
ARTICLE OPEN

Multimodal digital phenotyping of diet, physical activity, and
glycemia in Hispanic/Latino adults with or at risk of type 2
diabetes
Amruta Pai 1✉, Rony Santiago2, Namino Glantz3, Wendy Bevier2, Souptik Barua1, Ashutosh Sabharwal1 and David Kerr 4

Digital phenotyping refers to characterizing human bio-behavior through wearables, personal devices, and digital health
technologies. Digital phenotyping in populations facing a disproportionate burden of type 2 diabetes (T2D) and health disparities
continues to lag compared to other populations. Here, we report our study demonstrating the application of multimodal digital
phenotyping, i.e., the simultaneous use of CGM, physical activity monitors, and meal tracking in Hispanic/Latino individuals with or
at risk of T2D. For 14 days, 36 Hispanic/Latino adults (28 female, 14 with non-insulin treated T2D) wore a continuous glucose
monitor (CGM) and a physical activity monitor (Actigraph) while simultaneously logging meals using the MyFitnessPal app. We
model meal events and daily digital biomarkers representing diet, physical activity choices, and corresponding glycemic response.
We develop a digital biomarker for meal events that differentiates meal events into normal and elevated categories. We examine
the contribution of daily digital biomarkers of elevated meal event count and step count on daily time-in-range 54-140mg/dL
(TIR54–140) and average glucose. After adjusting for step count, a change in elevated meal event count from zero to two decreases
TIR54–140 by 4.0% (p= 0.003). An increase in 1000 steps in post-meal step count also reduces the meal event glucose response by
641min mg/dL (p= 0.0006) and reduces the odds of an elevated meal event by 55% (p < 0.0001). The proposed meal event digital
biomarkers may provide an opportunity for non-pharmacologic interventions for Hispanic/Latino adults facing a disproportionate
burden of T2D.

npj Digital Medicine             (2024) 7:7 ; https://doi.org/10.1038/s41746-023-00985-7

INTRODUCTION
Beyond genetic and biological factors, behavioral and socio-
cultural influences, including diet and physical activity choices, are
essential factors in determining the risk of progression of type 2
diabetes (T2D)1,2. Wearable devices and mobile health smart-
phone applications are promising digital data sources for diet,
physical activity choices, and glycemic response to support more
personalized management of T2D3,4. Digital phenotyping refers to
continuous quantification of an individual’s bio-behaviors using
digital data5,6. Quantification requires the development of digital
biomarkers that represent objective data-driven physiological and
behavioral measures.
An important application of digital phenotyping is actionable

insights for patients, e.g., the ability to determine which
combination of diet and exercise is beneficial for them. Towards
that, current approaches have mainly analyzed continuous
glucose data and focused on aggregate measures of glycemic
control over longer durations, e.g., time-in-range and glycemic
variability over 2 weeks7. While the aggregate measures have
been demonstrated to have clinical relevance8,9, they provide little
actionable benefit to patients in making their daily diet and
exercise decisions. To provide actionable recommendations, we
need multimodal digital phenotyping allowing simultaneous
capture of diet, exercise, and glycemic profiles. Additionally,
digital biomarkers around specific events (e.g., meals, day-to-day)
that provide granularity to understand the causal impact of diet
and exercise actions on glycemic response have to be developed.

To the best of our knowledge, there is a lack of studies
investigating multimodal digital phenotyping for T2D, let alone in
Hispanic/Latino populations. Hispanic/Latino populations face a
disproportionate burden of T2D, with the prevalence of both
diagnosed and undiagnosed T2D nearly twice as high among the
U.S., Mexican-origin Hispanic/Latino adults compared to non-
Hispanic Whites10–12. Past work has shown that among Hispanic/
Latino adults living with or at risk of T2D, continuous glucose
monitoring (CGM) can provide digital biomarkers beyond tradi-
tional measures of time-in-range, average glucose, and glycemic
variability13,14. Similarly, measuring the intensity and timing of
physical activity, assessed by wearable physical activity trackers,
has been demonstrated feasible for this population15. While the
feasibility of continuous glucose monitors and wearable activity
trackers have been demonstrated, simultaneous use of the
modalities along with food logging has not been explored in
the Hispanic/Latino population. Our primary objectives were: (1)
Evaluate the feasibility of multimodal digital data collection from
Hispanic/Latino adults with or at risk of T2D, (2) to model meal
events and daily digital biomarkers of diet, physical activity, and
glycemic response using multimodal digital data and, (3) assess
cause–effect relationship between digital biomarkers.
Our work demonstrates the application of multimodal digital

phenotyping, i.e., the simultaneous use of CGM, physical activity
monitors, and meal tracking in Hispanic/Latino individuals with or
at risk of T2D. The overall summary of the paper is displayed in
Fig. 1. We conducted our study in 36 Hispanic/Latino adults with
or at risk of T2D and observed high levels of adherence across all
modalities. We compute digital biomarkers for meal events, such
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as the meal event’s glucose response, post-meal step count, and
calorie content of the meal event using self-reported food logs,
step count data from the physical activity monitor, and CGM
curves. Further, we developed a digital biomarker for meal events
that differentiates meal events into normal and elevated
categories using CGM and HbA1c data. We also propose digital
biomarkers for daily monitoring, such as the elevated meal event
count and daily step count. We compute the cause-effect
relationships between our proposed daily digital biomarkers and
known glycemic outcomes, such as time-in-range and average
glucose, while controlling for confounders like baseline glucose at
the start of the day, and duration of the day. Our findings indicate
that the proposed meal event and daily biomarkers can be specific
targets for adaptive lifestyle and non-pharmaceutical interven-
tions to help achieve glycemic goals.

RESULTS
Description of cohort and feasibility of study
We conducted a study in a Hispanic/Latino cohort with varying
diabetes status (Table 1). Information on occupation is included in
Supplementary Table 10. The study described in methods was
approved by the Rice University Institutional Review Board (IRB-FY
2021-54). The dataset captured food choices (via MyFitnessPal
App), physical activity (via hipworn ActiGraph), and glucose
excursions (via CGM) in free-living conditions of 36 Hispanic/
Latino participants with or at risk of type 2 diabetes (Fig. 2). Each
food log consisted of the timing of the log, macronutrient
composition, and meal occasion label. Physical activity measure

was the number of steps (step count) taken every minute
calculated using the Actilife software from raw accelerometer
sensor data. Finally, glucose excursions were measured as
interstitial fluid glucose levels every 15 min. The median
adherence in days for MyFitnessPal meal logging was 13
[interquartile range (IQR): 9–14]; for CGM, 13 [IQR: 13–13] days;
and for ActiGraph, 13 [IQR: 9–14]. The median simultaneous
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Fig. 1 Research summary. Overall contributions of multimodal digital phenotyping in Hispanic/Latino adults with or at risk of non-insulin
treated T2D.

Table 1. Demographic and clinical measurements for the participant
cohort.

Variable (n= 36 participants) Median [interquartile range]

Age (years) 51 [39–59]

Gender 28 female, 8 male

Body mass index (kg/m2) 32.6 [29.6–35.2]

HbA1c (%) 6.0 [5.5–6.9]

Number of participants with known
diabetes

14 (38%)

Number of participants born in the
United States

6 (17%)

Number of participants with no
insurance coverage

11 (31%)

Diabetes status

At-risk 13 (36%)

Prediabetes 9 (25%)

Type 2 Diabetes 14 (39%)
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adherence was 11 [IQR: 5–13] days. We observed high adherence
for individual modalities. The percentage of participants having at
least 10 days of adherence to CGM, MyFitnessPal, and ActiGraph
was 94%, 75%, and 75%, respectively. Simultaneous adherence is
often difficult to achieve in multimodal studies. Hence, we chose
50% as the threshold, i.e., if more than 50% of the participants had
at least 10 days of simultaneous adherence, then using these
modalities for data collection is feasible in this population. We
found that 52% of our participants displayed at least 10 days of
simultaneous adherence to all three modalities. Hence, we
conclude that multimodal monitoring in the Hispanic/Latino
population is feasible.

Meal events and daily digital biomarkers
We used the self-reported meal log timings and CGM curves to
identify the start time of meal events. We implemented a
framework to correct the meal log timings and add meal timings
as self-reported logs are error-prone (described in “Methods”).
In total, 1467 self-reported meal logs were provided by

participants. For each self-reported log, each annotator indepen-
dently identified a corrected timing or tagged the log unknown as
described in the methods. Further, each annotator independently
added timings as discussed in the methods. A few examples of
corrected and added timing are shown in Fig. 3. The breakdown of
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Fig. 2 Visualization of a snapshot of the multimodal data. Digital health devices were used to collect synchronous information on the meal,
activity, and glucose excursions in free-living conditions.
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the number of correction and addition annotations for each of the
four annotators is presented in Supplementary Table 1. There
were a total of 6725 annotated timings combined across all four
annotators. We aggregated the annotated timings as described in
methods and identified 1584 meal events. To investigate inter-
annotator agreement, we analyzed the intra-class correlation of
the corrected timings across 951 logs (logs for which all four
annotators had been able to identify a corrected timing). The
intra-class correlation was found to be 0.95.
Second, we developed digital biomarkers to analyze each meal

event, namely calorie content of the meal event, post-meal step
count, meal event’s glucose response denoted as MGR3h
(incremental area under the 3-h CGM curve from the start time
of the meal event14,16), and elevated/normal classification of the
meal event. We developed a new CGM-driven meal event
characterization that uses an “elevated” or “normal” classification
of the meal by exploiting the mapping between MGR3h and HbA1c
observed across participants (explained in methods).
We calculated MGR3h for each of the total 1584 meal events

and MGR3h for each of the 36 participants. The line of fit for the
robust linear regression model between MGR3h and HbA1c is
shown in Fig. 4a. The association between true and fitted values of
HbA1c is shown in Fig. 4b. The correlation between true and fitted
values was significant with a Pearson correlation coefficient of 0.72
(p < 0.0001, beta distribution test). The mean absolute error was
0.80%. Error analysis after excluding the four samples of extremely
high values of HbA1c (HbA1c > 10) resulted in a mean absolute
error of 0.41% and Pearson’s correlation coefficient of 0.88
(p < 0.0001, beta distribution test).
We used the model to characterize individual meal events as

elevated or normal (from a glucose perspective). MGR3h quantifies
a person’s average glycemic regulation to meals, and its mapping
to their baseline HbA1c is provided by the model. The thresholds
for elevated/normal classification were based on the HbA1c
definitions for at-risk, prediabetes, and T2D17.
Third, we constructed daily digital biomarkers. We defined a

duration (analysis window) for each day and computed daily
measures of the digital biomarkers, such as daily elevated meal
event count that is the number of meal events that were classified
as elevated in that duration. We determined the daily step count as
the total steps taken within the duration. An overview of the steps
of computation is shown in Fig. 5. Additionally, we computed
baseline glucose at the start time of day.

Daily elevated meal event count and step count have a
significant effect on time-in-range and average glucose
We computed the effect of daily elevated meal event count and
daily step count on daily glycemic outcomes to evaluate the
significance of the proposed digital biomarkers for monitoring and
event-driven recommendations. The outcomes describing glyce-
mic control were time-in-range (54–140mg/dL) and average
glucose was measured using CGM values during the duration.
First, we investigated the effect of a day’s elevated meal event
count on glycemic outcomes while adjusting for confounders such
as baseline glucose at the start of the day, daily step count, and
duration of the day (explained in Methods). We had 369 daily
samples across 36 participants.
Figure 6 demonstrates a negative association between the

elevated meal event count and time-in-range with TIR54-140
decreasing with an increase in elevated meal event count across
participants who are at risk of or with prediabetes or T2D. The
decrease in TIR54–140 and increase in average glucose due to the
increase in the elevated meal event count is summarized in
Table 2. An increase in average glucose and a decrease in TIR54–140
for a change in elevated meal event count from 0 to 1 was not
statistically significant. However, the change from 0 to 2 and 0 to 3
was statistically significant.

Additionally, the causal analysis indicated that daily step count
had a statistically significant effect on average glucose. An
increase in one unit, i.e., 1000 steps, led to an absolute decrease
of 0.3 mg/dL (p= 0.02, linear regression t-test) in average glucose.
However, the effect on time-in-range was not significant.

Post-meal step count to reduce meal event’s glucose response
and risk of elevated classification
We also investigated if the post-meal step count of a meal event
could potentially be used as a targeted treatment to reduce the
meal event’s glucose response and prevent an elevated classifica-
tion. As our dataset was collected in free-living conditions, the size
of the meal (calorie content) was not fixed. Hence, we adjusted for
calorie content in our statistical analysis. To investigate the impact
of post-meal step count on a meal event’s glucose response, we
analyzed a subset of meal events that satisfied two conditions.
First, the self-reported meal log (with non-zero calorie content)
corresponding to the meal event should have high agreement in
the corrected timing among the annotators. Specifically, the log
was chosen if three out of the four corrected timings provided for
that log were tagged in the same group (meal event) by the
DBSCAN algorithm. Second, the post-meal step count was
recorded during the meal event.
We computed MGR3h for each of 764 meal events and classified

each of the meal events into elevated or normal categories using
its MGR3h. We found that post-meal step count had a significant
effect on the meal event’s glucose response after adjusting for
calorie content. An increase of 1000 steps leads to a decrease of
MGR3h by 641 minmg/dL (p= 0.0006, linear regression t-test). An
increase of 1000 steps in post-meal step count is associated with a
55% (p < 0.0001, linear regression t-test) decrease in the odds of
elevated classification of the meal event. This finding suggests
that post-meal physical activity can be used as an intervention to
reduce the risk of elevated meal events and reduce meal events’
glucose response.
We demonstrated the effect of calorie content on the MGR3h

and elevated/normal classification of the meal event after
adjusting for post-meal step count. An increase in 100 kcal leads
to an increase in MGR3h by 183 minmg/dL (p < 0.0001, linear
regression t-test) and an 8% (p= 0.002, linear regression t-test)
increase in the odds of elevated classification of the meal event.

DISCUSSION
Digital health represents the convergence of healthcare with
technology (devices and software), such that wearable devices,
information technology and communication tools come together
to support people living with or at risk of developing diabetes.
However, there is growing evidence that minority communities
facing a disproportionate burden of diabetes and health
disparities often lack access to currently available digital health
technologies18–20. Our study demonstrated the feasibility and
acceptability of multimodal digital phenotyping using digital
health technologies in a U.S. Hispanic/Latino population with or at
risk of T2D. Facilitating the use of digital health technologies for
underserved communities may be one approach to help reduce
the barriers to this underserved community participating in clinical
research21.
In this study, we assessed the contribution of individual meals

to a 3-h integrated area under the curve glucose responses in free-
living conditions and demonstrated that an individual’s average
meal event glucose response (across all their meals) did appear to
be predictive of the HbA1c level. It could be used to monitor T2D
progression as well as provide a more personalized target for
pharmaceutical and non-pharmaceutical interventions. Previously,
in a similar population of Hispanic/Latino adults living with or at
risk of developing T2D, it was possible to also predict HbA1c from
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the breakfast glucose response alone14. In that study, self-reported
meal logs were not collected and only breakfast responses were
studied because it was easiest to annotate manually.
Current CGM metrics such as time-in-range characterize

behavior across days so targets in time-in-range cannot be
easily translated to event-driven recommendations. Biomarkers
such as glycemic index that can be used to inform meal events
are not suitable for free-living meal events that consist of
multiple food items consumed together, often followed by
physical activity16,22,23. In this study, to characterize meal
events, we leveraged the function mapping average meal
event glucose response to HbA1c for classifying each individual
meal event into a simple “normal” or “elevated” glucose
response category. We found that an increase in the elevated
meal event count was associated with a significant lowering of
daily time-in-range between 54 and 140 mg/dL and an increase
in average glucose after adjusting for covariates such as
physical activity. Increasing the elevated meal event count of
two or more each day had a significant effect on daily time-in-
range and average glucose. As a corollary, any effect on daily
glycemic outcomes due to an increase in elevated meal event
count from zero to one was insignificant. Generally, 70 mg/dL is
a lower limit for type 2 diabetic individuals. For completeness,
we also performed our analysis with a lower limit of 70 mg/dL
and found consistent results. Our results with a lower limit of
70 mg/dL are presented in Supplementary Table 12. This finding
suggests that, at an individual level, one elevated meal event
may be acceptable, while two or more elevated meal events
significantly increase the potential for progression of dysglyce-
mia. Daily elevated meal event count from CGM and meal
logging may potentially be used as a glycemic target parameter
by healthcare providers. The binary characterization of a meal
event from CGM and diet logging could be used to provide
personalized CGM-driven food reflection reports similar to
calorie density color codes proposed in the prior work24.
Participants also recorded their daily levels of physical

activity in this study. For people living with T2D, physical
activity is encouraged as part of the management of glycemia
and overall health based on evidence that regular physical
activity can help to improve glycemic control as measured by
changes in HbA1c levels and 24-h ambulatory glucose pro-
files25,26. In addition, reducing the amount of sedentary time
may also help prevent T2D for those at risk27. In this study, an
increase in physical activity (represented as step count increase)
within one hour after a meal event was associated with a
significantly lower meal event glucose response and risk of an
elevated classification. Previously15 we reported that, for free-
living Hispanic/Latino adults with or at risk of T2D, there
appears to be clustering of their daily levels of physical activity
by intensity and time of day, which, in turn, may influence
achieved HbA1c and BMI. In that study, the amount of physical
activity was more impactful on the HbA1c achieved among

participants who were more active later during the day, as well
as for overweight and younger individuals15. Taken together
with this study, these findings suggest that targeted step count
recommendations could be provided as a just-in-time adaptive
intervention28. For example, after an individual logs their meal,
a post-meal step count needed to prevent an elevated meal
event is recommended. Another example is that if a low post-
meal step count is detected after the meal, a notification
encouraging you to take a walk is sent. Further, if an elevated
meal event is detected, a notification to engage in some form of
physical activity after subsequent meals can be provided.
The study has two limitations. First, the participants self-

reported their meals in the MyFitnessPal App. While self-
reported food diary data may be prone to inaccuracy, recent
research analyzed large datasets collected through MyFitnes-
sPal to derive insights about dietary behaviors29–31. In our
study, we observed that participants often logged their meals
later in the day. Hence, the self-reported data is prone to
inaccuracy, especially when more time has passed between the
actual meal and entry into the app. We leveraged the
synchronous CGM curves and prior knowledge that meals lead
to a sharp increase in glucose values to combat the inaccuracies
in self-reported timing. In our analysis, we implemented a meal
timing correction and addition framework manually. However,
manual annotations were subject to human error. To reduce
bias, we aggregated annotations across four independent
annotators. In the future, automated meal annotation tools
can substitute for manual annotations. Although automated
meal annotation tools have been developed for type 1
diabetes32, they need to be validated on datasets comprising
of individuals with or at risk of T2D. In real-world deployment
scenarios, a real-time meal detection tool could be used to
remind participants to log or take a photo of their meals and
provide targeted just-in-time recommendations33.
The second limitation is that the generalizability of the study is

limited due to the small sample size (36 participants). The error of
0.8% is large, considering the HbA1c statistics in our dataset is 6.0
[IQR: 5.5–6.9]. However, we do show that most of the error arises
due to the model’s inability to accurately fit for high HbA1c

(HbA1c > 10) values mainly because of the low representation of
such high HbA1c values in our dataset. Excluding the four high
HbA1c samples, the error reduces to 0.41%. We also tried a
quadratic term fit shown in Supplementary Fig. 1, and the error
was reduced to 0.75% and 0.4% (excluding the HbA1c > 10%
samples). The trends in our results remain unchanged, as shown in
Supplementary Table 11. The model mapping average meal event
glucose response to HbA1c is a population model and would be
more accurate with a larger sample size and more balanced
representation across HbA1c values. Causal effects estimated on
observational data are a function of the population. Population
behaviors may be widely different for other ethnic and racial
groups, especially regarding diet and physical activity34,35. Hence,

Fig. 4 Mapping between HbA1c and average meal event glucose response. The scatterplot on the left a displays the robust regression fit
between average meal event glucose response and HbA1c. The equation representing the best line-of-fit is reported (solid black line). The
scatterplot in b shows the correlation between true and fitted HbA1c values. The dashed black line represents the 45° line.
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Fig. 5 Illustration of steps taken in methods. The CGM curve and meal logs are analyzed to segment meal events. The meal event measures
are the meal event’s glucose response (MGR3h), post-meal step count, and elevated or normal classification of meal events computed for each
meal event. Daily measures of elevated meal count, daily step count, baseline glucose, and duration are then calculated.
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the effects need to be validated with a larger sample size and
compared to other populations with different ethnicities. Given
that the U.S. Hispanic/Latino population faces a disproportionate
burden of diabetes compared to the background population11,
elucidating the association between diet, physical activity, and
glycemic control has been the focus of our work. Our study
suggests that the use of digital health technologies is both
feasible and acceptable for this population and could potentially
help achieve more equitable health outcomes36.
In conclusion, we conducted a multimodal digital phenotyping

study to investigate the impact of meal events and physical
activity on daily glycemic control in Hispanic/Latino adults with or
at risk of T2D. We proposed a CGM-driven binary characterization
of a meal event that is the elevated/normal classification of a meal
event by exploiting the association found between participants’
average meal event glucose response and HbA1c. We introduced
the concept of an elevated meal event count and showed that it
significantly contributed to time-in-range between 54 and
140mg/dl and average glucose. In this study, we also found that
the post-meal step count significantly impacts the risk of elevated
meal events. A specific focus of the application of digital
phenotyping is the ability to visualize and interpret physiological
data from digital health technologies that can potentially create
opportunities for new therapeutic interventions at an increasingly
personal level, benefiting the majority by focusing on the
uniqueness of individuals. The findings of our study may offer
the opportunity for non-pharmacologic interventions for popula-
tions facing a disproportionate burden of T2D.

METHODS
Study
Thirty-six adult participants of self-reported Hispanic/Latino
heritage with a diagnosis of T2D or at risk for developing T2D
using the American Diabetes Association diabetes risk assessment
tool37 provided written informed consent to be enrolled in a
prospective, observational cohort study (ClinicalTrials.gov number:
NCT04820348). The American Diabetes Association created a
simple 7-question test to estimate someone’s risk of having
diabetes. The test considers age, gender, history of gestational
diabetes, family history of diabetes, high blood pressure, level of
physical activity, and BMI. Each question is scored from 0 to 1 or
more points. A total score of 5 or higher indicates the person is at
high risk for having diabetes. The goal of the test is to identify
those with modifiable risk factors and raise awareness so they can
make lifestyle changes to prevent diabetes.
Baseline measurement of HbA1c was taken using point-of-care

HbA1c testing (Alere Afinion 2). Multimodal monitoring involves
three digital health modalities: continuous glucose monitoring
(CGM), a diet-tracking mobile application, and physical activity
monitoring. Participants wore a blinded CGM (Abbott Freestyle

Libre Pro) for 14 days after enrollment. During enrollment, the
premium version of the MyFitnessPal (MyFitnessPal, Inc.) app was
installed on each participant’s personal smartphone in the desired
language (English/Spanish). Study staff trained the participants to
use the MyFitnessPal app. Participants reported the timing; meal
occasion (breakfast, lunch, dinner, or snacks); name; and quantity
of the food item by searching the MyFitnessPal food database.
Based on the quantity selected and available information about
the food item in the database, the app calculated the
macronutrient composition for each food item. For measurement
of physical activity, the participants wore the ActiGraph wGT3X-BT
(ActiGraph, Pensacola, Florida, USA) on their dominant hip with an
elastic belt for 24 hours/day except when bathing, swimming, and
sleeping for 14 days. The downloaded data were screened for
wear time using the Choi algorithm based on previous work using
the manufacturer’s software (ActiLife 6.13.3)38. Participants were
asked to continue normal activities during the study period. The
adherence measure of MyFitnessPal meal logging was the number
of days the participant logged food for two or more different
meals39. The adherence measure of the CGM device was the
number of days with no missing glucose values. ActiGraph
adherence was the number of days 10 or more hours of step
counts were recorded40. Past work41 has established that within
14 days, having at least 10 days (70%) of CGM data is required to
measure usual glycemic patterns reliably. Hence, this study
considers ten days of simultaneous adherence to MyFitnessPal,
ActiGraph, and CGM. Simultaneous adherence days refer to days
with no missing values of CGM, ActiGraph recorded ten or more
hours of step counts, and at least two meals were logged on
MyFitnessPal.

Ethics approval
Ethics approval was obtained from the Rice University Institutional
Review Board (IRB-FY2021-54). Written informed consent was
obtained from all participants.

Segmentation of meal events
We used the self-reported meal log timings and CGM curves to
identify the start time of meal events. We segmented 3 h of the
CGM curve from the start time as the meal event. Participants
were asked to log their meals just before eating so that the meal
log timing would align with the sharp rise in glucose levels seen in
the CGM curve. However, after the study was completed, it
became apparent that the meals were often logged variably after
eating, with the meal log timing not always coinciding with the
rise in glucose levels. Also, in some instances, participants forgot
to log their meals. Hence, we implemented a framework to correct
the meal log timings and add meal timings.

Table 2. Effect of daily step count and elevated meal event count on glycemic outcomes.

Glycemic Variable Time-in-range (54–140mg/dL) Percentage of total time (%) Average glucose mg/dL

Variable of interest Estimate (standard error, t-test p-value) Estimate (standard error, t-test p-value)

Elevated meal event count 0–1 −1.1 (1.3, 0.41) 1.7 (1.2, 0.16)

Elevated meal event count 0–2 −4.0 (1.3, 0.003) 5.8 (1.3, <0.0001)

Elevated meal event count 0 to ≥3 −8.1 (1.5, <0.0001) 7.7 (1.4, <0.0001)

Daily step count (1 unit= 1000 steps) 0.07 (0.1, 0.63) −0.3 (0.1, 0.02)

Time-in-range (54–140mg/dL) refers to the percentage of total time glucose values between 54 and 140mg/dL. The effects of elevated meal event count were
computed after adjusting for confounders, namely baseline glucose, duration and daily step count. Similarly, the effects of daily step count were computed
after adjusting for confounders’ baseline, glucose, duration, and elevated meal event count. The sample size n= 369.
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Framework to correct and manually add meal log timings
While analyzing meal logs, we observed that participants entered
food items consumed in a given meal in stages. For example,
under breakfast for an example participant, oatmeal was logged at
10 am, and orange juice at 10:15 am. We combined food logs with
the same meal occasion label (e.g., breakfast) and timing
difference within 60 minutes into a single meal event. The meal
log timing assigned to the meal event was the timing of the first
food log in that meal (10 am in the example above).
For each day, we overlaid the meal log timings on the 24-h CGM

curve. Based on visual inspection, the starting time point of a bell-
shaped CGM curve segment (between 4 am and 11:59 pm) with
sharp glucose rise closest to the meal log timing with minimal
overlap with other 3-h CGM curve segments corresponding to
other meal logs was selected as the corrected timing. In Fig. 3, the
orange boxes highlight examples where the meal log timing is
delayed with respect to the start of a sharp rise in glucose levels,
and the green lines denote the corrected timing. The time
difference between the corrected timing and self-report timing
varies as seen in the time difference between the green and red
lines in the orange boxes in Fig. 3a, c, d. The green boxes highlight
examples on the same day where the meal log timing coincided
perfectly with the sharp rise in glucose rise.
In some cases, participants logged multiple meal events with

different meal occasion labels at the same time. For example,
when a participant logged all the meals at the end of the day. In
such scenarios, multiple bell-shaped CGM segments with a sharp
glucose rise were visually identified for each meal event. The meal
event timings were aligned in the order specified by the meal
occasion label, breakfast followed by lunch, followed by dinner.
Snacks were logged at the same time as other meals and tagged
unknown. Meal logs for which a corrected timing could not be
identified were tagged unknown.
In cases where a timing in the self-reported log was missing or

none of the meal events of the day were self-reported, we added
the timings. Since we did not have the self-reported meal log
timing as a reference, we visually identified bell-shaped CGM
curve segments (between 4 am and 11:59 pm) with a sharp
glucose rise. An example in which all meals were added is
displayed in Fig. 3b. Another example in which only one of the
meal events was added is highlighted in Fig. 3d (yellow line).

Aggregation of annotated timings for identification of the
start time of meal event
For each day of each participant, we used Density-based spatial
clustering of applications with noise (DBSCAN)42 algorithm to
aggregate the annotated timings into groups. The Sklearn
package in Python was used to implement DBSCAN with
parameters eps ¼ 1:5 and minsamples ¼ 2. The parameters
were chosen such that each group had at least 2 annotated
timings and groups were at least 1.5 h apart. Annotated timings
that were tagged as outliers by the algorithm were removed. Each
group symbolized a meal event if the start time of the group (i.e.,
the annotated timing that had the largest incremental area under
the 3-h CGM curve) had a maximum glucose rise ≥18.6 mg/dL. The
threshold of 18.6 mg/dL was based on a recent report that 97.5%
of post-meal glucose profiles in healthy adults have a maximum
glucose rise greater than 18.6 mg/dL43.

Elevated/normal classification of meal event
We developed a new CGM-driven meal event characterization that
uses an “elevated” or “normal” classification of the meal. For each
meal event, we computed incremental area under the 3-h CGM
curve denoted as MGR3h using: (i) the 3-h CGM curve segment
beginning from the start time of the meal event, (ii) the baseline
glucose value at the the start time of the meal event is subtracted

from the glucose values in the 3-h segment, and (iii) negative
glucose values set to zero. The trapezoidal rule is used to calculate
the area under the curve. The incremental area under the curve is
widely used to characterize glucose responses to meals in
previous works14,16. A characterization of meal events based on
MGR3h does not exist for individuals with or at-risk of diabetes.
However, HbA1c thresholds for prediabetes (5.7–6.4%) and type 2
diabetes (>6.4%) are well established in the literature. Hence, we
developed a new CGM-driven meal event characterization that
uses an “elevated” or “normal” classification of the meal by
exploiting the mapping between MGR3h and HbA1c observed
across participants (explained in “Methods”).
For every participant, we calculated their average meal events’

glucose response denoted as MGR3h. By aggregating meal events’
glucose responses, variations due to differences in food choices
and physical activity around meals were smoothed out and the
association with HbA1c, which is also an average metric, was more
prominent.
We built a robust linear regression model44 with HbA1c as

response variable and MGR3h as a predictor variable. The robust
linear regression model was denoted as HbA1c ¼ f ðMGR3hÞ þ ϵ
where ϵ 2 Nð0; σ2Þ and f is a linear function. We used the learned
function to characterize individual meal events as elevated or
normal (from a glucose perspective). The model is utilized to find a
hypothetical HbA1c mapping for a single meal’s MGR3h. The HbA1c

values of a single meal signify the hypothetical scenario where if
the individual ate that meal all the time and their average meal
event glucose response was equal to that meal event’s glucose
response, what would be their HbA1c? We use this hypothetical
HbA1c to classify the meal event as normal or elevated.
We define elevated meal events differently for at-risk, predia-

betes, and T2D participants. Thus, for at risk and prediabetes
participants, the classification of the meal event’s glucose response
was elevated if f ðMGR3hÞ ≥ 5.7 and normal if f ðMGR3hÞ < 5.7. In the
case of type 2 diabetes participants, the meal event’s glucose
response was elevated if f ðMGR3hÞ ≥ 6.5 and normal if
f ðMGR3hÞ < 6.5. With the above formulation, we proposed a new
CGM-driven meal event characterization that can be used to classify
all detected meal events into elevated versus normal categories. For
example, consider a participant with prediabetes consumed a meal
event with a mapped HbA1c of 6.0. A mapped HbA1c of 6.0 indicates
that the particular meal event’s glucose response is similar to the
average meal event’s glucose response of a participant with T2D.
Then repeated consumption of that meal event is unsafe for the
prediabetic participant and so the meal event receives an elevated
classification for the prediabetic participant.

Meal event biomarkers
Meal event’s glucose response. We defined a meal event’s glucose
response as the incremental area under the 3-h CGM curve from
the start time of the meal event and denoted it as MGR3h.

Post-meal step count of the meal event. We represented the post-
meal step count of the meal event as the step count in the 1-h
time window after the start time of the meal event. We selected a
one-hour window based on previous works that showed that
physical activity 15–30min after completion of the meal reduced
postprandial glucose responses45,46.

Calorie content of the meal event. This was calculated as the sum
of the calorie content of individual food items in the self-reported
meal log corresponding to the particular meal event.

Elevated/normal classification of meal event. Classification of the
meal event based on its MGR3h was into normal or elevated
categories. We describe the elevated/normal classification of meal
events in detail below.
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Daily biomarkers
Duration of the day. The duration of the day was defined as the
time period between the start time and end time of our analysis
window for that day. Our analysis focuses on the effect of meals
and physical activity. Hence, the start time of our analysis window
of a day is the earlier time between the start time of the first meal
and the earliest detected ActiGraph wear time after 4 AM. The end
time is later, between 3 hours after the start time of the last meal
event and the last detected ActiGraph wear time before 11:59 PM.
We consider the start time of the last meal event so that we
include the physiological response of the meal event in our
analysis window. The duration of the day differs across days and
individuals.

Elevated meal event count of the day. The elevated meal event
count of a day summarizes the number of meal events that were
classified as elevated (defined in the previous section) on that day.
Elevated meal event count was defined as a multi-category
variable with four categories: zero elevated meal event, one
elevated meal event, two elevated meal events, and ≥3 elevated
meal events.

Daily step count of the day. The step count of the day was the
total steps taken during the duration of the day.

Baseline glucose of the day. The baseline glucose of the day was
defined as the glucose value in the CGM curve at the start time of
the day.

Glycemic outcomes of the day. The daily glycemic outcomes
considered were time-in-range (54–140mg/dL), and average
glucose was measured using CGM values during the duration of
the day. Time-in-range (TIR54–140) was calculated as the percen-
tage of time the glucose measurements were within 54–140mg/
dl. A lower limit of 54 mg/dl was chosen because at-risk and
prediabetic individuals can have non-pathologic glucose values
below 70mg/dL47. Further, the range of <54mg/dL is defined as
clinically significant hypoglycemia in nondiabetic individuals48. An
upper limit of 140 mg/dL was chosen based on recent findings
that daytime time-in-range of 140–180 mg/dl can be used as an
early indicator of diabetes progression14.
We computed elevated meal event count, daily step count,

baseline glucose, and duration for each day and participant. For
daily measures, we excluded days where no meals were identified,
the ActiGraph wear time for that day was less than 10 h (between
4 am and 11:59 pm), or the CGM data was incomplete (the first
and last day of the study). Additionally, we removed days where
the CGM profile showed measurements ≤40mg/dL and/or
≥500mg/dL (glucose values were beyond the sensor limits of
the CGM device).

Causal analysis
In real-world datasets, variables are often correlated with each
other. Biology and behaviors of an individual have a complex
interplay as shown in Fig. 1c. Our computed biomarkers are
expected to be associated with each other. Hence to isolate the
causal impact of a variable of interest, we need to account for
other variables as confounding covariates and adjust for them in
our analysis.
Propensity score models are required to estimate the causal

effect of a variable of interest on outcome variables from
observational data. The covariate variables need to be balanced
if the variable of interest and covariates are correlated to ensure
there is no confounding. We used inverse probability weighting, a
widely used propensity score weighting estimator for balancing
the covariates and measuring the causal effects49. The generalized
propensity score for a sample i, for a variable of interest T ; and

confounding covariates X is given as ei ¼ PðT i ¼ t=XiÞ and is
calculated using a propensity score model. The inverse probability
weights are given as wi ¼ 1=PðT i ¼ t=XiÞ. The inverse probability
weights are then used as weights in a weighted regression
between the variable of interest T and outcome variable Y . When
the covariate balance is not completely achieved with the inverse
probability weights, doubly robust approach that is fitting the
weighted outcome regression with both T and X as input variables
are performed50. We used the estimated coefficients of the
outcome regression to quantify the effect. We also report the
statistical significance (p-value) of the estimated coefficients.
We estimated four causal effects in our analysis. First, the causal

effect of elevated meal event counts on glycemic outcomes.
Second, the causal effect of daily step count on glycemic
outcomes. Third, the effect of post-meal step count on glycemic
response of meal events. Lastly, the effect of calorie content on
the glycemic response of meal events.
As our dataset consists of multiple data samples from multiple

participants, we use multilevel regression models in our causal
analysis. The multilevel structure was captured using the user ID.
For continuous biomarkers such as daily step count, post-meal
step count and calorie content, we used linear mixed effect
models as the propensity score model and normal density to
transform estimates into probability scale weights51. For multi-
category biomarkers such as the elevated meal event count, we
used the multinomial mixed effects model as the propensity score
model. We assessed the covariate balance before and after inverse
probability weighting using weighted correlations between
variable of interest and covariates for continuous treatments52.
An absolute correlation coefficient of less than 0.1 is desired to
assume covariate balance52. For multi-category treatments, we
calculated the maximum standardized mean difference between
all pairwise treatment group comparisons. A difference of less
than 0.2 is desired for covariate balance53.
To compute the effect of elevated meal event count on

glycemic outcomes, we considered the elevated meal event count
as the variable of interest, with covariates being baseline glucose
level, duration of the day, and daily step count and outcomes
being TIR54–140 and average glucose. The regression model is
summarized in Supplementary Tables 3 and 4, and the covariate
balance is achieved in Supplementary Table 2. While computing
the effect of daily step count, the covariates were baseline glucose
level, elevated meal event count, and duration of the day.
Supplementary Tables 6 and 7 summarize the regression model,
and the covariate balance is displayed in Supplementary Table 5.
Next, we considered post-meal step count as the variable of

interest, the calorie content of the meal as the covariate and
MGR3h and likelihood of elevated meal event classification as the
outcome variables. Inverse probability weighting was not imple-
mented as the correlation between the post-meal step count and
the calorie content was −0.05, which was low enough to assume
adequate covariate balance. Thus, we did multiple regression
using a linear mixed effects model to estimate the effect of post-
meal step count and calorie content on MGR3h (Supplementary
Table 8). We used a generalized mixed effects model to compute
the effect of post-meal step count and calorie content on
elevated/normal classification of the meal event (Supplementary
Table 9).
Custom code was developed for statistical analyses in Python

(version 3.9.13) and R (version 4.2.0). The RLM function from the
statsmodel package in Python was used for robust linear
regression. The linear mixed-effect regression was performed
using the lmer function from lmerTest library in R. The mblogit
function from mclogit library in R was used for multinomial mixed-
effect regression. The covariate balance was assessed with the
cobalt package in R54. All custom code written as a Jupyter
notebook is available on request. Statistical significance is defined
as a p-value < 0.01.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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