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Abstract

Background: Chronic rhinosinusitis with nasal polyposis (CRSwNP) is a type 2 (T2) 

inflammatory disease associated with an increased number of airway basal cells (BCs). Recent 

studies have identified transcriptionally distinct BCs, but the molecular pathways that support or 

inhibit human BC proliferation and differentiation are largely unknown.

Objective: We sought to determine the role of T2 cytokines in regulating airway BCs.
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Methods: Single-cell and bulk RNA sequencing of sinus and lung airway epithelial cells was 

analyzed. Human sinus BCs were stimulated with IL-4 and IL-13 in the presence and absence 

of inhibitors of IL-4R signaling. Confocal analysis of human sinus tissue and murine airway 

was performed. Murine BC subsets were sorted for RNA sequencing and functional assays. Fate 

labeling was performed in a murine model of tracheal injury and regeneration.

Results: Two subsets of BCs were found in human and murine respiratory mucosa distinguished 

by the expression of basal cell adhesion molecule (BCAM). BCAM expression identifies airway 

stem cells among P63+KRT5+NGFR+ BCs. In the sinonasal mucosa, BCAMhi BCs expressing 

TSLP, IL33, CCL26, and the canonical BC transcription factor TP63 are increased in patients with 

CRSwNP. In cultured BCs, IL-4/IL-13 increases the expression of BCAM and TP63 through an 

insulin receptor substrate–dependent signaling pathway that is increased in CRSwNP.

Conclusions: These findings establish BCAM as a marker of airway stem cells among the BC 

pool and demonstrate that airway epithelial remodeling in T2 inflammation extends beyond goblet 

cell metaplasia to the support of a BC stem state poised to perpetuate inflammation. (J Allergy 

Clin Immunol 2023;151:1536-49.)

GRAPHICAL ABSTRACT
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Tissue-resident stem cells exhibit remarkable plasticity, responding to local damage by 

regenerating diverse differentiated cell types. This plasticity ensures their ability to restore 

homeostasis after injury but also endows them with the capacity to remodel the tissue 

microenvironment and adapt to tissue stress. A canonical example of tissue remodeling 

is intestinal goblet cell metaplasia, which plays an essential role in host defense against 

helminths. Here, local immunocytes generate IL-13, which drives the differentiation of 
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epithelial cells (EpCs) into goblet cells that secrete mucus and thereby facilitate helminth 

expulsion.1–3 Although appropriate tissue adaptation requires that stem cells integrate 

local environmental cues from diverse sources including niche mesenchymal cells, tissue 

immunocytes, and even their own progeny, in most circumstances the signals that mediate 

remodeling and the features of remodeling that are beneficial or detrimental to the host are 

poorly understood.

In the respiratory tract, studies using single-cell RNA sequencing (scRNA-seq) and 

immunofluorescence have identified variations in the abundance of EpC subsets in distinct 

disease states. This includes an expansion of ciliated cells in cystic fibrosis,4 an increase 

in IL-25–secreting tuft cells in allergic fungal rhinosinusitis and chronic rhinosinusitis 

with nasal polyposis (CRSwNP),5–7 and an increase in neuroendocrine cells in diffuse 

idiopathic pulmonary neuroendocrine cell hyperplasia,8–10 asthma,11 and neuroendocrine 

cell hyperplasia of infancy.12 These specialized EpCs derive from basal cell (BC) 

progenitors, suggesting that alterations in BC programs likely account for these variations. 

Indeed, scRNA-seq has detected transcriptionally distinct BC subsets in the respiratory 

tract,13–15 but functional annotation of these cell types is lacking.

In Western countries, CRSwNP is a type 2 (T2) inflammatory disease of the sinonasal 

airway that is often associated with asthma. Patients with this disorder have eosinophilia in 

the airways and peripheral blood and respond to treatment with mAb blockade of IL-4Rα, a 

component of both the T1 and T2 IL-4 receptors that bind IL-4 and IL-13.16 We previously 

reported that BCs from patients with CRSwNP accumulated in the sinonasal mucosa and 

failed to differentiate normally, but the mechanism by which this occurs is unknown.

Here, we report 2 subsets of KRT5+ BCs in the sinonasal mucosa distinguished by 

expression of basal cell adhesion molecule (BCAM). Using sequencing, ex vivo culture, and 

in vivo experimentation, we demonstrate that BCAMhi BCs are the progenitors of BCAMlo 

BCs, that they increase in CRSwNP, and that the T2 cytokines IL-4 and IL-13 reinforce the 

expression of BCAM and prevent BC differentiation through an insulin receptor substrate 

(IRS)–dependent signaling pathway that is overexpressed in CRSwNP. These findings 

demonstrate that IL-4/IL-13 can play a profound role in remodeling the airway epithelial 

BC compartment to drive the accumulation of a stem cell with potent proinflammatory 

capacity.

METHODS

Study design

This study was designed to characterize BC subsets in the human and murine airway and to 

understand the alterations in BC programs in T2 inflammatory diseases such as CRSwNP. 

This objective was addressed by (1) reanalysis of scRNA-seq13 of nonproliferating surface 

airway EpCs in surgical excisions of human sinonasal mucosa from patients with CRSwNP 

(n = 6) and those with chronic rhinosinusitis sans nasal polyposis (CRSsNP) (n = 6) to 

identify potential markers of BC subsets; (2) flow-cytometric analysis and ex vivo studies of 

primary human sinonasal BCs from subjects with chronic rhinosinusitis or healthy control 

subjects to demonstrate distinct BC functions; (3) development of a murine flow-cytometry 
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panel, bulk RNA-seq data sets, BC lineage-tracing system, and a model of airway damage 

and regeneration to characterize BC subsets in C57BL/6 mice; and (4) assessment of human 

BCAMhi BCs ex vivo with and without T2 cytokines. Details of the subjects; analytic 

methods for scRNA-seq and bulk RNA-seq; protocols for cell isolation, staining, and 

culture; methods for confocal analysis; and murine Alternaria alternata (ALT) challenges 

are provided in this article’s Online Repository at www.jacionline.org.

Study approval

The Mass General Brigham Institutional Review Board approved the study, and all subjects 

provided written informed consent before participation. The use of mice for this study was 

in accordance with the review and approval by the Animal Care and Use Committee of 

Brigham and Women’s Hospital.

Data and code availability

Low-input RNA-seq data have been deposited in the Gene Expression Omnibus 

(GSE197274). CRSwNP single-cell data set has been deposited in ImmPort SDY1877. The 

public data set from healthy lung was downloaded from https://www.covid19cellatlas.org/

index.healthy.html#vieira19-bronchi.14 The code for main analyses is available at https://

github.com/nils-hallen/Single-Cell-Analyses.

Statistical analysis

Computational methods for RNA sequencing are detailed in this article’s Online Repository 

at www.jacionline.org. Other analyses were performed with the GraphPad Prism software 

(version 9.3.1, GraphPad, La Jolla, Calif) and R (version 4.03). All in vitro and in vivo 
results are either representative of or pooled across 3 to 5 independent experiments. Data 

indicate mean ± SEM in all bar graphs. A P value of less than .05 was considered 

significant.

RESULTS

BCAM marks a multipotent progenitor cell among KRT5+NGFR+ITGA6+ BCs in the human 
respiratory mucosa

We previously reported the impaired differentiation of airway EpCs in patients with 

CRSwNP.13 To better delineate EpC differentiation, we reanalyzed our scRNA-seq data 

set from sinus surgeries.13 Using Harmony,17 we integrated data across donors and 

patient subtypes (CRSsNP and CRSwNP) in principal-component space, reclustered 

nonproliferating surface airway secretory and ciliated EpCs (see Fig E1, A–D, and Tables 

E1–E3 in this article’s Online Repository at www.jacionline.org), and assessed established 

EpC markers (Table I) to define common EpC states across diseases (Fig E1, E). Here, we 

identified 2 BC subsets present in the sinonasal tissue of patients with CRSwNP and those 

with CRSsNP (Fig 1, A–C). One subset (cluster 0) expressed high levels of the BC markers 

KRT5, KRT15, and TP6318–20; the stem marker CD4421; and the cell surface receptor 

BCAM (false-discovery rate < 0.05; Fig 1, B and C; see also Table E4 in this article’s Online 

Repository at www.jacionline.org). The second BC subset (cluster 1) expressed higher levels 

of the oncogene MALAT122 and many ribosomal genes, suggesting ribosomal biogenesis. 
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Differentiating transitional cells (clusters 2-4) were marked by increasing expression of the 

Notch pathway gene HES1,23 the luminal BC marker KRT8,24 and the club cell markers 

SCGB1A1 and TFF3,25,26 whereas mature secretory cells (cluster 5) were marked by 

MUC5AC,14 deuterosomal cells (cluster 6) were marked by CDC20B, PLK4, and FOXJ1,27 

and ciliated cells (cluster 7) were marked by PIFO, CAPS, and FOXJ1.15 Cluster 5 was 

composed of both goblet and club secretory cells expressing MUC5AC or MUC5B and 

SCGB1A1, respectively (Fig E1, F).

Trajectory analysis of these clusters suggested 2 distinct trajectories with a serial progression 

from TP63hi BC progenitors (cluster 0) to MALAT1+ BCs (cluster 1), KRT8+ HES1hi 

transitional cells (clusters 2-4), and then to either fully differentiated MUC5AC+ goblet cells 

(cluster 5) or to PIFO+ ciliated EpCs (cluster 7) (Fig 1, D and E). Accordingly, cells in the 

secretory trajectory from clusters 0 to 5 (Fig E1, G) demonstrated progressively increasing 

pseudotime scores (Fig 1, F). Using generalized linear modeling across pseudotime for EpCs 

in the secretory trajectory, we demonstrated 2278 genes that were either highly positively or 

negatively associated with the pseudotime score (P < 4.23 × 10−6, Bonferroni threshold; Fig 

1, G; see also Tables E5 and E6 in this article’s Online Repository at www.jacionline.org). 

We detected increasing expression of canonical secretory genes across pseudotime and loss 

of BC markers, as expected (Fig 1, G). In addition, we saw that expression of the cluster 0 

BC marker BCAM (Fig 1, C) was inversely associated with pseudotime, suggesting that its 

expression may distinguish states of BC differentiation.

Direct comparison of cluster 0 BCAMhi BCs and cluster 1 BCAMlo BCs demonstrated 

142 genes that were differentially expressed between these clusters (P < 1.5 × 10−5, 

Bonferroni threshold; Fig 1, H; see also Table E7 in this article’s Online Repository at 

www.jacionline.org). BCAMhi BCs expressed higher levels of many genes associated with 

epithelial progenitor cells. These included the Yap target gene CYR61/CCN1,28 WNT 

target genes MMP1029 and MYC,30 the NOTCH ligand DLL131 and the NOTCH inhibitor 

DLK2,32 the proliferation-associated gene ZFP36L2,33 and transcription factors required for 

stem cell maintenance, such as TCF1234 and TP63.19,20,35 BCAMhi BCs also expressed 

higher levels of the T2 cytokine and transcriptional repressor IL3336,37 and showed a trend 

to increased TSLP that was not significant after Bonferroni adjustment. In addition, BCAMhi 

BCs expressed higher levels of genes encoding growth factors and extracellular matrix 

components such as POSTN (periostin), FN1 (fibronectin), CTGF (connective tissue growth 

factor), LAMB1 (laminin subunit B1), and LAMB3 (laminin subunit B3). In contrast, 

BCAMlo BCs expressed higher levels of genes associated with differentiation, including 

SERPINB3,38 HES123 KRT8,31 and the transcription factor ELF3,39,40 suggesting that 

increased BCAM expression identifies early airway progenitors among the BC pool.

Confocal images of the epithelium in CRSwNP confirmed variable expression of BCAM, 

with some KRT5+ BCs expressing BCAM solely on the basal surface (designated BCAMlo) 

and other KRT5+ BCs expressing BCAM circumferentially (designated BCAMhi) (Fig 1, 

I, top row). BCAMhi BCs expressed p63 (Fig 1, I, second row), IL-33 (Fig 1, I, third 

row), and Ki67 (Fig 1, l, fourth row), but none of these proteins was exclusively expressed 

in BCAMhi BCs. Flow cytometry also demonstrated variable BCAM expression among 

EpCAMloNGFRhi BCs (Fig E1, H). Remarkably, both BCAMhi and BCAMlo BCs had 
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similar staining for integrin alpha 6,18,41 and little distinction in the expression levels of 

the BC markers podoplanin31 and nerve growth factor receptor (NGFR)18 (Fig E1, I). 

Sorted BCAMhi BCs were passaged and differentiated in air-liquid interface (ALI) cultures 

that supported the growth of all common EpC subsets (Fig 1, J and K). In contrast, 

EpCAMloNGFRhiBCAMlo BCs survived only limited passages ex vivo and could not 

support differentiation in ALI cultures. Taken together, these results suggested that BCAM 

expression distinguishes sinonasal stem cells among BCs.

Notably, examination of a published scRNA-seq data set from bronchial mucosa14 revealed 

that BCAM also marks a subset of bronchial BCs from healthy donors with coexpression 

of TP63 and IL33 (Fig E1, J). After assessment of differential gene expression between 

BCAMhi and BCAMlo bronchial BCs, we analyzed differentially expressed genes that 

were detected in both the bronchial and the polyp BC subsets. This demonstrated a strong 

correlation in gene programs across data sets (Fig 1, L; see also Table E8 in this article’s 

Online Repository at www.jacionline.org), indicating that a similar BCAMhi BC population 

exists in the lower airway.

BCAM marks an airway stem cell among KRT5+NGFR+ITGA6+P63+ BCs in the murine 
trachea

The limited progenitor capacity of BCAMlo BCs in ex vivo culture was striking, because 

even differentiated club cells are reported to retain some progenitor capacity in the 

appropriate context.42,43 Thus, we next sought to assess these populations in vivo and 

turned to the murine airway. In the sinonasal mucosa (see Fig E2, A, in this article’s 

Online Repository at www.jacionline.org) and in the trachea (Fig 2, A), confocal microscopy 

demonstrated 2 patterns of BCAM staining on basal EpCs, with circumferential expression 

of BCAM on some BCs and focal basolateral expression of BCAM on other BCs. P63 was 

primarily expressed in BCAMhi BCs, consistent with a BC progenitor. Because BC biology 

and markers are more clearly established in the trachea, we next adapted a flow-cytometric 

panel to assess BCAM expression in naive tracheal BCs. Within the conventional BC gate 

(lin−EpCAMloGSIB4hi),44,45 we again identified 2 EpC subsets distinguished by BCAM 

expression (Fig 2, B; see also Fig E2, B). Both populations expressed lower levels of 

EpCAM and higher levels of BC markers than did differentiated EpCs (Fig 2, C and D). 

Neither BC subset expressed markers of specialized differentiated EpCs (Fig E2, C–E). 

Notably, KI67+ staining was dominantly detected in BCAMhi BCs, which was confirmed 

by confocal microscopy (Fig 2, E). To directly assess their proliferative capacity, we first 

sorted tracheal BCAMhi and BCAMlo BCs and expanded them in submerged culture (Fig 

2, F and G). BCAMhi BCs formed larger Ki67+ and P63+ colonies and were more efficient 

at closing a wound than were BCAMlo BCs (Fig 2, G and H). Thus, both classical markers 

of replication and functional assays for proliferation and wound healing demonstrated that 

BCAM distinguishes a murine airway stem cell among KRT5+ BCs.

EpCs differentiate from BCAMhi to BCAMlo BCs in a model of airway injury and 
inflammation

Having established the ex vivo behavior of murine BCAMhi and BCAMlo BCs, we next 

assessed their behavior in a murine model of airway inflammation and injury using 
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the repetitive inhalation of the mold aeroallergen ALT over 1 or 2 weeks (Fig 3, A). 

Hematoxylin and eosin staining demonstrated epithelial injury by day 7 and regeneration by 

day 14 (Fig 3, B). Regeneration was accompanied by a shift in the dominant BC population 

from BCAMhi at day 0 to BCAMint (intermediate) at day 7 and BCAMlo at day 14 (Fig 3, 

C). After these repetitive challenges, some BCAMlo BCs expressed the secretory markers 

SSEA1 and MUC5AC (Fig 3, D; see also Fig E3, A, in this article’s Online Repository 

at www.jacionline.org), suggesting early differentiation. In contrast, BCAMhi BCs did not 

express markers of differentiation and were the dominant cell type expressing Ki67 at all 

time points (Fig 3, E; see also Fig E3, B and C). Taken together, these results suggested that 

BCAM marks a renewable stem progenitor responsive to airway injury, and that BCAMhi 

BCs may give rise to BCAMlo BCs and then to differentiated EpCs.

To confirm that BCAMhi BCs are the progenitors of BCAMlo BCs, we performed fate 

mapping using tamoxifen-treated, ALT-challenged KRT5CreERT2R26tdTomato mice. Mice 

were treated with 5 doses of tamoxifen to label KRT5+ BCs, rested for 1 week, and then 

treated with intranasal ALT over 1 or 2 weeks (Fig 3, A). As expected, the percentage 

of EpCs labeled with tdTomato increased over the ALT challenges (Fig 3, F and G), and 

although most tdTomato+ cells were detected in the BCAMhi BC gate at day 7, over the ALT 

challenges an increasing number fell in the BCAMlo BC gate and then the differentiated 

EpC gate (Fig 3, H; see also Fig E3, D–F). These data are consistent with an EpC 

differentiation trajectory that begins with BCAMhi BCs and progresses to BCAMlo BCs 

and then to differentiated EpCs.

Transcriptional profile of murine BCAMhi and BCAMlo BCs

Because our low-resolution scRNA-seq provided only a limited assessment of these BC 

subsets that displayed such distinct ex vivo and in vivo behaviors, we next isolated them 

from naive murine trachea and assessed their transcriptional differences with bulk RNA-

seq (see Fig E4, A, in this article’s Online Repository at www.jacionline.org). Principal-

component analysis demonstrated that PC1 separated samples by stage of differentiation 

(Fig 4, A; see also Table E9 in this article’s Online Repository at www.jacionline.org). 

Direct comparison of BCAMhi and BCAMlo BCs demonstrated that BCAMhi BCs expressed 

higher levels of many of the same markers detected at elevated levels in human BCAMhi 

BCs including Krt5, Trp63, Ccn1 (CYR61), Lamb3, Jag2, Dlk2, and Bcam, and higher 

levels of additional BC markers Ngfr, Pdpn, Krt14, and Krt17 (FDR < 0.05; Fig 4, B 

and C; see also Fig E4, B, and Tables E10 and E11 in this article’s Online Repository 

at www.jacionline.org). Il33 was poorly detected in each group. BCAMhi and BCAMlo 

BCs expressed significantly different levels of genes critical for EpC differentiation and 

maintenance of stemness, including genes in the Wnt (Fig 4, D), Hippo-Yap (Fig 4, E), 

Notch (Fig 4, F), Rho (Fig 4, G), and Ras (Fig 4, H) pathways. Although only a few 

genes in each of these pathways were recovered in the human scRNA-seq data set, all 

but one of them (CCND1) were significantly increased in BCAMhi BCs, as compared 

with BCAMlo BCs (Fig E4, C). Transcription factors that were significantly different in 

the murine data included the regulator of embryonic morphogenesis Hoxd846; the driver 

of respiratory and epidermal BC proliferation Vdr47,48; the tumor suppressors Klf10, 
Klf11, and Trp5349–51; and 17 transcripts encoding zinc-finger proteins, all of which were 
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increased in BCAMhi BCs (Fig E4, D; see also Table E12 in this article’s Online Repository 

at www.jacionline.org). Among the top transcription factors differentially regulated was 

Trp63 (Fig E4, D), the murine homologue of TP63 that was detected in human sinonasal 

BCAMhi BCs (Fig 1, C, and H). Assessment of a previously reported list of 175 genes 

with p63 binding sites52 showed that 34 were differentially expressed across BCAMhi and 

BCAMlo BC subsets (Fig 4, I). Moreover, 10 were among the top 250 genes upregulated 

in BCAMhi BCs, suggesting a potential link between BCAM and Trp63. Assessment of 

our previously published bulk RNA-seq data set from human sinonasal BCs from CRSwNP 

demonstrated strong correlation between BCAM expression and TP63 (r2 = 0.85; P = .001; 

Fig 4, J; see also Table E13 in this article’s Online Repository at www.jacionline.org), 

suggesting a potential link between BCAM and TP63 expression in human BCs.

T2-/IRS-dependent regulation of BCAM

TP63 was previously reported to be induced by the T2 cytokine IL-13 in human 

keratinocytes,53 and thus we hypothesized that BCAM may be similarly regulated in the 

sinonasal mucosa. First, we assessed BCAM and TP63 expression in bulk RNA-seq of 

sinonasal BCs from CRSwNP, a T2-high disease, and from nonpolyp controls (CRSsNP). 

Polyp BCs expressed higher levels of BCAM and TP63 and higher levels of canonical 

T2-inducible epithelial genes such as ALOX15, POSTN, IL33, and TSLP (Fig 5, A; see 

also Table E14 in this article’s Online Repository at www.jacionline.org). There was a trend 

to increased expression of CCL26 that was not significant. In addition, flow cytometry 

demonstrated that the percentage of BCAMhi BCs among lin −EpCAMloNGFR+ cells was 

higher in CRSwNP than in CRSsNP (Fig 5, B). Interestingly, assessment of p63-dependent 

genes also showed an increase in BCs from CRSwNP, as compared with CRSsNP (Fig 5, C), 

suggesting an increase in the p63-dependent stem program in this T2 disease.

To understand whether BCAM and p63 were directly regulated by T2 cytokines, we cultured 

sinonasal BCs from healthy controls and from patients with CRSsNP or CRSwNP and 

treated them with either IL-4 and IL-13 or with TGF-β, which is known to induce EpC 

differentiation.54 In passaged unstimulated BC cultures, BCAM was expressed at high 

levels in all BCs with no BCAMlo BC subset detected (Fig E5, A, in this article’s Online 

Repository at www.jacionline.org). Addition of TGF-β downregulated the expression of 

BC markers NGFR and ITGA6, as expected, and also downregulated the expression of 

BCAM (Fig E5, B). In contrast, IL-4/IL-13 upregulated BCAM expression but reduced 

NGFR and had little effect on ITGA6 (Fig 6, A). IL-4/IL-13 treatment also upregulated 

TP63 and reduced expression of HEY1, indicating downregulation of Notch activity, which 

is essential for BC differentiation into secretory EpCs.23,31 Accordingly, we saw reduced 

SCGB1A1 that marks secretory club cells (Fig 6, B). Additional markers of terminal 

EpC differentiation were not altered in this short-term experiment in submerged culture, 

including MUC5AC, FOXJ1, IL25, and POU2F3 (Fig E5, C. Although the number of 

primary human BCAMlo BCs obtained from sinus tissue was too low to ask whether IL-4/

IL-13 could “reverse” differentiation and drive BCAMlo BCs to BCAMhi BCs, we did note 

that murine IL-4/IL-13–stimulated BCAMlo BCs did not assume the robust wound-healing 

capacity of BCAMhi BCs (Fig 2, H), and that in vivo ALT challenge was associated with 

increased expression of differentiation markers in BCAMlo BCs (Fig 3, D). Taken together, 
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these findings indicate that IL-4/IL-13 reinforces a stem program in BCAMhi BCs and 

prevents early steps in BC differentiation. Notably, IL-5 treatment has no such effect (Fig 

E5, D), possibly because of low levels of CSF2RB expression in BCs (Fig E5, E) or because 

of distinctions in their downstream signaling pathways.

IL-13 induces goblet cell metaplasia through a well-characterized signal transducer and 

activator of transcription 6 (STAT6)–dependent pathway, but STAT6-independent pathways 

have previously been implicated in airway epithelial wound healing.55 Thus, we next 

assessed whether STAT6 or other IL-4Rα signaling pathways restrain BC differentiation. 

Pharmacological inhibition demonstrated that IL-4/IL-13–elicited BCAM expression was 

independent of STAT6 and mTOR (mammalian target of rapamycin) signaling but 

dependent on IRS signaling (Fig 6, C). IRS inhibition also reduced P63 expression (Fig 

6, D) and the expression of BCAM and TP63 transcripts (Fig 6, E) while increasing the 

expression of SCGB1A1. Assessment of transcripts for components of the IL-4R signaling 

pathway in bulk BC RNA-seq demonstrated that IL4RA and IRS1 were upregulated in polyp 

BCs, as compared with controls (Fig 6, F; see also Table E14), whereas IRS2 showed a trend 

to increase that was not significant. Taken together, these data demonstrate that IL-4Rα 
and IRS signaling plays an unexpected role in maintaining the BCAMhi BC stem state, 

which accumulates in CRSwNP. Finally, we did interrogate our scRNA-seq data set to assess 

whether BCAMhi BCs from CRSwNP expressed higher levels of T2-inducible epithelial 

genes than did BCAMhi BCs from CRSsNP. We found that although TSLP and IL33 were 

expressed at similar levels, POSTN, CCL26, and ALOX15 were expressed more highly in 

BCAMhi BCs from CRSwNP than from CRSsNP.

DISCUSSION

Identification of airway stem cells among plastic EpC types is an important prelude 

to defining the molecular pathways that maintain stemness, promote normal tissue 

regeneration, and drive pathological tissue remodeling. Previous studies have identified 

human and murine airway BCs as lin−EpCAMloKRT5+NGFRhi EpCs expressing ITGA6, 

PDPN, or GSIB413,18,56–58 and detected significant heterogeneity within the BC 

compartment.4,14,24,57,59–63 However, cell surface markers to distinguish BC subsets and 

define BC biology have been lacking. Here, we find that BCAM expression identifies 

molecularly and functionally distinct subsets of BCs in human and murine airways, with 

BCAMhi BCs expressing high levels of P63 and exhibiting increased stem functions. 

Remarkably, BCAMhi BCs are increased in the sinonasal mucosa of patients with the 

T2 inflammatory disease CRSwNP, and their P63 expression is upregulated through a T2 

cytokine and IRS–dependent signaling pathway. These findings identify a robust marker of 

airway stem cells in mouse and human and define a T2 molecular pathway that promotes 

their persistence.

The top marker genes identified in BCAMhi BCs include BCAM; the keratins KRT5, 
KRT15, and KRT17; the canonical BC transcription factor TP6319,35 and its S100A2 
target64–66; the stem cell regulator MMP1067,68; and diverse drivers of EpC proliferation 

including LAMB3,69 MYC,70 and the Yes-associated protein target CYR61.71 Each of these 

transcripts marks multipotent progenitor BCs from the lower airway.4,14,15,63,72 Moreover, 
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analysis of differentially expressed genes between BCAMhi and BCAMlo BCs from the 

sinus and the lung14 demonstrates that the distinct BCAMhi and BCAMlo gene programs 

seen in the sinonasal mucosa are largely retained in the bronchial tree. Additional support 

for this BCAMhi versus BCAMlo distinction in the tracheobronchial tree is found in our 

murine studies. Murine tracheal BCAMhi BCs, but not BCAMlo BCs, express high levels 

of Ki67 in vivo, demonstrate robust colony formation and wound healing in ex vivo 
assays, and are rapidly labeled in lineagetracing studies. In addition, we found that murine 

tracheal BCAMhi BCs are enriched in Wnt, Notch, Rho, and Trp63 pathway genes expected 

in airway stem cells. Taken together, these findings indicate that the BCAMhi/BCAMlo 

distinction detected in the sinonasal mucosa is likely to be useful in characterizing bronchial 

BCs.

BCAM is a member of the immunoglobulin superfamily, broadly expressed in erythroid, 

epithelial, endothelial, and smooth muscle cells. BCAM binds the alpha chain of the 

extracellular matrix protein laminin 573,74 to regulate cell adhesion and migration.75 

Activation of BCAM promotes extracellular signal-regulated kinase/mitogen-activated 

protein kinase signaling, with an increase in RhoA and a decrease in Rac1 activity, which 

favors cell adhesion and colony formation in fibroblasts76 and prevents biliary differentiation 

during liver regeneration.77 Although RhoA signaling plays a central role in airway EpC 

differentiation,78,79 whether BCAM is a critical regulator of BC RhoA functions will require 

further study. In addition, BCAM binding to laminin α5 competitively inhibits integrin 

binding and alters integrin-mediated functions.80 This indicates an additional potential 

pathway by which BCAM expression can alter the regenerative functions of laminin α581,82 

that are central to epithelial homeostasis and differentiation.83,84

Notably, we found that BCAM and TP63 were both highly expressed early in pseudotime, 

highly correlated across BCs from subjects with CRSwNP, and similarly induced by IL-4/

IL-13. Moreover, we found that human BCs from CRSwNP express higher levels of p63-

dependent genes. Chromatin immunoprecipitation sequencing data demonstrate that p63 

binds to a region in the BCAM promoter,85 and a recent study identified that overexpression 

of Np63 in 293T cells increases luciferase activity in a reporter containing the BCAM 

promoter region.86 Thus, the reproducibility with which BCAM expression identifies airway 

stem cells across species and conditions may reflect its regulation by p63. Further studies 

are needed to understand this relationship and to understand whether targeted inhibition of 

IL-4Rα reduces the expression of p63 and BCAM in vivo.

Previous studies have identified basal luminal progenitors24,31,57 and KRT4/13+ hillock 

BCs59,61,72 as descendants of KRT5+P63+ BCs that additionally express KRT8. In naive 

murine trachea and in human sinonasal scRNA-seq, KRT8 protein or transcript was 

consistently expressed in transitional EpCs, but it was not detected in either BCAMhi or 

BCAMlo BCs. Furthermore, confocal analysis demonstrated that both BCAMhi and BCAMlo 

BCs were detected on the basement membrane, distinct from KRT8+ luminal BCs. Taken 

together, these data suggest that BCAMhi and BCAMlo BCs defined here represent earlier 

stages of differentiation than do previously identified KRT8+ BCs.
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In human sinonasal BC cultures, we found that IL-4/IL-13 upregulates the expression of 

BCAM and P63 while reducing Notch activity and expression of SCGB1A1, which marks 

differentiated club EpCs. IL-4/IL-13–elicited upregulation of BCAM and P63 was not 

mediated by STAT6 or mTOR signaling, but was reduced with an inhibitor of IRS-1 and 

IRS-2, each of which contributes to IL-4R–dependent functions in hematopoietic cells.87–89 

IRS-1 has a demonstrated role in promoting murine embryonic stem cell survival in vitro90 

and in maintaining the Sox9+ intestinal stem cell pool in vivo,91 indicating that this is 

a likely mediator of IL-4/IL-13–elicited stem function. Notably, a role for IL-4/IL-13 in 

reinforcing stem function was not expected, because previous studies have demonstrated that 

IL-4/IL-13 drives the differentiation of EpCs to goblet cells.92,93 Furthermore, T2 cytokine–

driven maintenance of the BCAMhi BC stem state has potential significant pathobiological 

sequelae, because we find that many epithelial mediators of T2 inflammation including 

IL33, TSLP, ALOX15, and CCL2694 are expressed in this cell type. Taken together, these 

data highlight the potential for T2 cytokines to drive a type of airway remodeling that in turn 

supports persistent disease.

In this study, we found that the expansion of BCs in the T2 inflammatory disease 

CRSwNP that we previously reported13 is due to an increase in the BCAMhi BC 

subset. Furthermore, we found that IL4RA, IRS1, TP63, and TP63-dependent genes were 

significantly upregulated in CRSwNP, as compared with CRSsNP. Although there is no 

hallmark gene set to detect enrichment in IRS signaling, we did find that the signature 

of downstream Akt signaling was highly correlated with a T2-cytokine score across the 

spectrum of chronic rhinosinusitis (see Fig E6 in this article’s Online Repository at 

www.jacionline.org). Further studies will be needed to define the importance of IRS1 

in CRSwNP and whether specific downstream IRS-dependent pathways may be germane 

therapeutic targets.

Together, our data demonstrate (1) the transcriptional and functional distinctions between 

multipotent progenitor BCAMhi BCs and their immediate BCAMlo BC descendants, (2) 

the expansion of BCAMhi BCs in a T2-high disease (CRSwNP), and (3) the IRS signaling 

pathway through which the T2 cytokines IL-4 and IL-13 can promote stem function. These 

findings highlight a role for T2 cytokines in the epithelium beyond canonical goblet cell 

metaplasia and support a growing literature demonstrating a role for T2 cytokines in tissue 

repair across diverse cell types.95–97 Moreover, resolving the cell surface phenotype of these 

early airway EpC precursors provides an opportunity to isolate and assess the molecular 

features of dysplastic BCs that are increasingly detected in a range of airway diseases 

from CRSwNP13 to chronic obstructive pulmonary disease98 and idiopathic pulmonary 

fibrosis.63,99
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BCAM Basal cell adhesion molecule

CRSsNP Chronic rhinosinusitis sans nasal polyposis

CRSwNP Chronic rhinosinusitis with nasal polyposis

EpC Epithelial cell

EpCAM Epithelial cell adhesion molecule

GSIB4 Griffonia simplicifolia lectin B4

IRS Insulin receptor substrate

ITGA6 Integrin alpha 6

KRT5 Keratin 5

mTOR Mammalian target of rapamycin

MUC5AC Mucin 5AC

NGFR Nerve growth factor receptor

SCGB1A1 Secretoglobin family 1A

scRNA-seq Single-cell RNA sequencing

SSEA1 Stage-specific mouse embryonic antigen 1

STAT6 Signal transducer and activator of transcription 6

TP63 Tumor protein 63

T2 Type 2
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Key messages

• Two subsets of airway BCs have distinct transcriptional signatures and 

function.

• High levels of BCAM expression mark the earliest BC progenitor.

• IL-4 and IL-13 upregulate BCAM and P63 in an IRS-dependent fashion that 

prevents BC differentiation to secretory EpCs.

• BCAMhi BCs are increased in CRSwNP.
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FIG 1. 
BCAM marks a multipotent progenitor among KRT5+NGFR+ITGA6+ BCs in the human 

respiratory mucosa. A, UMAP representation of 6970 EpCs from 12 donors. B, Heatmap 

of scaled gene expression for the top 30 genes identified by Wilcoxon rank-sum test 

and auROC analysis. C, Dot plot of epithelial markers across clusters. D, Cluster-based 

minimum spanning tree of lineages overlaid on UMAP. E, Cell assignment to smooth 

principal curves with lineage-specific pseudotimes. F, Plot of pseudotime scores from cells 

assigned to the secretory lineage. G, Heatmap of scaled gene expression for the topmost 
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significant genes associated with changes in pseudotime (Bonferroni-corrected P values). H, 
Volcano plot of log2 fold change between basal 0 (BCAMhi) BCs and basal 1 (BCAMlo) 

BCs. Significant genes with increased expression in BCAMhi (red) and BCAMlo (blue) (P 
< 1.5 × 10−5, Bonferroni threshold). I, Representative immunostaining of human sinonasal 

tissue from a patient with CRSwNP. Arrow indicates BCAMhi BCs, and arrowhead indicates 

BCAMlo BCs. The scale bar represents 50 μm (n = 3). J, Representative immunostaining 

on ALI cultures derived from BCAMhi BCs. The scale bar represents 50 μm (n = 3). 

K, Representative immunostaining on ALI cultures derived from BCAMhi BCs treated 

with/without IL-4/IL-13 (n = 3). L, Coefficient of determination of log2 fold changes 

of shared genes from sinonasal BCs (BCAMhi vs BCAMlo) and bronchial BCs (BC1 vs 

BC2). auROC, Area under the receiving operator characteristic; DAPI, 4’-6-diamidino-2-

phenylindole; UMAP, uniform manifold approximation and projection.

Wang et al. Page 21

J Allergy Clin Immunol. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG 2. 
BCAM marks an airway basal stem cell among KRT5+NGFR+ITGA6+P63+ BCs in the 

naive murine trachea. A, Representative immunostaining in naive murine trachea. The 

scale bar represents 10 μm. B, Flow-cytometric panel of BCAMhi BCs, BCAMlo BCs, 

and differentiated EpCs (Diff). C, Expression of EpCAM in each group. D, Expression of 

canonical BC markers in each group. E, KI67 expression in naive tracheal airway epithelium 

assessed by flow-cytometric staining (left) and confocal microscopy (right). The scale 

bar represents 10 μm. F, Schema depicting the isolation and ex vivo culture of BCAMhi 

Wang et al. Page 22

J Allergy Clin Immunol. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



BCs and BCAMlo BCs from KRT5CrerERT2:R26tdTomato mice (for detailed information, see 

this article’s Methods section in the Online Repository at www.jacionline.org). G, Colony-

forming assay on sorted BCAMhi BCs and BCAMlo BCs with immunostaining. Number of 

colonies was calculated using image J. Data are shown as mean ± SEM (n = 3; **P < .01; 

unpaired 2-tailed t test). H, Wound-healing assay on sorted BCAMhi BCs and BCAMlo BCs 

in the presence or absence of 10 ng/mL IL-4 and IL-13. Images were taken at 0 and 24 

hours. The percentage of wound closure was calculated using image J. Data are shown as 

mean ± SEM (n = 3; P < .02; linear regression). All immunostaining is representative of n = 

3. DAPI, 4’-6-Diamidino-2-phenylindole.
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FIG 3. 
Fate labeling demonstrates a trajectory from BCAMhi BCs to BCAMlo BCs and then to 

differentiated EpCs. A, Experimental schema. B, H&E staining of mouse trachea. The 

scale bar represents 100 μm. Staining is representative of n = 3. C, Flow-cytometric panel 

showing the percentage of BCAMhi BCs, BCAMint BCs, and BCAMlo BCs in naive and 

challenged airways. Data are shown as mean ± SEM (n = 4; **P < .01, ***P < .001; 

unpaired 2-tailed t test). D, Percentage of SSEA1+ cells and MUC5AC+ cells in each 

EpC subset. Data are shown as mean ± SEM (n = 3). E, Percentage of Ki67+ cells in 
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each EpC subset. Data are shown as mean ± SEM (n = 3). F, Gating strategy identifying 

tdTomato+ EpCs in KRT5CrerERT2:R26tdTomato mice. G, Percentage of tdTomato+ EpCs out 

of total EpCs at the indicated time points. Data are shown as mean ± SEM (n = 3). H, A 

representative image of GSIB4 and BCAM staining on tdTomato+ EpCs (left). Percentage 

of tdTomato+ EpCs that fall within each gate in naive and ALT at the indicated time points 

(right). Data are shown as mean ± SEM (n = 3).
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FIG 4. 
BCAMhi BCs are enriched in canonical stem cell signaling pathways. A, Box plot of 

principal-component 1 scores from sorted murine BCAMhi BCs, BCAMlo BCs, and 

differentiated EpCs (Diff). B, Volcano plot showing differentially expressed genes in 

BCAMhi BCs compared with BCAMlo BCs. Highlighted genes are significantly enriched 

in BCAMhi BCs (red) and BCAMlo BCs (dark blue), (Benjamini-Hochberg, P < .05). 

C, Heatmap of the top 100 most significant differentially expressed genes in BCAMhi 

BCs and BCAMlo BCs (Benjamini-Hochberg, P < .05; see Tables E10 and E11). D-H, 
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Significant differentially expressed genes (Benjamini-Hochberg, P < .05) between BCAMhi 

and BCAMlo BCs associated with Wnt signaling (Fig 4, D), Hippo signaling (Fig 4, E), 

Notch signaling (Fig 4, F), Rho/Rock signaling (Fig 4, G), and Ras signaling (Fig 4, H). I, 
Volcano plot showing differentially expressed genes up in BCAMhi BCs (red) compared 

with BCAMlo BCs (blue). The significant differentially expressed genes that are P63 

target genes are colored in orange. J, Correlation between BCAM and TP63 expression 

(normalized counts; DESeq2 median of ratios) in bulk RNA-seq from human polyp BCs.
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FIG 5. 
Expression of BCAM and the P63-dependent stem program is increased in CRSwNP and 

CRSsNP. A, Expression of the indicated genes in bulk RNA-seq from human sinonasal 

polyp BCs and nonpolyp BC controls. Adjusted P value (Benjamini-Hochberg) as follows: 

BCAM = 3.7 × 10−13, TP63 = 4.69 × 10−7, IL33 = 3.02 × 10−2, POSTN = 5.20 × 

10−6, CCL26 = 3.44 × 10−1(not significant), ALOX15 = 2.95 × 10−2, and TSLP = 9.14 

× 10−7. B, Flow cytometry on lin−EpCAM+ EpCs from CRSsNP and CRSwNP. Data are 

shown as mean ± SEM (**P < .002; unpaired 2-tailed t test). C, Volcano plot showing 

differentially expressed genes up in CRSwNP (yellow) compared with CRSsNP (blue). The 

significant differentially expressed genes that are P63 target genes are colored in black. 

TPM, Transcripts per million.
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FIG 6. 
T2 cytokine–dependent and IRS-dependent regulation of BCAM. A, MFI of BCAM, NGFR, 

and ITGA6. Data are shown as mean ± SEM (*P < .05, **P < .01; paired 2-tailed t test). B, 
Quantitative PCR for the indicated genes. Data are shown as mean ± SEM (*P < .05, **P 

< .01; paired 2-tailed t test). C, Histogram (left) and MFI quantification (right) of BCAM 

expression in IL-4/IL-13-treated BCs ± inhibitors of IRS-1/2, mTOR, and STAT6. Data are 

shown as mean ± SEM (*P < .05; paired 2-tailed t test. D, Representative images (left) and 

MFI quantification (right) of P63 staining on IL-4/IL-13-treated BCs ± an IRS-1/2 inhibitor. 
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Scale bar = 50 μm. Data are shown as mean ± SEM (*P < .05; paired 2-tailed t test). E, 
Quantitative PCR on IL-4/IL-13–treated BCs ± an IRS-1/2 inhibitor. Data are shown as 

mean ± SEM (*P < .05, **P < .01; paired 2-tailed t test). Human sinonasal BCs treated ± 10 

ng/mL IL-4/IL-13 (Fig 6, A-E). F, Expression of components of IL-4R signaling pathway in 

bulk BC sequencing from CRSwNP or CRSsNP. IL4R and IRS1 were significantly different 

(Benjamini-Hochberg–adjusted P values < .05). G, Expression of the indicated genes in 

scRNA-seq cluster 0 (BCAMhi BCs) from CRSwNP and CRSsNP. Bonferroni threshold 

(1.59 × 10−5) for POSTN = 3.21 × 10−7, CCL26 = 8.97 × 10−6, and ALOX15 = 1.28 × 

10−10. DAPI, 4’-6-Diamidino-2-phenylindole; MFI, mean fluorescence intensity; NS, not 

significant; TPM, transcripts per million.
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TABLE I.

Established markers of airway epithelial cells

Cell type Marker

BCs NGFR Nerve growth factor receptor

GSIB4* Lectin Griffonia simplicifolia IB4

ITGA6 Integrin subunit alpha 6

KRT5 Keratin 5

TP63 Tumor protein 63

CD44 CD44 molecule

PDPN Podoplanin

Luminal progenitor BCs KRT8 Keratin 8

Secretory club cells SCGB1A1 Secretoglobin family 1A member 1

Goblet cells MUC5AC Mucin 5AC

Ciliated cells FOXJ1 Forkhead box J1

Acetyl-α-tubulin Acetylated alpha tubulin

*
GSIB4 lectin is a validated marker of murine, but not human, BCs.
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