 
Jayawardhane et al. 2020; Liu et al. 2023).

One of the reasons for elevated ROS under flood and 
hypoxia was the decrease in the CAT activity, as in lentil, 
rice, and lettuce (Tang et al. 2015; Bharadwaj et al. 2023; 
Liu et al. 2023). Glufosinate treatment in Amaranthus 
palmeri led to the accumulation of superoxide and H2O2 
(ROS) and downregulated the photosynthetic rate (Takano 
et al. 2019, 2020). Photorespiratory mutants, like hpr1, 

accumulated ROS, which was detrimental to metabolism 
and growth, under high light (Wang et al. 2022).

Under ambient air, photorespiration occurs, but it is 
reduced under high CO2 conditions (Wujeska-Klause 
et al. 2019; Celebi-Ergin et al. 2022). Photorespiration 
could be minimal once photosynthesis is saturated at high 
CO2 (Lenka et al. 2019; Marçal et al. 2021). However, 
the advantages of elevated CO2 depend on the nitrogen 
and phosphate status of leaves (Tcherkez et al. 2020). The 
benefits would not be available if elevated CO2 were not 
well-supplemented with nitrogen and phosphorus. In an 
analogy to our approach, a question arises about the con-
sequences of exposing plants to high CO2. Since RuBP 
oxygenase is still functional even under high CO2, pho-
torespiratory metabolism continues to be necessary to 
ensure the conversion of 2-PG to 3-PGA with the help of 
enzymes located in peroxisomes, mitochondria and chlo-
roplasts (Timm and Bauwe 2013; Timm and Hagemann 
2020).

Fig. 6   The accumulation 
of superoxide and H2O2 in 
Arabidopsis leaves, visualized 
by NBT and DAB staining. 
The leaves were treated with 
AOA or low O2 and exposed 
to moderate light (ML) or high 
light (HL). Other details were 
as in Fig. 1 and Materials and 
Methods

Fig. 7   Superoxide and H2O2 levels were quantified from NBT and DAB-stained leaves on exposure to AOA and low O2. Other details including 
the significance were as in Fig. 1 and Materials and Methods
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There are contrasting claims about the effect of elevated 
CO2 on oxidative stress. Oxidative stress was increased at 
high CO2, as indicated by increased protein carbonylation 
and ROS accumulation in Arabidopsis, soybean and pea 
(Qiu et al. 2008; Ershova et al. 2011). In contrast, increased 
CO2 reduced oxidative damage in plants, particularly under 
abiotic stress conditions, such as heat, salt, and drought 
(Pérez-López et al. 2009; Mishra and Agrawal 2014; Zinta 
et al. 2014). We suggest that under elevated CO2 if sufficient 
nitrogen is unavailable, and if plants are not under abiotic 
stress, photorespiration is likely to be restricted. As a result, 
the cellular ROS levels would increase.

Based on our findings, we emphasize that ROS genera-
tion increased under various situations of restricted pho-
torespiratory metabolism. The increased ROS would harm 
physiological functions like photosynthesis and respiration 
(Mittler 2002, 2017). In return, photorespiration helped to 
keep optimal ROS levels in leaves.

An inverse relationship between photorespiratory 
components and the leaf ROS levels

The process of photorespiration had an inverse relationship 
with the redox status of leaves. Abiotic stress, e.g., drought 
or high light, elevated the photorespiratory enzyme activi-
ties (like GO, CAT, or HPR) in plants (Yuan et al. 2016; Cui 
et al. 2016; Bapatla et al. 2021). Photorespiration protected 
photosynthesis from stress-induced oxidative damage (Voss 
et al. 2013; Sunil et al. 2019). The present study emphasized 
that photorespiration and increased ROS/ oxidative stress in 
leaves exhibited an inverse relationship. Thus, photorespira-
tion and cellular ROS levels were well coordinated in leaves.

Conclusion

The ROS (both superoxide and H2O2) levels were elevated 
under restricted photorespiratory conditions, confirming the 
hypothesis that photorespiration could minimize the levels 
of ROS and reduce oxidative stress. Photorespiration could 
complement the antioxidant enzyme systems to sustain low 
ROS levels in leaves. Further experiments are necessary 
to understand if photorespiration could be complemented 
with other components such as cyclic electron flow (CEF) or 
alternative oxidase (AOX) pathway during plant adaptation 
to abiotic stress.
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