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In contrast to the well-defined biological feedback loops
controlling glucose, the mechanisms by which the body
responds to changes in fatty acid availability are less
clearly defined. Growth differentiating factor 15 (GDF15)
suppresses the consumption of diets high in fat but is par-
adoxically increased in obese mice fed a high-fat diet.
Given this interrelationship, we investigated whether diets
high in fat could directly increase GDF15 independently of
obesity. We found that fatty acids increase GDF15 levels
dose dependently, with the greatest response observed
with linolenic acid. GDF15 mRNA expression was mod-
estly increased in the gastrointestinal tract; however, kid-
ney GDF15 mRNA was ����1,000-fold higher and was
increased by more than threefold, with subsequent RNA-
scope analysis showing elevated expression within the
cortex and outermedulla. Treatment of wild-typemicewith
linolenic acid reduced food intake and body mass; how-
ever, this effect disappeared in mice lacking the GDF15 re-
ceptor GFRAL. An equal caloric load of glucose did not
suppress food intake or reduce body mass in either wild-
type or GFRAL-knockout mice. These data indicate that
fatty acids such as linolenic acid increase GDF15 and sup-
press food intake through a mechanism requiring GFRAL.
These data suggest that a primary physiological function of
GDF15 may be as a fatty acid sensor designed to protect
cells from fatty acid overload.

Obesity is a major health disorder that affects >2 billion
people and has severe health consequences, including

increasing the risk of type 2 diabetes, cardiovascular dis-
ease, and nonalcoholic steatohepatitis (1,2). The causes of
obesity are complex and involve an imbalance in which
energy intake exceeds energy expenditure, ultimately lead-
ing to expansion of adipose tissue mass (3). The regulation
of energy balance involves many overlapping homeostatic
mechanisms, which may differ based on the primary mac-
ronutrients consumed (4). For carbohydrates, this involves
the gastrointestinal tract, liver, pancreas, and brain sig-
naling axis, which collectively coordinate the actions of
glucagon-like peptide 1 (GLP-1), insulin, and glucagon to
maintain blood glucose (5). In addition, as highlighted by
recent approvals for weight loss, this signaling axis is also
critical for controlling food intake and body mass (6,7). In
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contrast to the well-defined biological feedback loops con-
trolling glucose, the mechanisms by which the body re-
sponds to changes in fatty acid availability are less clearly
defined.

Growth differentiating factor 15 (GDF15) is a member
of the transforming growth factor-b superfamily, which
can be induced in all cell types in response to mitochon-
drial stress and the unfolded protein response through
transcription factor ATF4 (8). Increases in GDF15 sup-
press appetite (9–12) and promote energy expenditure
during weight loss (13). These effects are mediated through
the GDF15 receptor GFRAL, which is localized to the hind-
brain (9–13). Interestingly, these effects of GDF15 to sup-
press appetite are highly conserved from rodents to humans
and seem to involve primarily aversion away from diets
high in fat compared with carbohydrates (14). We (13) and
others (9,15,16) have demonstrated that in addition to the
suppression of appetite, GDF15 also promotes increases in
fatty acid oxidation. These linkages with fatty acid intake
and oxidation suggest that GDF15 may play a critical role
in fatty acid sensing. Therefore, the purpose of this study
was to directly evaluate the acute effects of fatty acids on
serum GDF15, the potential tissues involved, and whether
this is important for controlling energy balance.

RESEARCH DESIGN AND METHODS

Details about research design and methods are available in
the Supplementary Material.

Data and Resource Availability
All data sets generated and/or analyzed in this study are
available from the corresponding author upon request.

RESULTS

Fatty Acids Increase Serum GDF15
When delivered to male C57BL/6J mice (age 8–16 weeks)
via oral gavage, both palm oil and soybean oil increased se-
rum GDF15 (Fig. 1A). Because palm oil and soybean oil are
primarily composed of the saturated fatty acid palmitic
acid (C16:0), monounsaturated fatty acid oleic acid (C18:1),
and polyunsaturated fatty acids linoleic acid (C18:2) and
linolenic acid (C18:3) (17,18), we treated mice with each of
these fatty acids to establish which were primarily contrib-
uting to this effect. At a dose of 4 g/kg, serum GDF15 was
elevated by oleic acid (133%), linoleic acid (145%), and
linolenic acid (176%) (Fig. 1B) after 4 h. Surprisingly, pal-
mitic acid had no effect at this dose and time point
(Fig. 1B) but did lead to increases in GDF15 after
8 h (Fig. 1C). A subsequent experiment conducted at a
higher dose of oleic, linoleic, and linolenic acids (8 g/kg)
increased GDF15 after 4 h (oleic acid 172%; linoleic acid
198%; linolenic 1126%) or 8 h (oleic acid 1115%; lino-
leic acid 183%; linolenic 1269%), with effects declining
after 13 h (oleic acid no change; linolenic acid 1176%)
(Fig. 1D–F). These data indicate that the oral gavage of
fatty acids increases serum GDF15; this effect was

sustained and seemed maximal after 8 h, and the greatest
increase was observed with linolenic acid.

Linolenic Acid Increases Kidney GDF15 Expression
To determine the primary tissues contributing to increases
in serum GDF15, we analyzed GDF15 mRNA expression in
different tissues from male mice at 8 h after oral gavage
with linolenic acid. We found that GDF15 mRNA expres-
sion was surprisingly not elevated in the liver or heart but
was increased on a relative basis by approximately two- to
threefold in the small intestine, colon, cecum, spleen, and
epididymal white adipose tissue. However, the most dra-
matic absolute increase in GDF15 was observed in the
kidney, where GDF15 expression was �10- to 1,000-fold
higher than in most other tissues, with the exception of the
liver, suggesting the kidney may be the primary source for
increases in serum GDF15 (Fig. 2A). RNAscope analysis of
the kidneys of mice treated with linolenic acid showed in-
creased expression within the cortex and outer stripe of the
outer medulla (Fig. 2B and C). Consistent with the known
effects of the unfolded protein response to increase GDF15
(19,20), we found that Chop, Atf4, and Xbp1 mRNA were in-
creased in the kidneys of mice treated with linolenic acid
(Fig. 2D). ATF4 protein expression was also elevated in the
kidney after treatment with linolenic acid (Fig. 2E). These
data indicate that linolenic acid acutely increases serum
GDF15, and this is associated with increases in the un-
folded protein response and Gdf15 mRNA in the cortex and
outer medulla of the kidney.

Linolenic Acid but Not an Equal Caloric Load of
Glucose Reduces Food Intake and Body Mass
Through GFRAL
Conjugated linolenic acid has been tested as a dietary sup-
plement to promote weight loss, with modest efficacy
(21). GFRAL is critical for mediating the effects of GDF15
on food intake; therefore, to explore whether linolenic
acid could influence food intake and body mass through
the GDF15–GFRAL axis, male wild-type (WT) and GFRAL-
knockout (KO) mice were placed on a high-fat, high-fructose
diet (HFD; 40 kcal% fat (mostly palm oil), 20 kcal% fructose
with 0.02% cholesterol) starting at age 12 to 16 weeks for
12 weeks before being singly housed and treated with ve-
hicle or linolenic acid via oral gavage for 7 days (Fig. 3A).
A daily gavage of linolenic acid reduced food intake and
body mass in WT mice but not in GFRAL-KO mice
(Fig. 3B–D). These genotypic differences were not due to
differences in serum GDF15, which was elevated in both
WT and GFRAL-KO mice to a similar degree (Fig. 3E).
Other regulators of food intake, including GLP-1, insulin,
and ghrelin, were not significantly different between gen-
otypes basally or after treatment with linolenic acid
(Supplementary Fig. 1A–C). Taken together, these data in-
dicate that linolenic acid suppresses food intake through
a mechanism requiring GFRAL.

To examine whether this effect of linolenic acid to sup-
press food intake via GFRAL was potentially due to
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increased energy intake, we repeated the experiment with
the same number of calories from glucose. In contrast to
the observations with linolenic acid, daily oral gavage of
glucose did not change food intake or body mass over
7 days (Supplementary Fig. 2).

DISCUSSION

Given the known connections between recombinant GDF15
treatment and the avoidance of foods high in fat (10,22),
we hypothesized there may be a feedback loop between fatty
acids and GDF15 synthesis. To this end, we examined the
acute effects of fatty acids on serum GDF15 and found that
oral gavage of mice with long-chain fatty acids of different
chain lengths and saturation indexes increased serum
GDF15 within 8 h and that the greatest response was
observed with linolenic acid. Collection of tissues after
oral gavage showed that Gdf15 mRNA expression was in-
creased by approximately twofold in the small intestine,
colon, cecum, spleen, and epididymal white adipose tissue.

However, the absolute increase in Gdf15 mRNA expres-
sion in these tissues was minimal compared with in the
kidney, with subsequent experiments indicating that the
primary portions of the kidney responding to fatty acids
were in the cortex and outer medulla. Interestingly, these
data are consistent with recent findings showing that
metformin also stimulates GDF15 in the kidney (23). Col-
lectively, these data indicate that fatty acids stimulate
GDF15 expression in the kidney, and this may be an im-
portant source for increased serum GDF15. Future studies
in which GDF15 floxed mice are crossed with Ksp-Cre
mice will be required to definitively confirm this hypothe-
sis. Our study suggests that kidney-derived cytokines or
kidneykines may be a relatively unexplored source for
food intake–regulating endocrine factors.

To examine the physiological significance of increases
in GDF15, we delivered linolenic acid via oral gavage for
7 days into WT and GFRAL-KO mice. We completed this
experiment in mice fed an HFD because we previously

Figure 1—Fatty acids increase serum GDF15. A: Serum GDF15 levels at 4 h after oral gavage with palm oil (10 mL/kg) or soybean oil
(10 mL/kg). Data are mean ± SEM; n = 5 mice per group. P values were calculated using two-sided unpaired t test. B: Serum GDF15 levels at
4 h after oral gavage with palmitic acid, oleic acid, linoleic acid, and linolenic acid at dose of 4 g/kg. Data are mean ± SEM; n = 6–9 mice per
group. P values were calculated using one-way ANOVA with �S�ıd�ak multiple comparisons test. C: Serum GDF15 levels at 8 h after oral gavage
with palmitic acid at dose of 4 g/kg. Data are mean ± SEM; n = 6–8 mice per group. P values were calculated using two-sided unpaired t test.
D: SerumGDF15 levels at 4 h after oral gavage with oleic acid, linoleic acid, and linolenic acid at dose of 8 g/kg. Data are mean ± SEM; n = 5–10
mice per group. P values were calculated using one-way ANOVA with �S�ıd�ak multiple comparisons test. E: Serum GDF15 levels at 8 h after oral
gavage with oleic acid and linolenic acid at dose of 8 g/kg. Data are mean ± SEM; n = 3–5 mice per group. P values were calculated using one-
way ANOVAwith �S�ıd�ak multiple comparisons test.
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showed (24) that metformin-induced increases in GDF15
suppress food intake in mice fed an HFD but not a high-
carbohydrate chow diet, a finding consistent with other
studies showing that GDF15 elicits taste aversion to fat
but not carbohydrates (10,22). Remarkably, we found
that linolenic acid reduced food intake and body mass in
WT but not GFRAL-KO mice. Serum insulin, GLP-1,
and ghrelin were not different between genotypes, sug-
gesting that the reductions in food intake in WT but
not GFRAL-KO mice are not secondary to differences in
these known effectors of food intake. Taken together,
these data support the concept that the GDF15–GFRAL
signaling axis directly regulates food intake in response to
linolenic acid. Future studies investigating whether there
are acute changes in food intake in response to other fatty
acids or mixed meals of fatty acids and carbohydrates will
be important.

A critical control for our experiments is that we found
that the suppression of food intake dependent on linolenic
acid, GDF15, and GFRAL was not observed after the ga-
vage of an equal caloric load of glucose. These data indicate
that GDF15 is not just a sensor of caloric intake but rather
is acutely responding to fatty acid availability. Mechanisti-
cally, linolenic acid increased the expression of transcrip-
tion factors ATF4 and CHOP in the kidney, which are
known to regulate GDF15 expression. Future studies exam-
ining whether ATF4- and CHOP-KO mice have reduced
GDF15 and a blunted response to linolenic acid will be
important for further characterizing this pathway. How-
ever, it should be noted that consistent with our findings,
ATF4-KO mice have increased obesity associated with in-
creased food consumption when fed an HFD (8). Because
impairments in mitochondrial function are known to stim-
ulate GDF15 secretion through ATF4 (16), these data

Figure 2—Linolenic acid (LA) increases kidney GDF15 expression. A: Gdf15 mRNA expression in different tissues at 8 h after oral gavage
with LA (8 g/kg). Data are mean ± SEM; n = 3–8 samples per group. P values were calculated using two-sided multiple unpaired t test.
B: Representative images of paraffin-embedded kidney sections stained with Gdf15 mRNA probe. C: RNAscope analysis for Gdf15
mRNA expression in different areas of kidney after oral gavage with LA (8 g/kg). Data are mean ± SEM; n = 3–4 mice per group. P values
were calculated using two-sided multiple unpaired t test. D: Chop, Atf4, and Xbp1s mRNA expression in the kidney after oral gavage with
LA (8 g/kg). Data are mean ± SEM; n = 7–8 mice per group. P values were calculated using two-sided multiple unpaired t test. E: LA at
dose of 8 g/kg increases ATF4 protein levels in the kidney. Data are mean ± SEM; n = 4 mice per group. P values were calculated using
two-sided unpaired t test. BAT, brown adipose tissue; eWAT, epididymal white adipose tissue; ISOM, inner stripe of the outer medulla;
ISOM-IS, inner stripe of the outer medulla (inner stripe); ISOM-OS, inner stripe of the outer medulla (outer stripe); iWAT, inguinal white adi-
pose tissue; OSOM, outer stripe of the outer medulla.
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suggest that an important evolutionary role of GDF15 may
be to protect cells with impaired mitochondrial function
from fatty acid overload.

Our study had several limitations. First, we tested
the effects of fatty acids in male mice only; therefore, it
is unknown whether a similar effect of fatty acids on
GDF15 and food intake would be observed in female mice.
Second, we observed that linolenic acid induced weight loss
in obese WT but not GFRAL-KO mice, but it was not estab-
lished whether this was due to reductions in adipose tissue
or lean mass. We previously (13,24) found that treating
obese mice with metformin or recombinant GDF15 leads
to GDF15/GFRAL-dependent reductions in adipose tissue
mass without altering lean mass; however, future studies
investigating whether this occurs with linolenic acid treat-
ment are warranted. Our study found that the kidney ex-
pressed high levels of GDF15, and this was increased after
exposure to fatty acids. However, we also observed eleva-
tions in GDF15 in several other tissues, including the gas-
trointestinal tract. These findings showing increases in
gastrointestinal GDF15 are consistent with a recent report
(25) that suggested the gastrointestinal tract and liver may
be the primary tissues for the suppressive effects of me-
dium-chain fatty acids on appetite. Future studies using
mice with targeted deletion of GDF15 in specific cell types
will be important to establish the primary tissues contrib-
uting to reductions in food intake after exposure to fatty

acids. We also did not assess whether chronic treatment
with fatty acids had differential effects on glucose homeo-
stasis or insulin sensitivity, and given recent findings
showing that GDF15 can acutely improve insulin sensitiv-
ity (26), this may be important.

Although speculative, we believe our findings may have
important implications for the control of energy balance.
As detailed in the energy balance model (EBM), it is now
clear that there are multiple complex interactions be-
tween genetics and environmental factors, including re-
duced activity levels and increased consumption of highly
palatable foods, that contribute to obesity (27). A deriva-
tion of the EBM proposes that the primary driver of this
imbalance is that increased carbohydrate consumption
drives an increase in insulin, which promotes appetite
and de novo lipogenesis (28). This model, known as the
carbohydrate insulin model (CIM), proposes that insulin
acts as a feed-forward pull on the system that propagates
increased caloric intake and a positive energy balance
(29). A core tenant of the CIM is that reducing dietary
carbohydrate consumption through substitution with fatty
acids will lead to weight loss; however, the mechanisms
mediating these acute effects are currently not understood.
Our data indicating that increases in the intake of fatty
acids stimulate GDF15 and that this is important for sup-
pressing food intake compared with an equal number of
calories from glucose may have important implications

Figure 3—Linolenic acid (LA) reduces appetite and body mass through GDF15–GFRAL. A: Experimental scheme testing the effects of LA
(1 g/kg/day) on food intake and body mass in WT and GFRAL-KO mice. B: Daily food intake. Data are mean ± SEM; n = 5–6 mice per
group. P values were calculated using one-way ANOVA with �S�ıd�ak multiple comparisons test. C: Cumulative food intake. Data are mean ±
SEM; n = 5–6 mice per group. D: Body weight change. Data are mean ± SEM; n = 5–6 mice per group. P values were calculated using
one-way ANOVA with �S�ıd�ak multiple comparisons test. E: GDF15 levels in serum from mice after treatment with LA for 7 days. Data are
mean ± SEM; n = 4–6 mice per group. P values were calculated using two-way ANOVA with �S�ıd�ak multiple comparisons test or not.
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in explaining potential weight loss associated with HFDs
(ketogenic diets), thus providing a potential mechanistic
underpinning to explain both the EBM and CIM. Future
studies investigating whether consuming HFDs stimulates
GDF15 in humans and whether this correlates with food
intake and weight loss will be important.
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