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Abstract

Background: In addition to genomic risk variants and environmental influences, increasing 

evidence suggests epigenetic modifications are important for orofacial development and their 

alterations can contribute to orofacial clefts. Ezh2 encodes a core catalytic component of the 

Polycomb repressive complex responsible for addition of methyl marks to Histone H3 as a 

mechanism of repressing target genes. The role of Ezh2 in orofacial clefts remains unknown.

Aims: To investigate the epithelial role of Ezh2-dependent methylation in secondary 

palatogenesis.

Methods: We used conditional gene-targeting methods to ablate Ezh2 in the surface ectoderm-

derived oral epithelium of mouse embryos. We then performed single-cell RNA sequencing 

combined with immunofluorescence and RT-qPCR to investigate gene expression in conditional 

mutant palate. We also employed double knockout analyses of Ezh1 and Ezh2 to address if they 

have synergistic roles in palatogenesis.

Results: We found that conditional inactivation of Ezh2 in oral epithelia results in partially 

penetrant cleft palate. Double knockout analyses revealed that another family member Ezh1 

is dispensable in orofacial development, and it does not have synergistic roles with Ezh2 in 

palatogenesis. Histochemistry and single-cell RNA-seq analyses revealed dysregulation of cell 

cycle regulators in the palatal epithelia of Ezh2 mutant mouse embryos disrupts palatogenesis.

Conclusion: Ezh2-dependent histone H3K27 methylation represses expression of cell cycle 

regulator Cdkn1a and promotes proliferation in the epithelium of the developing palatal shelves. 

Loss of this regulation may perturb movement of the palatal shelves, causing a delay in palate 

elevation which may result in failure of the secondary palate to close altogether.
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1 INTRODUCTION

Orofacial cleft (OFC) is one of the most common birth defects, impacting 1 in 700 newborns 

globally (Watkins et al., 2014). The most common types are cleft lip with or without 

cleft palate (CL/P) and cleft palate only (CPO). Each year, around 2,650 babies are born 

with CPO in the United States, and 4,440 babies have a CLP (according to NIH report, 

July 2018). The affected children experience significant difficulties in feeding, language 

development and social integration. Although plastic and maxillofacial surgery, speech 

therapy and psychosocial intervention are available, OFC is associated with significant 

long-term health, life-style wellbeing and socio-economic burdens for individuals and their 

families (Dixon et al., 2011).

All mammalian species go through a similar palatogenesis process. In humans, the 

development of the secondary palate begins from the end of the sixth week of embryonic 

development and is completed in the ninth week, as a consequence of an intact palate is 

formed (Burdi and Faist, 1967). In mice, the secondary palate develops as an outgrowth of 

the maxillary prominences at about embryonic day 11.5 (E11.5); the palatal shelves grow 

vertically (E12.5 and E13.5) and then subsequently elevated on both sides of the tongue at 

E14.5 (Bush and Jiang, 2012; Ji et al., 2020). Once the palatal shelves have elevated to a 

horizontal position above the tongue, they will continue to converge toward the midline and 

adhere with each other. The transient midline epithelial seam (MES) is formed at around 

E15 which will be eliminated after the fusions of two palatal shelves at around E15.5 when 

the palatogenesis is completed (Bush and Jiang, 2012). Several processes may contribute 

to MES dissolution, including epithelial-to-mesenchymal transition, outward cell migration, 

apoptosis, convergence and extrusion (Carette and Ferguson, 1992; Cuervo et al., 2002; Jin 

and Ding, 2006; Kim et al., 2015; Mori et al., 1994; Shuler et al., 1992). A more recent 

study using novel static- and live-imaging approaches reveals that the MES is removed 

through streaming migration of epithelial cells during palatal fusion (Teng et al., 2022). 

Disruptions at any stages may cause cleft palate, including submucous cleft if fusion is 

incomplete.

Genome-wide association studies over the past couple decades have identified at least 40 

candidate genes and loci whose polymorphisms are associated with OFC risk (Beaty et al., 

2011, 2010; Birnbaum et al., 2009; Butali et al., 2013; Elizabeth J. Leslie et al., 2016; 

Elizabeth J Leslie et al., 2016; Leslie et al., 2017, 2015; Ludwig et al., 2016, 2012; Marazita 

et al., 2009, 2004; Moreno et al., 2009; Mukhopadhyay et al., 2022, 2021; Reynolds et al., 

2020; Sun et al., 2015; van Rooij et al., 2019; Yu et al., 2017). Epigenomes (e.g., DNA 

methylation and histone modification) influenced by the environment regulate chromatin 

structure and genome functions. It is also well established that environmental factors 

affecting OFC incidence, such as diet, behavior, and disease, are important regulators of 

epigenetic modifications (Campos Neves et al., 2016; Czeizel et al., 1999; Garland et al., 
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2020a; Spilson et al., 2001). It is, therefore, highly likely that aberrant epigenetic control 

of gene expression in response to environmental risk factors also plays a major role in the 

etiology of OFC.

There is increasing data demonstrating that alterations in epigenetic modifications affecting 

gene expression may contribute to the etiology of OFC (Garland et al., 2020b; Seelan 

et al., 2012). It has been understood for some time that administration of the DNA 

demethylating agent 5-aza-2′-deoxycytidine can induce cleft palate in both mice and rats 

(Branch et al., 1999; Bulut et al., 1999; Rogers et al., 1994). Additionally, the palatal 

tissue of mouse embryos with retinoic acid-induced cleft palate shows significantly elevated 

DNA methylation in both CpG islands and gene bodies of known palatogenesis regulators 

(Kuriyama et al., 2008; Shu et al., 2018). Similarly, altered methylation at several loci with 

genome-wide OFC association has been demonstrated in lip and palate tissue of NSCL/P 

patients as well (Alvizi et al., 2017; Gonseth et al., 2019; Howe et al., 2019; Z. Xu et al., 

2019).

In addition to DNA methylation, histone modifications are also important for craniofacial 

development and alterations contribute to OFC and related craniofacial birth defects. Histone 

acetyltransferase activity and H3 acetylation is increased in the palatal tissue of mouse 

embryos with 2,3,7,8-tetrachlo-rodibenzo-p-dioxin-induced cleft palate (Yuan et al., 2016). 

Several enzymes that regulate histone acetylation play roles in OFCs as well. For example, 

mutations in the mouse H3 acetyltransferase gene Kat6b cause a 22q11 deletion-like 

phenotype including cleft palate (Voss et al., 2012). Alternatively, conditional loss of 

function of the histone deacetylase gene Hdac3 in neural crest cells also causes craniofacial 

abnormalities with fully penetrant cleft palate (Singh et al., 2013).

Histone methylation is another mechanism understood to play important roles in gene 

regulation with implications in palate development. Prdm3 and Prdm16 comprise a 

subfamily of two closely related genes encoding enzymes with histone methyltransferase 

activity at that at H3K4 and H3K9. Loss of Prdm16 function in mice causes cleft palate 

(Bjork et al., 2010). While loss of Prdm3 is lethal during mid-gestation, conditional 

Prdm16 knockout in Sox2-expressing cells causes partially penetrant cleft palate with 

significantly decreased H3K9 methylation in the palatal shelves, which is associated with 

gene repression. Interestingly, H3K4 methylation, which contributes to gene activation, 

was unaltered (Shull et al., 2020). Two other enzymes that methylate H3K4 are KDM6A 

and KTM2D. Mutations in either KMD6A or KTM2D can causes Kabuki syndrome, 

which is typified by facial characteristics that include midfacial hypoplasia with a broad 

depressed nasal tip, elongated palpebral fissures with partial eyelid eversion, and abnormally 

prominent earlobes, with partially penetrant cleft palate (Hannibal et al., 2011; Lindgren 

et al., 2013). Additionally, targeting Kmd6a in mouse neural crest using Wnt1-Cre causes 

Kabuki-like features in females including 25% cleft palate, targeting Ktm2d causes fully 

penetrant cleft palate. However, alterations in histone methylation were not identified, 

suggesting alternate mechanisms may contribute to facial defects (Shpargel et al., 2020, 

2017). Despite these recent advancements, little is known about the role that H3K27 

methylation, one of the major histone modifications that controls gene expression, plays in 

craniofacial and palate development. Even though no link was identified in mouse models, 
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the previously discussed Kmd6a possesses H3K27 demethylase capabilities in addition to its 

role in methylating H3K4 (Lindgren et al., 2013).

Enhancer of zeste homolog 2 (Ezh2) encodes a critical factor of epigenetic modification 

and is an essential regulator of cell proliferation and differentiation during mammalian 

embryonic development (Aloia et al., 2013; Huang et al., 2014; O’Carroll et al., 2001). 

EZH2 is a key component of Polycomb Repressive Complex 2 as primary enzyme 

responsible for catalyzing di- and tri-methylation to histone H3 at K27 (Kuzmichev 

et al., 2002; Müller et al., 2002). Ezh2 is necessary for development of neural crest-

derived cartilage and bone, and ablation of Ezh2 in murine neural crest cells causes 

severe craniofacial defects including absence of tongue and mandible, microtia and 

microphthalmia, and meningoencephalocele (Kim et al., 2018; Schwarz et al., 2014). 

Additionally, Ezh2 controls proliferation in the dental mesenchyme by regulating the cell 

cycle inhibitor Cdkn2a, expression of which is increased in Ezh2 mutants (Jing et al., 

2019). While a relationship has not been demonstrated in oral tissues, Ezh2 can also repress 

expression of Cdkn1a, which encodes key cell cycle regulator p21 with implications in 

several cancers (Béguelin et al., 2017; Fan et al., 2011; J. Xu et al., 2019).

Epigenetic modification is time- and tissue-specific, and allows individual cell types respond 

differently to the same stimulus (John and Rougeulle, 2018; Kanherkar et al., 2014). It 

is, therefore, a challenge to dissect the specific roles of epigenetic modification in disease 

development. Single-cell RNA-sequencing (scRNA-seq) provides an advanced tool to study 

differences in gene expression at a single-cell resolution (Stuart et al., 2019). Using a Cre-

lox approach, we demonstrated that conditional knockout (cKO) of Ezh2 in oral epithelial 

cells causes partial penetrant CPO in mice, with absent H3K27 trimethylation and reduced 

proliferation in the palate epithelium. Further, Ezh1 in the oral epithelium is dispensable 

and has no synergetic roles with Ezh2 for secondary palatogenesis. Using scRNA-seq, we 

identified significant differential expression of transcriptomes of cell cycle regulators in the 

epithelial populations of the mutant mouse palate relative to control littermates prior to 

palatal fusion at the midline.

2 MATERIALS AND METHODS

2.1 Animals

The Grhl3Cre knock-in mouse line (Camerer et al., 2010) was acquired through the Mutant 

Mouse Resource & Research Centers (MMRRC) at UC Davis. Ezh1-null (Ezhkova et al., 

2011) and Ezh2-flox (Shen et al., 2008) mice were obtained from Dr. Elena Ezhkova 

at Icahn School of Medicine at Mount Sinai, and Rosa26-mT/mG (Muzumdar et al., 

2007) mice from the Jackson Laboratory. Heterozygous or homozygous alleles were 

maintained against a C57BL/6J background. Pregnant, timed-mated mice were anesthetized 

with isoflurane before being sacrificed by cervical dislocation for embryo dissection and 

collection. Mice were housed at the UC Davis Vivarium with a standard 12-hour light/dark 

cycle and all animal procedures were performed in accordance with IACUC and NIH 

guidelines.
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2.2 Hematoxylin and eosin staining

Embryos were drop-fixed in 4% PFA overnight, dehydrated, embedded in paraffin (Sigma 

Paraplast P3558), and sectioned at 6 μm. Sections were rehydrated, submerged in Gill’s 

Hematoxylin (Sigma GHS232) 20 minutes, and excess stain washed briefly with 1% acid 

alcohol. Li2CO3 was used for bluing before submerging sections in eosin Y solution (Sigma 

HT110216) for 15 minutes. Sections were then dehydrated and mounted for imaging.

2.3 Immunofluorescent labeling

Embryos were drop-fixed in 4% PFA, embedded in OCT after 30% sucrose cryoprotectant 

equilibration overnight, and sectioned at 12 μm. Sections post-fixed in 4% PFA and heated at 

low boil in Sodium Citrate buffer pH = 6.0 for antigen retrieval. Sections were washed 

5 minutes in 0.1% Triton X-100 for improved permeation before 1 hr block in 10% 

Normal Donkey Serum. Antibodies used: rabbit anti-Ki67 1:200 (Abcam ab15580), rabbit 

anti-CASPASE 3 (cleaved) 1:200 (CST 9664S), mouse anti-E-Cadherin 1:200 (BD Bio 

610181), rabbit anti-H3K37Me3 1:200 (CST 9733S). Tissues were counterstained with 

DAPI. Mesenchyme cells were quantified in ImageJ. Epithelial cells were counted manually. 

Two-tailed student’s t-test was used for statistical comparison.

2.4 Single-cell RNA sequencing analyses

Palatal shelves were microdissected from Grhl3Cre/+;Ezh2flox/+ and Grhl3Cre/+;Ezh2flox/

flox mouse embryos on the morning of E14, prior to palatal convergence and epithelial 

fusion at the midline, and dissociated using a psychrophilic protease method (Adam et 

al., 2017). Dead cells were removed by FACS based on DAPI uptake in collaboration 

with the UC Davis Flow Cytometry Core, and live cells were processed with 10X 

Genomics 3’ Chromium pipeline and Illumina (HiSeq4000)-sequenced in collaboration 

with the UC Davis DNA Technologies Core. Initial data was processed via Cell Ranger 

7.0 (10X Genomics), reads mapped to the mm10 mouse genome, and samples subjected 

to quality control (Gu et al., 2022). Cells from each sample showing fewer than 800 or 

more than 15000 UMIs and those having less than 200 detected genes were discarded. 

Decontamination of ambient RNA was performed using decontX (Yang et al., 2020) 

model (github.com/campbio/celda), with this method producing 10,626 cells for Grhl3Cre/

+;Ezh2flox/+ and 2,809 cells for Grhl3Cre/+;Ezh2flox/flox. Clustering and subclustering were 

determined through initial clustering of cells using the Seurat R toolkit combined with 

CellfindR (Satija et al., 2015; Yu et al., 2019) with clusters being annotated based on 

known cell type-specific genes. Cell-cell communications through ligand-receptor signaling 

interactions were analyzed by CellChat (Ji et al., 2020) and trajectory inference analysis was 

performed using dynverse (Cannoodt et al., 2021).

2.5 Total RNA isolation and RT-qPCR

Mouse embryonic palatal shelves from six Grhl3-Cre;Ezh2-cKO;Ezh1-KOs and six 

littermate controls at E14 were microdissected in RNase-free PBS for total RNA 

extraction using the RNeasy kit from QIAGEN. For RT-qPCR, we followed a previously 

established protocol with slight modifications (Gu et al., 2022). To synthesize cDNAs 

for subsequent qPCR analysis, we employed the iScript cDNA synthesis kit from Bio-
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Rad, using 400 ng of total RNA per sample. The qPCR reactions were carried out 

in duplicate using the TB Green Advantage qPCR Premix by Takara Bio and the 

AriaMx real-time PCR system from Agilent Technologies. The ΔCT method was used 

to calculate the relative expression levels of the target genes, and the housekeeping 

gene Gapdh was used for result normalization. Mean ± S.D. values were determined, 

and statistical analysis (two-tailed, unpaired Student’s t-test adjusted with Welch’s 

correlation) was performed using GraphPad Prism V9.1 software. We applied a significance 

threshold of P < 0.05. The following primers were used in this study: Cdkn1a, 5’-

TTGCACTCTGGTGTCTGAG-3’ (forward) and 5’- GTGATAGAAATCTGTCAGGCTG-3’ 

(reverse); Cenpf, 5’-GCACAGCACAGTATGACCAGG-3’ and 5’-

CTCTGCGTTCTGTCGGTGAC-3’; Mki67, 5’-ATCATTGACCGCTCCTTTAGGT-3’ and 

5’-GCTCGCCTTGATGGTTCCT-3’; Top2a, 5’-CAACTGGAACATATACTGCTCCG-3’ 

and 5’- GGGTCCCTTTGTTTGTTATCAGC-3’.

3 RESULTS

3.1 Conditional ablation of Ezh2 in oral ectoderm causes partial penetrant cleft palate

To target Ezh2 in the palatal epithelium, we employed a knock-in Cre allele at Grhl3 
locus that activates at the surface ectoderm during embryonic development (Camerer et 

al., 2010). This line was crossed with conditional ready mice containing loxP sites at 

flanking the Set domain of Ezh2. This allele has no catalytic activity when recombined 

by active Cre leading to a loss of PRC2 function (Shen et al., 2008). We generated single 

and compound mutant embryos to assess phenotypic defects in the absence of functional 

polycomb complex activity. We crossed the Grhl3Cre line with Rosa26-mTmG, which 

contains a reporter allele in which tdTomato is constitutively expressed in all cells until 

Cre activation recombines eGFP in frame, after which all cells and progeny are labeled by 

eGFP expression (Muzumdar et al., 2007), allowing us to map the fate of Grhl3+ cells in our 

model. The mTmG reporter tracing suggests Grhl3Cre efficiently activates in oral epithelium 

with sporadic clusters of GFP+ cells in the mesenchymal tissues (Figure 1a,b). Conditional 

ablation of Ezh2 with Grhl3Cre in the palatal epithelia abolished H3K27 trimethylation and 

caused partial penetrant cleft palate (Figure 1c–f).

Ezh1 is dispensable in the surface epithelium for craniofacial development, as no 

craniofacial defects or other obvious phenotypes found in Ezh1-null (Ezh1−/−) mice 

that are viable and fertile. In contrast, about 20% of either single conditional KOs of 

Grhl3Cre/+;Ezh2flox/flox or compound cKOs of Grhl3Cre/+;Ezh2flox/flox;Ezh1+/− and Grhl3Cre/

+;Ezh2flox/flox;Ezh1−/− embryos exhibited fully-open cleft palate (Figure 1e,f). The results 

also suggest that Ezh1 and Ezh2 have no synergetic roles in palatogenesis. We also found 

that these single or compound Ezh2 cKO mutant embryos occasionally presented with 

digital hypoplasia (data not shown).

3.2 Cell proliferation is reduced in the palatal epithelium of conditional Ezh2 mutant 
embryos

Histological staining of coronal sections at E14.5 consistently showed that the palatal 

shelves of epithelial Ezh2 cKO mutants were not yet elevated even when the palatal shelves 
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of their wild-type or heterozygous littermates were elevated and had already begun to 

converge toward the midline (Figure 2a,b). While most embryos with this delayed elevation 

caught up and showed converged palate by E15.5, this was not always the case and complete 

elevation failure reflected the mechanism by which cleft palate was developed at a partial 

frequency.

To determine whether the palatal shelves of conditional Ezh2 mutant embryos show 

defective cellular activities that may inhibit their ability to appropriately elevate, we 

performed immunofluorescent staining targeting markers of proliferation and apoptosis. 

Analysis of cleaved caspase 3 showed very low levels of apoptosis in the palate at E14.5, 

and there was no significant difference between wild-type and Grhl3Cre/+;Ezh2flox/flox 

mutants. We also performed immunofluorescent staining to detect Ki67 in mutant palatal 

shelves. No significant change was observed in the palatal mesenchyme of the mutants. 

However, the palatal epithelium showed reduced Ki67 expression at the middle and posterior 

regions of the palate, but there was no statistically significant change at the anterior palate of 

the mutants (Figure 2c–g).

3.3 Identification of cell types in the mouse embryo palates

To further understand the cellular mechanism that drives cleft palate formation with a loss of 

epithelial Ezh2 function, scRNA-seq was performed to identify the transcriptional changes 

within the cells of mutant embryonic palate. The palatal shelves of Grhl3Cre/+; Ezh2flox/

flox mutant embryos and heterozygous control littermates were excised in the morning of 

E14 just prior to that key step of palatal elevation where the mutant phenotype becomes 

apparent. Tissues were dissociated to a single cell suspension and sequenced using the 10X 

Genomics 3’ Chromium method as we performed in a recent study (Gu et al., 2022). After 

quality control processing, we had transcriptome data for 10,518 control cells and 2,634 

mutant cells. A Universal Manifold Approximation and Projection (UMAP) procedure was 

performed allowing the population structure of cells to be visualized in an unsupervised 

algorithm, where each dot represents a single cell base on its transcriptional identity 

(Becht et al., 2018). The distance between dots is proportional to the similarities between 

transcriptomes (Figure 3a). Cells were grouped into clusters representing distinct cell types 

and identified based on their highly conserved marker genes. The top three marker genes for 

each cluster are indicated (Figure 3a).

Ezh2 was conditionally removed from the palatal epithelium. Given the essential role 

of epithelial-mesenchymal interaction in the palatal development, differentially expressed 

genes (DEGs) could be detected in both palatal epithelial and mesenchymal cells of the 

cKO embryos. However, no DEGs were identified in the mesenchymal cells based on our 

current analysis setting. The major changes were found in epithelial cells which might 

indicate the transcriptome changes induced by Ezh2 deficiency limited to the epithelial 

cells at this specific timepoint (i.e., E14.0). However, it worths to further investigate on 

the transcriptome changes in both mesenchymal and epithelial cells at a serial timepoints. 

The mesenchymal cells uniquely expressed key markers Sfrp, Col1a1, and Twist1, which 

differentiate them from the rest of the cells. Four major epithelial clusters were differentiated 

at the resolution picked up by CellfindR (Yu et al., 2019). They were identified by top 
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markers Krt14 (cluster 1.0; basal epithelium), Sox2 (cluster 1.1; basal epithelium), Sox21 
(cluster 1.2; basal epithelium), and Prr15l (cluster 1.3; periderm). We identified one cluster 

of glial cells expressing Fabp7 and Foxd3, and one small cluster of cells expressing possible 

markers of neuronal identity, including Hand2 and Snap25. There were also two populations 

of endothelial cells and two populations of myeloid-lineage cells, as well as two groups 

of myogenic cells (Figure 3a). To explore the cell-cell communications through signaling 

pathways during palatogenesis, we performed CellChat (Ji et al., 2020) which showed that 

palatal mesenchymal cells had most ligand-receptor pairs and connections with the epithelial 

and endothelial as well as glial lineage cells (Figure 3b).

From our single-cell data we found that while Ezh2 was expressed at relatively strong levels 

in the four epithelial populations, cells with appreciable Ezh1 expression were minimal 

(Figure 3c,d). We then performed a pseudotime analysis of the epithelial cells across the 

entire dataset to map the trajectory of the represented cells. We found that the epithelial 

cells progressed from a more basic identity and split along two lineages. Additionally, the 

pseudotime map showed about four general cell identities, roughly corresponding to the 

four cell clusters separated during the initial analysis. Since immunostaining experiments 

suggested reduced Ki67 expression in the palatal epithelium of Ezh2 cKO mutants, we also 

looked at Mki67 in the single-cell dataset. We generated a feature map of epithelial cells 

expressing Mki67 along the trajectory of the pseudotime analysis and found that most of 

the epithelial cells expressing Mki67 are concentrated toward the basic end. Cells at the 

later stages of progression no longer express high levels of Mki67, reflecting a cell cycle 

exit as these cells begin to differentiate (Figure 4a). When comparing Mki67 transcript 

levels in the mutant and control groups, we found that all four epithelial clusters in the 

conditional Ezh2 mutants showed cells with lower Mki67 levels than those of controls, 

but only subcluster 1.2 showed statistical significance (Figure 4b,c). We validated Mki67 
expression by RT-qPCR using total RNA samples extracted from the whole palatal shelves, 

which showed a diminished level in the mutants, but there was no statistical significance 

(Figure 4d).

3.4 Altered transcripts of cell cycle regulators in the palatal epithelium of Ezh2 cKO 
mutant embryos

We further examined DEGs of the palatal shelf clusters identified through the scRNA-seq 

analysis. After Bonferroni correction, few genes remained statistically significant within 

each of the epithelial subpopulations. However, in cluster 1.2, approximately a dozen genes 

associated with cell cycle regulation are dysregulated, most of which were downregulated, 

in line with our findings that Ki67 or Mki67 levels were reduced in the epithelium of Ezh2 
mutant palate. Among the top DEGs were the topoisomerase gene Top2a and the centromere 

protein encoding Cenpf. Both are key promotors of cell division, and both had reduced 

transcript levels in Ezh2 cKO mutants (Figure 5a–h). RT-qPCR results using total RNA 

samples extracted from the whole palatal shelves showed diminished levels of both Top2a 
and Cenpf in the mutants, but there was no statistical significance (Figure 5d,h). Intriguingly, 

a top upregulated gene in the mutant cluster 1.2 is Cdkn1a that encodes p21, a key Cdk 

inhibitor and negative regulator of cell cycle progression (Figure 5i–k).
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Since we recognized that there was extensive signaling predicted between all of the palatal 

cell populations, we considered a potential dysregulation in the mesenchyme as well due 

to epithelial-mesenchymal interactions. We resubclustered the mesenchyme separately and 

identified the major groups of cells (Figure S1a). We then compared the mesenchymal 

populations in mutant and control datasets, which did not reveal strong dysregulation of cell 

cycle regulators (Figure S1b–d), suggesting that epithelial Ezh2 most likely only contributes 

to proliferation in the epithelium itself.

We also looked for expression of Cdkn2a, a target directly repressed by Ezh2 which may 

provide insight into the mechanism by which Ezh2 contributes to Cdkn1a expression and 

found there are few epithelial cells expressing appreciable levels of Cdkn2a, suggesting 

Cdkn1a may instead be a key target and means by which Ezh2 controls proliferation in the 

palatal epithelium (Figure S2).

4 DISCUSSION

The dynamic morphological process of palatal development is manipulated by a complicated 

network which is highly coordinated between multiple molecular pathways. Accumulating 

evidence indicate a critical role of epigenome in influencing this complicated network. Our 

study demonstrated that ablation of Ezh2 in mouse embryonic ectoderm caused partially 

penetrant cleft palate, associated with decreased proliferation of the palatal epithelial cells, 

particularly toward the posterior.

Although Ezh1 is dispensible for mouse survival, it has been shown that Ezh1 plays a 

synergistic role with Ezh2 in postnatal skin homeostasis in mice (Ezhkova et al., 2011). 

One notable finding we uncovered was that while penetrance was relatively low in our cKO 

mutants, it did not seem to be affected by any level of Ezh1 insufficiency. Even though many 

of our experiments were performed with compound mutants with loss of Ezh1 function or 

haploinsufficiency, penetrance of cleft palate was still around 20%. As such, Ezh2 and PRC2 

is likely to be solely responsible for the alterations in function of palatal epithelium.

In addition to the reduced proliferation as we found through immunofluorescent assay, 

scRNA-seq demonstrated a decreased expression of Mki67 in the mutant group, further 

strengthening the link with Ezh2 and cell cycle progression in the palatal shelf epithelia. 

Additionally, we were able to demonstrate a trajectory of differentiation through the 

generation of a pseudotime map. Through this we were able to show that cell cycle exit 

occurs early on by Mki67 transcripts only within the least progressed cells, while the other 

groups do not express Mki67.

We found that while significantly dysregulated genes in Ezh2 cKO mutant palate 

were minimal in most epithelial clusters, the subcluster 1.2 showed several top DEGs 

encoding factors involved in DNA replication or cell division. While many of the 

statistically significant DEGs were upregulated, reflecting the role of Ezh2 and the PRC 

as a transcriptional repression, most of the genes associated with proliferation were 

downregulated in cluster 1.2 of the mutant palate. One notable exception was Cdkn1a, 

which encodes p21, a major regulator that halts progression of the cell cycle and induces 
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senescence (Muñoz-Espín et al., 2013), which was upregulated in the Ezh2 mutants. Since 

we also showed that proliferation was reduced in the epithelium of mutants at the middle 

and posterior regions, these are promising findings to strengthen the evidence for this role. 

As such we suggest that through Ezh2, PRC repression of cell cycle inhibitors, including 

Cdn1a, maintains proliferation of palatal epithelial cells, and that in its absence, cell cycle 

progression is reduced. Notably, the related Cdkn2a which is a known Ezh2 target is not 

found at significant levels, suggesting Cdkn1a may be a main factor linking Ezh2 and 

proliferation in the palatal epithelium with a role similar to that which Cdkn2a plays in other 

tissues. Future studies will seek to clarify the regulatory methods by which Ezh2 controls 

Cdkn1a and the altered proliferation markers in our model.

One remaining question is of the mechanism by which loss of epithelial Ezh2 and reduced 

proliferation causes cleft palate. Increased proliferation in palate epithelium, or a failure 

of medial edge cells to exit the cell cycle, has been shown to be able to cause cleft 

palate. Alternatively, reduced proliferation in the mesenchyme may lead to hypomorphic 

palatal shelves that fail to converge, though it is unclear how reduced epithelial proliferation 

prevents palatogenesis. Palatal elevation is a delicate process and slight perturbations in 

the mechanical forces between oral structures can inhibit their ability to complete. Even 

the individuals of this model that do not show cleft palate, do show delayed elevation, 

occasionally resulting in elevation failure. The altered epithelium may just affect the shelves’ 

ability to move just enough that sometimes they can recover with increased room above 

the tongue as development proceeds, but not always. One possibility may be that reduced 

proliferation results in a gap in the size of the pools of cells between the mutants and 

controls, that widens over the course of palatogenesis, leading to a significantly hypoplastic 

epithelium at the point of elevation, counteracting the mechanical forces from the mandible 

and within the palatal mesenchyme. Alternatively, this may reflect premature cell cycle 

exit and cellular differentiation, which could disrupt the epithelial-mesenchymal signaling 

interactions that are integral to palatogenesis, leading to a retarded ability to elevate. 

Future experimentation will help to clarify the relationship between sustained epithelial 

proliferation and palatal elevation that is regulated by Ezh2 and lost in its absence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conditional ablation of Ezh2 in palatal epithelia abolishes H3K27 trimethylation and 
causes cleft palate.
(A,B) Rosa26-mTmG fate-mapping shows Cre recombination in Grhl3-Cre+ oral ectoderm 

expressing eGFP at E14.5, while cell in which Cre was never activated express td-

Tomato. Occasional small colonies of mesenchyme cells expressing eGFP are apparent 

in enlarged palatal shelf image (B enlarged from squared area in A). (C,D) H3K27me3 

immunofluorescence shows strong staining in the medial edge epithelia (MEE, bracket in 

C) in the wild-type control palate, which is missing in the Grhl3Cre;Ezh2-cKO palatal MEE 

(dashed bracket in D) at E14.5. (E,F) Palate is fully closed in 100% Ezh1-KO embryos at 
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E18.5 (E), while palate remains open (white asterisk) in about 20% of Grhl3Cre;Ezh2-cKO 

with or without Ezh1 ablation at E18.5 (F). Scale bars = 500μm.
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Figure 2. Altered function in palatal shelves of Ezh2 mutant embryos.
(A-B) Hematoxylin/Eosin stain of coronal sections of E14.5 embryos. Palatal shelves of 

wild-type control embryos lacking Cre (A) have elevated, while the palatal shelves of 

Grhl3Cre/+; Ezh2flox/flox mutant littermates (B) are still vertical. NS = nasal septum, PS 

= palatal shelf, T = tongue. (C-F) Proliferation is reduced in the posterior palatal shelf 

epithelium of Ezh2 mutant palate. Percentages of Ki67+ cells in the epithelium of control 

and Grhl3-Cre Ezh2 cKO mutant palatal shelves quantified at the anterior (C), middle (D), 

and posterior (E) region. (F-G) Comparison of the Ki67 staining in the posterior palate 
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epithelium of control (F) and cKO mutant (G) embryo at E14.5. Ki67 is shown in red. 

E-cadherin is shown in green. DAPI is shown in blue.
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Figure 3. scRNA-seq reveals palatal cell features, cell-cell communications among different 
clusters, and Ezh1/Ezh2 expression in the palatal epithelium.
(A) UMAP showing representative relationships between E14.5 palatal shelf cells with top 

markers identifying each cluster. (B) CellChat diagram for signaling interactions between 

different cell clusters based on expressed pathway components. (C-D) Expression feature 

maps of Ezh1 and Ezh2 in the palate epithelial clusters in which they were ablated. Ezh1 
(C) expression is limited in the epithelium, while Ezh2 (D) shows high expression in the 

epithelium.
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Figure 4. Developmental trajectory of palatal epithelium and diminished Mki67 expression in a 
subcluster of mutant epithelium.
(A) Pseudo-time analysis of epithelial cells with arrows indicating differentiation split along 

two distinct trajectories, with cell clusters representing different points in differentiation 

Mki67 expression indicates differentiation largely correlates with a reduction in proliferation 

(B-D) scRNAseq data reveals reduced expression of proliferation marker Mki67 in palatal 

epithelium of Ezh2 cKO mutant embryo. Expression map (B) showing cells with Mki67 
expression in heterozygous control and cKO mutant datasets. Violin plot (C) showing 

significant reduction of Mki67 transcript levels in the mutant epithelial subcluster 1.2 (*, 
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P<0.05). Real-time PCR results (D) demonstrate no significant (ns, P > 0.05) changes of 

Mki67 in the whole palatal tissue between the mutants and littermate control groups.
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Figure 5. Cell cycle regulators are altered in Ezh2-cKO palate epithelium.
(A-D) Top2a transcripts are reduced in epithelial palate cells of Ezh2 mutant embryos. 

Feature maps showing Top2a expression in control (A) and mutant datasets (B). Violin 

plot showing significantly diminished Top2a expression in the mutant epithelial subcluster 

1.2 (C). RT-qPCR showing no significant (ns, P > 0.05) changes of TOP2a expression in 

the whole palatal primordia (D). (E-H) Cenpf transcripts are significantly diminished in 

epithelial subcluster 1.2 of Ezh2 mutant embryos. (I-L) Cdkn1a transcripts are significantly 

increased in epithelial subcluster 1.2 of Ezh2 mutant embryos. *, P < 0.05.
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