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Abstract

Single-cell genomic technologies are revealing the cellular composition, identities and states in 

tissues at unprecedented resolution. They have now scaled to the point that it is possible to 

query samples at the population level, across thousands of individuals. Combining single-cell 

information with genotype data at this scale provides opportunities to link genetic variation to 

the cellular processes underpinning key aspects of human biology and disease. This strategy 

has potential implications for disease diagnosis, risk prediction and development of therapeutic 

solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and 

additional phenotypic data will require advances in data generation and analysis methods. As 

single-cell genetics begins to emerge as a field in its own right, we review its current state and the 

challenges and opportunities ahead.
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Introduction

Genome-wide association studies (GWASs) have uncovered hundreds of thousands 

of genetic variants associated with the risk of complex diseases and human traits. However, 

the majority of mechanisms linking these variants to their biological impact still need to be 

characterized, especially for variants found in non-protein-coding regions of the genome1. 

Expression quantitative trait locus (eQTL) mapping, which estimates the association 

between genetic variants (particularly SNPs) and RNA levels of either local or distal genes, 

can link variants to the putative target genes that they regulate. In addition, mapping of 

eQTLs, or other molecular QTLs2, can help characterize the modes of action of disease-

associated genetic variation. This approach can help identify the genes – and consequently, 

the pathways and processes – that may be involved in disease pathogenesis3, which is a 

critical early step in identifying opportunities for therapeutic intervention.

For eQTL mapping to provide disease insights, changes in RNA expression levels must 

be assayed in the specific cell types and conditions relevant to the disease of interest, 

as the transcriptome and its regulatory mechanisms are dynamic and frequently context-

dependent4. Seminal studies have demonstrated how eQTLs may only be detected in 

certain cell types5 or upon stimulation (that is, response eQTLs6,7). Additionally, recent 

efforts have assayed eQTLs across many human tissues; most notably, the Genotype-Tissue 

Expression Consortium8 has mapped eQTLs in more than 50 human tissues obtained from 

post-mortem donors. These traditional eQTL studies use bulk transcriptomes, which assess 

average expression levels across millions of cells from either whole tissues or cell-type 

samples. Using experimental (for example, fluorescence-activated cell sorting 

(FACS) and in vitro differentiation) and computational (for example, deconvolution) tools, 

bulk studies revealed some of the earliest insights into eQTLs specific to a cell type or 

transient state9-11. However, bulk studies are limited in their resolution of rare cell states 

or lack surface proteins with robust antibodies for FACS. Moreover, some transient or 

dynamic states cannot be recapitulated in vitro. These limitations reduce the utility of bulk 

eQTLs for understanding the biology of disease-associated variants: although tissue-level 

eQTLs are enriched for disease-associated genetic variants from GWASs, only 20–50% of 

common disease alleles colocalize with eQTLs12-14, which suggests that many variants 

influence biology through cell-state-specific mechanisms that cannot be identified without 

fundamentally new approaches.

Single-cell genomic technologies, particularly single-cell transcriptomics (that is, single-cell 

RNA sequencing (scRNA-seq)), offer a solution. As these approaches, which measure 

expression levels in individual cells, have become prevalent in recent years, they have 

revealed unanticipated cellular heterogeneity in many biological systems15-17. In addition, 

recent advances in technology, algorithms and experimental design have reduced the cost of 

scRNA-seq, making it more comparable to bulk RNA-seq and thus feasible to deploy across 

thousands of individuals18. This approach allows researchers to combine the granularity 

of single-cell assays with the large sample sizes required for genetic association studies, 

enabling a new category of ‘single-cell genetics’ studies that most prominently feature 

single-cell eQTL (sc-eQTL) studies.

Cuomo et al. Page 2

Nat Rev Genet. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The number of published sc-eQTL studies has more than doubled between January and 

December 2022 (Fig. 1), and international initiatives such as the single-cell eQTLGen 

Consortium (established in 2020 (ref. 19)) are attempting to harmonize efforts in this 

space. sc-eQTL studies have started to tackle questions that could not be asked with bulk 

expression data, such as finding eQTLs that vary with the cellular context or identifying the 

cell states in which disease-associated variants modulate gene expression. Context-specific, 

high-resolution maps of expression across deeply phenotyped individuals will eventually be 

valuable for therapeutic development.

In this Review, we first briefly review single-cell genomics and human genetics, before 

focusing our attention on their intersection. Next, we review the first sc-eQTL studies, 

which demonstrate the feasibility of applying bulk analysis approaches to single-cell data. 

We discuss unanticipated challenges that become relevant when compared with traditional 

studies using bulk RNA-seq. Next, we highlight newer approaches using the single-cell 

resolution provided by scRNA-seq data, such as mapping eQTLs that vary along continuous 

trajectories. Finally, we provide an overview of key future directions for the field, including 

new data types and integration strategies, and translation to clinical and therapeutic 

applications.

A brief review of contributing fields

We define single-cell genetics as the emerging field at the intersection of single-cell 

genomics and human genetics. The two contributing fields each have opportunities, 

challenges and bottlenecks. Here, we review relevant gaps and synergies at this intersection 

(Fig. 2) and introduce concepts that provide the necessary context for this Review.

Single-cell genomics

Over the past decade, single-cell genomics has rapidly demonstrated its value for studying 

human biology20. scRNA-seq is the most common of the single-cell modalities, and it 

has scaled quickly21 since its development in 2009: from only eight cells in the original 

publication22 to over 4 million cells in a recent study23. The most popular methods 

today for capturing RNA from single cells are droplet-based techniques24,25, which scale 

to tens of thousands of cells. Here, single cells are encapsulated inside microdroplets 

containing unique oligonucleotide-barcoded gel beads. When the cells are lysed, their 

mRNA molecules hybridize to the barcode and can be sequenced with a label corresponding 

to their cell of origin. Alternative methods are plate-based single-cell RNA-seq techniques 

(for example, Smart-seq3 (ref. 26)), in which cells are physically separated into 96-well 

or 384-well plates – with one cell per well – before library preparation and sequencing of 

full-length transcripts. Finally, in cases in which isolating viable single cells is technically 

challenging (for example, from frozen samples), single-nucleus RNA sequencing27 is a 

valuable alternative (Box 1).

In the past 10–15 years, technological improvements in single-cell data collection have 

produced new analytical considerations distinct from those for bulk RNA-seq data: for 

example, the massive number of profiles generated by a typical experiment, the sparsity 

of the data and a spectrum of technical artefacts. Novel methods have been developed 
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to address these challenges. Single-cell-specific bioinformatics workflows such as Cell 

Ranger24 perform raw data processing tasks, for example, read-level quality control, 

assignment of reads to their cell barcodes and RNA molecules of origin (that is, 

‘demultiplexing’), alignment to the reference genome and quantification. The data from 

an scRNA-seq experiment are typically represented as an integer matrix of the number 

of sequenced reads (or molecules, if unique molecular identifiers (UMI) were 

used) assigned to each gene in each cell28. For multi-individual pooled designs (particularly 

relevant for single-cell genetic studies), demultiplexing methods are necessary to assign 

cells to individuals of origin (for example, demuxlet29 and vireo30). After generating 

these count matrices, the next common stage in an scRNA-seq analysis workflow31-33 

is pre-processing: for example, detection (and exclusion) of empty droplets, doublets 

and ambient RNA (which can confound associations with true single-cell expression 

measurements); normalization to adjust for total sequencing depth of cells (total number of 

reads); log transformation and correction for confounding factors including technical batch 

and cell cycle effects. Each of these steps is reviewed elsewhere31-33.

Subsequently, downstream analyses can be applied to the preprocessed data. To reduce 

the computational burden, reduce noise and facilitate visualization, it is beneficial first 

to reduce the dimensionality of the data set. Feature selection reduces the data to, for 

example, highly variable genes34,35. Then, dimensionality reduction using linear methods 

such as principal component analysis (PCA) and non-negative matrix 

factorization is typically performed to aggregate signals across genes. These reduced 

dimensions can be used for visualization purposes either directly or via feeding to nonlinear 

transformations (for example, t-distributed stochastic neighbour embedding (t-SNE)36 and 

uniform manifold approximation and projection (UMAP)37), which can further reduce 

dimensionality to two dimensions without the information loss that would occur if linear 

constraints were maintained.

Additionally, reduced dimensions can be used for subsequent downstream analyses. These 

include cell-level analyses to identify cell states and their dynamic relationships (for 

example, clustering, cell-type annotation or trajectory inference) and 

gene-level analyses to characterize the transcriptional profiles of these states (for example, 

differential expression or gene regulatory networks). Software to conduct these 

analyses is often available as part of extremely popular and comprehensive computational 

toolkits that create user-friendly single-cell workflows and consistent data objects. These 

toolkits are available in both R (for example, Seurat38 and scran39) or Python (for example, 

Scanpy40). Recommended methodologies and parameters for these steps are reviewed 

elsewhere31-33.

Impact of genetic variation on molecular phenotypes

In the two decades since the completion of the first human genome sequence41, rapid 

advances in sequencing technology have enabled increasingly larger genome sequencing 

projects and the characterization of human genetic variation across hundreds of thousands 

of individuals42-44. For common (population minor allele frequency >5%) and near-

common (1–5%) variation, genotype arrays provide a popular solution to measure genotypes 
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at approximately 500,000 ‘tagged’ loci systematically, and their low cost enables usage 

for large cohorts. DNA sequencing approaches additionally resolve rare (population minor 

allele frequency <1%) and structural genetic variation and can be applied to either protein-

coding regions and their flanking sequences only (whole-exome sequencing) or the entire 

genome (whole-genome sequencing), using either cheaper short-read sequencing or more 

comprehensive, but substantially more expensive long-read approaches45,46.

In the setting of severe monogenic diseases, the application of DNA sequencing methods in 

both research and clinical settings has improved the rate of genetic diagnosis and disease 

gene discovery47,48. In addition, for complex traits and common diseases, GWASs have led 

to the identification of more than 400,000 genetic associations1 and the development of 

polygenic risk scores (PRSs), which combine association signals across the genome 

to predict the risk of disease of an individual49.

Studies of genetic variation can be combined with functional genomic assays to assess the 

potential biological impact of individual variants directly. The most popular approach is 

expression (e)QTL mapping, but similar frameworks can be used for DNA methylation, 

protein, histone modification, chromatin accessibility and splicing, reviewed elsewhere2. 

Because we expect most regulatory regions to be near their target, most QTL studies have 

focused on proximal (cis) mapping, for example, considering variants in and around the 

gene, methylation site or accessibility peak of interest. By contrast, trans-QTL mapping 

considers distal inter-chromosomal regulation but requires larger sample sizes50.

At present, the sample sizes of QTL studies are several orders of magnitude smaller than 

those of GWASs (for example, ~30,000 in the largest blood eQTL study51 versus >5 

million individuals in the latest height GWASs52) owing to both cost considerations and 

the challenges of obtaining suitable tissue samples at the population scale. Fortunately, the 

magnitude of genetic effects on molecular traits is generally much larger than that on disease 

risk, and thus these sample sizes are sufficient to identify them. Although traditional QTL 

studies have considered common SNPs, approaches exist to interrogate the role of rare 

variants on, for example, the expression level. However, these remain largely limited to the 

study of rare variation in individuals with extreme phenotypes (that is, outlier analyses53,54), 

with few exceptions55.

Linking QTL results to GWAS results can reveal the molecular function of disease-

associated genetic variants, but this task remains nontrivial56. To better understand the 

disease relevance of QTLs, methods have been developed to assess whether they coincide 

with disease loci (statistical colocalization57) or whether their effect on an intermediate 

molecular trait is causal for disease (two-step Mendelian randomization58), which have 

been reviewed elsewhere56. Transcriptome-wide association studies (TWASs) 

leverage eQTL information to impute gene expression for GWAS cases and controls and 

then perform direct association of traits and genes without directly profiling gene expression 

in every individual59,60.
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Single-cell eQTL mapping using pseudo-bulk counts

Reduction in sequencing costs, well-established methodologies, processing pipelines, 

multiplexing techniques and batch-effect-removal methods enable the application of single-

cell genomics (particularly transcriptomics) to large, genotyped cohorts. Furthermore, in 

single-cell genetics studies, using single-cell molecular profiling and genotypes from the 

same individuals enables the evaluation of the effects of genetic variants on molecular 

phenotypes at the level of a cell. Here, we focus on sc-eQTL studies, which test associations 

between genetic variants and changes in gene expression at single-cell resolution.

Proof-of-concept and early cell-type studies

In a 2013 study61, sc-eQTLs were first mapped, motivated by the observation that averaging 

expression over many cells (as is done in bulk studies) would mask certain gene expression 

phenotypes such as transcriptional bursting, noise and dynamic expression fluctuation. 

Limited to WNT pathway genes in 15 lymphoblastoid cell lines, the demonstration of the 

authors that SNPs are associated with transcript variance and correlation across single cells, 

nevertheless, served as an initial proof of concept61. It was an early example highlighting 

the value of single-cell-resolved gene expression in genetic studies. Within the next 5 

years, a few subsequent studies demonstrated the feasibility of transcriptome-wide sc-eQTL 

analyses29,62. These studies leveraged single-cell advances in assaying, demultiplexing and 

clustering cells and focused on well-delineated immune cell types within easily accessible 

human peripheral blood. Despite limited sample sizes (<50 individuals), these studies found 

tens to hundreds of eQTLs.

These studies established a preliminary approach for sc-eQTL analyses: measure single-cell 

gene expression in a genotyped cohort, cluster phenotypically similar cells and associate the 

aggregated expression of each gene in each cluster or cell type with genotypes of individuals 

at nearby variants. This approach, called the ‘pseudobulk’ eQTL analysis, which we discuss 

further in the next section, had the advantage of building on existing bulk eQTL pipelines, 

making it computationally scalable to progressively larger cohorts (the current largest sc-

eQTL study considers nearly 1,000 individuals63). Moreover, this approach was compatible 

with more sophisticated methods to organize single-cell phenotypes, such as bins 

along a trajectory or high-resolution cell-state clusters, allowing the approach to be extended 

to more heterogeneous tissues and granular cell types, including immune cells63-68 (with a 

particular focus on T cells65,67,68), induced pluripotent stem (iPS) cells and differentiating 

iPS cells69-73 (including iPS cell-derived cardiomyocytes72, dopaminergic neurons70 and 

retinal ganglion cells73), fibroblasts74 and brain cells75.

Methods originally devised for bulk eQTL mapping

Initial sc-eQTL studies largely used association methods originally devised for bulk eQTL 

mapping and other association tests between genotypes and continuous traits (Box 2). These 

methods assume that (1) the distribution of a phenotype across all samples is approximately 

Gaussian and (2) only one phenotype observation is available for each individual. These two 

assumptions do not necessarily hold for single-cell expression data, which in general are 

much sparser, and contain multiple observations of each phenotype (that is, expression level 
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from multiple cells) per individual. To overcome this discrepancy, many studies have relied 

on pseudo-bulk strategies, in which gene expression levels are aggregated across multiple 

cells from a given individual to mimic a single bulk sample. The expression of a gene in the 

pseudo-bulk sample is typically either the sum of the raw counts of the gene or the mean 

of the normalized expression of the gene across the cells of an individual in the cell type of 

interest (more precisely defined using scRNA-seq data).

As in bulk studies, covariates may be confounded with allelic effects. Several approaches 

used to detect and correct for covariates affecting the expression of all (or a majority of) 

genes in bulk analyses can be extended to pseudo-bulk analyses. These include principal 

component analysis and probabilistic estimation of expression residuals (PEER), although 

the latter can perform suboptimally in some cases76,77. Single-cell studies have additional 

challenges, such as variable cell count per individual (inversely correlated with confidence in 

pseudo-bulk counts) or batch effects from multi-experiment study designs, which may create 

systematic differences in gene expression between experimental pools (Box 1). sc-eQTL 

models can increase power by accounting for these experimental factors with additional 

fixed or random effects70. There are many possible single-cell count normalization and 

aggregation and covariate correction strategies for pseudo-bulk sc-eQTL studies, which have 

been reviewed elsewhere78.

Although these studies used pseudo-bulk scRNA-seq data for eQTL mapping, contemporary 

studies also began to explore ways to use additional information offered by single-cell 

profiles. For example, in principle, these data allow one to measure the association between 

genetic variation and cell-to-cell gene expression variability (Fig. 3). Increased variability 

may reflect a lack of expression stability and increased propensity to enter extreme, 

pathogenic states79 or could uncover gene–environment (GxE) interactions with unmeasured 

environments and contexts80. Although a handful of studies have proposed methods to 

map such ‘variance eQTLs’ from single-cell data (borrowing from similar approaches in 

other settings80-82), they had limited success owing to insufficient sample sizes and the 

confounding correlation between the mean and variance of the expression of a gene18,71. 

As the size of single-cell genetic studies grows, and more sophisticated methods become 

available, we envision that single-cell variance eQTL studies will become more tractable. 

These early attempts to leverage single-cell-resolution data in genetic association models, 

nonetheless, have laid the foundation for new perspectives on modelling eQTLs, as well, 

with single-cell-resolution data.

Single-cell-resolution eQTL modelling

Cell types have historically been defined on the basis of discrete morphological and 

functional categories, and clustering scRNA-seq data work towards a similar ontological 

goal. To this end, early eQTL studies also discretized and aggregated cells of the same cell 

type to facilitate statistical modelling and interpretation. However, high-resolution single-

cell data often reveal heterogeneity within discrete populations, which motivates modelling 

eQTLs at single-cell resolution. Here, we describe the second generation of sc-eQTL 

models, which adopt continuous frameworks to leverage granular single-cell-resolution data.

Cuomo et al. Page 7

Nat Rev Genet. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Single-cell models improve cell-state-dependent eQTL mapping

Recently, high-resolution molecular measurements (for example, transcriptomics) have been 

used to define and characterize single-cell phenotypes. They reveal not only discrete 

lineages but also continuous phenotypes and intermediate states. For example, scRNA-

seq studies of human T cells have identified a continuum of cytotoxicity spanning 

multiple T cell sublineages83,84. During development, cells have been assayed in vitro 

and in vivo in intermediate differentiation states, such as the mesendoderm state 

preceding the determination of mesoderm or endoderm fate69. These continuous phenotypes 

sometimes reflect disease processes or pathogenic environmental signals, such as fibroblasts 

transitioning towards inflammatory states owing to NOTCH3 signalling in rheumatoid 

arthritis85. These examples highlight the need for more granular and continuous definitions 

of cell state (Box 3).

Once single-cell-resolution data are used to define these continuous states, we can model 

how genetic regulation varies dynamically along these trajectories. Rather than treating 

individuals as observations, these models treat each cell as its own observation of the 

expression of a gene. For example, one common model architecture is a mixed-effects 

interaction model, which includes random effects to account for the non-independence 

of cells from the same individual (which, if left unaccounted for, can inflate the false-

positive rate86) and interaction terms between cell state and genotype to model state-

dependent effects of genotype on expression65,87,88. These second-generation models map 

‘dynamic’ eQTLs, assessing the effects of different genotype alleles on a trait that varies 

dynamically along a continuous axis. They have been successfully applied to continuous 

trajectories within differentiating iPS cells, T cells and other cell types65,87.

Other single-cell-resolution methods have adopted different approaches. For example, 

Gewirtz et al.89 used generative statistical (‘topic’) models to identify shared variation 

between genotypes and scRNA-seq profiles to identify both cis-eQTLs and trans-eQTLs 

across discrete cell types. As another example, Lu et al.90 used decomposition approaches to 

identify genetic effects on expression that are shared or specific to discrete cell types.

However, these early applications have also revealed the challenges and limitations of these 

models, including the non-normality of single-cell expression counts and computational 

tractability. We discuss these in detail in the following sections.

Sparsity and non-normality of single-cell expression data

Single-cell data are sparse (containing many 0s), owing to incomplete sampling as well 

as genuine biological variation in transcript presence within cells. As a result, single-cell 

measurements are not well described by the Gaussian distribution that linear regression-

derived models assume. The large number of cells that are assayed together in bulk 

transcriptomes (and, to a certain extent, pseudo-bulk aggregated measurements) meant that 

normalized expression profiles could be approximated as Gaussian, but this does not hold 

for single-cell profiles91 (Box 2). Instead, discrete count distributions better describe these 

data. Despite their sparsity, single-cell profiles have been shown not to be zero-inflated92. 

Instead, a Poisson distribution offers an interpretable model of single-cell counts91 that has 
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been used in recent studies, including the Poisson mixed-effect regression of Nathan et 

al.65 and the Poisson reduced-rank regression model of Fitzgerald et al.93. In some cases, 

more parametrized negative binomial or multinomial models may be appropriate alternatives 

depending on the gene expression distributions94; null testing for P-value inflation can guide 

those choices.

Scalability and infrastructure as sample sizes grow

Modelling each cell separately – rather than aggregating cells into pseudo-bulk 

measurements – requires data sets on the order of hundreds of thousands of cells, instead of 

hundreds of samples as in a (pseudo-)bulk study for the same number of individuals. One 

solution is grouping small groups of <10 phenotypically similar cells into ‘meta-cells’95,96. 

This type of aggregation is less disruptive than grouping thousands of cells in a cluster, or 

even hundreds of cells in a pseudotime bin, and is still usable for eQTL modelling87.

Moreover, because effective sample size (number of unique individuals) is also expected to 

grow in future studies, methods must be scalable and compatible with high-speed computing 

and data storage infrastructure (Box 1). This is an area where sc-eQTL methods may learn 

from several previous genetics tools and infrastructures built to perform efficiently at scale, 

such as TensorQTL97 (a graphics processing unit implementation of Matrix eQTL98,99 

for QTL mapping) and Hail (a cloud-based scalable implementation of several genetic 

tools100). Some sc-eQTL methods with more computationally expensive frameworks have 

already begun leveraging graphics processing units, such as scTBLDA89, mentioned earlier. 

Methods may also benefit from parallelization across computing resources, cloud-based 

systems and algebraic and numerical approximations.

New opportunities

Current paradigms of sc-eQTL mapping offer a limited window into the overall picture 

of genetics and cell function. New technological advances, larger-scale studies and 

corresponding analytical and computational methods will be required to expand our view. 

In particular, we envision studies exploring more molecular traits (beyond gene expression), 

more types of genetic variants (beyond common SNPs) and more information about the 

individuals (for example, demographics, disease history and environmental exposures). 

Moreover, we expect data to be collected from progressively more diverse cohorts, including 

data from individuals of different ancestries, from individuals with diseases and from 

many different (disease-relevant) human tissues. As these rich data become available, new 

analytical and computational methods will be required to integrate information across 

data modalities (for example, chromatin accessibility, expression and protein level) and 

resolutions (from cell to tissue to individual), model context-specific and dynamic effects 

and predict outcomes relevant to human biology and health.

New data types

The molecular impact of DNA alleles can result in variation at the level of cells, tissues 

or whole organisms. A recent shift in human genetics has moved from variant discovery 

to exploring this multifaceted impact101. For any molecular phenotype we can measure, 
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we can integrate genotypic information to map QTLs associated with the phenotype. With 

early adoption of single-cell RNA-seq and robust analysis pipelines, sc-eQTLs have been an 

appealing area for the first single-cell genetic association studies. However, as we are able 

to more efficiently measure and computationally analyse more molecular traits at single-cell 

resolution, we can interrogate the genetics of more cell states and molecular processes at 

single-cell resolution (for example, single-cell chromatin accessibility QTLs102).

Multi-omics technologies allow us to assay more than one data modality within the 

same cell; for example, single-cell nucleosome, methylation and transcription sequencing 

(scNMT-seq)103 measures chromatin accessibility, DNA methylation and expression, 

whereas cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)104 

measures expression and surface protein level. Integrating multiple modalities provides 

multiple views on the phenotypes of the same cells, enabling higher-resolution definition 

of cell states to model dynamic sc-eQTLs and offering multiple phenotypes to model 

relationships with genetic variants. This integration task has been described as ‘vertical 

integration’105, with cells being the common link across modalities.

Simultaneously, increasing sample sizes and newer technologies are making more classes 

of genetic variation amenable to analysis in single-cell cohorts, such as rare variants, 

repeats, insertions and deletions and structural variants. These have been associated with 

diseases106-108, but there has been limited analysis of their effect on (whole-tissue) 

molecular phenotypes109-111, and none at the single-cell level. More comprehensive and 

systematic association studies with single-cell models and precisely defined cell states may 

more fully capture the impact of these variants at the molecular level.

Diverse cohorts

Ideally, to understand the mechanisms underlying biology, we need to link genetics 

with molecular measurements and cell states in living humans under different natural 

perturbations. To do so, it is necessary to assay cells across thousands of individuals 

with known genotypes and at least partially characterized ‘environment’, including lifestyle 

(for example, smoking status, diet and pollution), demographics (for example, sex, 

age, geography and ethnicity) and other biomedical traits (for example, medical and 

vaccination history, disease state and progression and medications). Incorporating these 

different sources of variation into single-cell genetic studies provides a clearer picture 

of the interactions between genetics and factors underlying changes at the cellular level. 

Given the demonstrated relationships between these covariates and cell-state composition, 

incorporating these covariates into sc-eQTL models will provide richer context for dynamic 

eQTLs112. Cellular-resolved, large-scale and multifaceted data sets may also enable studies 

of GxE interactions and their effect on molecular traits.

In addition to environmental diversity, accounting for the effect of ancestry is important. 

Single-cell and genetic studies more generally have failed to include ancestral diversity 

for many reasons, including long-standing inequities and concentration of research funding 

in communities with predominant European ancestries113-115. Although diversity has been 

a growing priority in research studies, many institutions still lack adequate infrastructure 

and community engagement programmes to equitably recruit participants116. Most studies 
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continue to be conducted in European populations, and, as many have noted, genomic 

discoveries in Europeans are not always directly translatable to non-European individuals114. 

This limitation extends to sc-eQTL mapping studies, which largely consider samples of 

European ancestries. Yet, studying diverse populations is important, as they can have 

different causative alleles for diseases, different patterns of regulatory variation and different 

cell states and active pathways, together altering the context in which disease alleles 

act117-119.

The sc-eQTL analysis in ancestrally diverse cohorts can help with fine-mapping and 

elucidate population-specific dynamic eQTLs and their relationship with disease, improving 

the translation of findings of genetic studies. A few studies have already been conducted in 

non-European populations (in Peruvian65, Yoruban71 and African American82 populations), 

and large-scale cohorts from other geographical regions are being generated (for example, 

the Asian Immune Diversity Atlas, the African Ancestry Immune Cell Atlas and the Human 

Cell Map of Latin American Diversity). However, to maximize the findings that can be 

gleaned from these valuable data sets, it is essential to develop genetic algorithms for 

association testing, fine-mapping and meta-analysis that are robust to multi-ancestry data, 

which are currently lacking.

Studying disease tissue context

Many diseases have tissue-specific manifestations, making it critical to study the effects of 

genetic variation on gene regulation in disease tissue context. However, sc-eQTL studies to 

date have been largely limited to easy-to-access tissues (for example, skin and blood) or 

cell lines (for example, iPS cells), with only a minority of studies considering other tissues, 

such as the brain75. This limits our ability to learn about gene regulation in disease-relevant 

tissue (for example, colon for ulcerative colitis, or pancreas for type 1 diabetes mellitus). 

First, some disease-relevant cell types cannot be assessed at all in the absence of the relevant 

tissue. For example, neurodegenerative diseases such as Parkinson disease have proven 

especially difficult to study in part owing to the lack of access to data from the specific 

brain cells that are thought to be affected (dopaminergic neurons120). Second, even cell 

types that can be found, for example, in blood are found in a very different environment 

in tissue and thus may be subject to different context-specific genetic regulation. Finally, 

it is worth noting that tissues require handling, freezing and disaggregation, meaning that 

they are markedly more challenging to study. Moving forward, these are critical points that 

may be addressed by large-scale single-cell data generation projects such as the Human Cell 

Atlas15,121.

Although most current studies have focused on ‘healthy’ individuals, another avenue to 

study disease-relevant gene regulation is to obtain single-cell profiling data from genotyped 

individuals with diseases and other traits of interest. For example, Perez et al.64 mapped 

sc-eQTL in various blood cell types from patients with systemic lupus erythematosus. 

Additionally, the deficit of genotyped single-cell cohorts for hard-to-access tissues and 

people with a disease phenotype may be addressed by differentiating stem cells into 

cell types of interest and growing organoid models122. Recently, the concept of ‘cell 

villages’ has been introduced to help scale stem cell studies for larger numbers of 
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donor lines, providing power to explore gene regulation in disease-relevant cell types and 

genotypes123.

Another promising avenue is to study spatial patterns of eQTLs to understand how gene 

regulation may interact with tissue structure to lead to disease. Spatial transcriptomics 

can record the in situ locations of cells along with their RNA expression profiles at 

near-cellular resolution124. These technologies are rapidly improving to become higher 

resolution, cheaper, higher fidelity and easier to implement125. In parallel, new mixture 

modelling strategies for spatial gene expression have already extended traditional analyses 

such as differential expression to spatial transcriptomics126,127, and similar refinement may 

be useful for eQTL models19. With further development of computational tools and spatial 

technologies, there could be an that vary across spatial coordinates.

Enabling disease-relevant discoveries

eQTLs provide insight into the modes of action of disease-associated genetic variation – 

implicating genes they regulate, the direction of effect and cell states in which they have an 

effect – which has several important ramifications for understanding disease processes and, 

down the line, helping drug development.

Single-cell genetics for identifying disease-relevant cell types

Knowing the tissues, cell types and cell states most relevant to a disease phenotype can add 

to clinical understanding. With the development of sc-eQTL models that can identify cell-

state-specific genetic effects on gene expression, we can now integrate existing knowledge 

about disease alleles with their predicted regulatory targets in each cellular context. This 

enables inference of the contexts in which the disease alleles may be most disruptive. 

Methods have been developed for complex traits affected by many genetic variants to 

integrate bulk tissue-specific eQTL effects and to prioritize the most relevant tissue128,129. 

For example, Kundu et al.130 used eQTL mapping to fine-map causal disease-associated 

variants, finding, among other things, that the ITGA4 locus for inflammatory bowel disease 

is active in monocytes. Single-cell-resolved eQTL maps will provide further granularity 

to these types of studies by enabling subcell-type resolution. For example, two distinct 

studies recently combined sc-eQTLs in (iPS cell-derived) dopaminergic neurons from 215 

individuals70 with GWAS results for Parkinson disease and schizophrenia, respectively, to 

confirm existing and identify novel genes that are likely to have a role in Parkinson disease 

and schizophrenia aetiology, using a Mendelian randomization approach112,131.

Other methods using single-cell data can estimate more precise cell types relevant to disease, 

using variant-gene expression associations and other strategies to link disease-associated 

variants to genes132-134 (Fig. 4). Some methods, such as single-cell disease relevance score 

(scDRS), estimate association of individual cells with the polygenic disease risk on the 

basis of their expression of genes proximal to GWAS variants135. This represents a step 

towards translating a PRS framework to single cells, aggregating SNP effects to predict 

heritable trait risk. Single-cell molecular QTL results may help construct similar predictors 

by further taking into account cell-type-specific regulatory effects of the genetic variants. 

For example, CONTENT (which stands for context-specific genetics) is an extension of 
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transcriptome-wide association study that uses context-specific eQTLs from either single-

cell or bulk analysis to identify genes with context-specific expression associated with a 

disease, enabling quantification of the context-specific portion of disease heritability136.

Moreover, these methods may benefit from more granular, single-cell data. When 

CONTENT was used to identify genes associated with systemic lupus erythematosus on 

the basis of eQTLs mapped in single-cell peripheral blood cells, it found twice as many 

genes when state-specific eQTLs were mapped using a single-cell-resolution decomposition 

method compared with pseudo-bulk meta-analysis64. This result highlights the importance 

of single-cell-resolution eQTL mapping approaches.

In addition to finding disease-associated genes, which may point to key pathways and drug 

targets, future extensions of similar methods may narrow down the cell context in which 

disease-associated genetics influences gene expression. This focus can also help us identify 

cell states to target with gene editing or other therapeutic molecules137.

Future potential in the clinic

Importantly, although recent studies have shown that drug targets with genetic evidence are 

twice as likely to prove clinically effective138,139, the translation of sc-eQTL results to the 

clinic is not a reality at present, and many critical steps are required to operationalize these 

data. Nonetheless, efforts using well-established data types provide hope that sc-eQTLs, too, 

may eventually have clinical utility.

First, complex disease heterogeneity may reflect underlying genetic and mechanistic 

differences. Genetic (PRSs140,141) and expression-based approaches (bulk142,143 and single 

cell144-148) have been used independently to stratify patients on the basis of disease risk and 

into disease subtypes. A recent study128 developed a method to prioritize disease-relevant 

tissues through Bayesian mixture modelling of the trait associations of tissue-specific bulk 

eQTL variants. They used this method to identify subgroups of patients with high body 

mass index whose genetic predisposition was most relevant to gene regulation in either 

brain, adipose tissue or muscle128. Using sc-eQTL studies and adapting bulk tissue methods 

may achieve similar results at cell-type and subcell-type resolution149, potentially allowing 

patients with the same clinical disease to be stratified into subgroups with different disease 

prognoses and optimal therapeutic strategies.

Second, incomplete functional annotation of variants limits the utility of DNA sequencing 

to provide accurate diagnoses for patients with monogenic diseases. Functional genomic 

analysis of clinical tissue samples increases diagnostic rates above those provided by DNA 

sequencing methods alone, with bulk RNA-seq of disease-relevant patient tissue samples 

in particular now well-established as substantially improving diagnosis rates by identifying 

disease-causing changes in gene expression or splicing150-152, leading to its incorporation 

into both research and clinical diagnostic workflows153,154. We can thus expect single-

cell methods to increase diagnosis rates in two ways: first, by providing more accurate 

annotation of the genomic regions involved in the biology of specific disease-relevant cell 

states, leading to better in silico functional prediction for variants, and second, through direct 
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application to patient tissue to identify variants affecting transcript structure or expression in 

cell types that are rare in accessible tissue.

Conclusions and perspective

This article provides an overview of the nascent field of single-cell genetics, in which single-

cell resolution molecular readouts are collected from hundreds or thousands of individuals 

and analysed in tandem with matched genotype data. sc-eQTL mapping, in which the effects 

of genetic variants on RNA levels are evaluated at single-cell resolution, is one of the most 

technically and algorithmically advanced approaches in this area; thus, it is where many of 

the first single-cell genetic studies have appeared and is the focus of this article.

The field of single-cell genetics (and single-cell technologies in general) is still in its 

infancy, and although it holds tremendous potential, there remain areas where bulk 

transcriptome approaches continue to have an important role. For example, in homogeneous 

cell types (for example, iPS cells), a bulk eQTL study may be better powered than 

an sc-eQTL study in the same cell type78,155. However, as technology improves and 

costs decrease, this gap will progressively diminish. Emerging technologies are becoming 

cheaper156, require less specialized equipment157, capture longer transcripts with higher 

fidelity158 and may become amenable for large-scale single-cell studies in coming years.

As the second generation of eQTL mapping methods emerges, we can model regulatory 

differences at single-cell resolution and link them to differences in disease risk and 

heritability. This offers the promise of going beyond the conventional tissue and cell-type 

resolution that has, itself, still left the regulatory effects of many non-coding disease alleles 

unexplained4,13. Modelling cell-state-specific and context-specific eQTLs with single-cell 

data can also be used to improve inference of gene regulatory networks or haplotype-aware 

analyses of coordinated cis-regulatory effects on alleles159,160. However, as these single-cell 

data sets increase in size and algorithms seek to model heterogeneous, high-dimensional 

data, we face many challenges, as reviewed earlier.

Beyond these technical obstacles to implementing methods, there are additional barriers to 

clinical translation. Sample sizes for genetic studies are typically on the order of tens or 

hundreds of thousands, whereas single-cell studies have largely remained in the hundreds. 

Larger, more diverse cohorts of genotyped, single-cell-profiled individuals will be needed to 

conduct well-powered single-cell genetics studies with complex environmental or cell-state 

interactions. Additionally, this will enable GWAS-like studies linking genetic variants to 

cell-type composition and abundance estimated from scRNA-seq data (possibly adopting 

previous methods using FACS161,162), which are also genetically regulated and relevant to 

disease.

Moreover, eQTL studies often yield thousands of putative variant–gene expression 

associations. Although their results can be used as supporting evidence, experimental 

validation remains necessary to establish true causal relationships between variants and 

disease. This is an important open question, especially for dynamic eQTLs identified in 

rare or hard-to-isolate cell states. Replication in independent single-cell studies is possible, 
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but alternative molecular validation may be challenging. For sc-eQTLs and other single-cell 

genetic studies to be translated to the clinic, we need parallel development of experimental 

techniques to test the effects of variants in specific cell states at high throughput, such 

as CRISPR screens163,164 or investigation in iPS cells or organoids165,166. Computational 

strategies that leverage the heterogeneity of other single-cell modalities measured across 

many individuals may also link eQTL variants to upstream regulatory elements167,168 or 

downstream cellular phenotypes169.

The existing and future studies described in this Review aim to provide novel insights and 

hypotheses into the mode of action of variants in gene regulation and disease pathogenesis. 

Understanding these causal pathways in a cell-state-specific manner may inform targeted 

therapeutic strategies.

Glossary

Allele
One of two or more alternative DNA sequences occurring at a particular genomic locus

Ambient RNA
Free-floating RNA captured in a single-cell RNA sequencing droplet or other reaction 

compartment

Cell-type annotation
Manual or algorithmic approach to assign labels (corresponding to cell type) to unbiasedly 

identified cell clusters

Cell villages
Cell lines derived from multiple donors cultured and differentiated together in a single dish. 

These are distinct from ‘uni-cultures’, in which each cell line is cultured independently. This 

makes the strategy particularly valuable for population-scale studies

Clustering
Algorithmic approach to group cells into clusters, which are groups of similar cells based on 

their transcriptomes

Colocalization
Statistical methods that aim to estimate the probability that the same genetic variant is 

causal for two different traits, for example, an organismal trait (for example, a disease in a 

genome-wide association study) and a molecular trait (for example, the expression level of a 

given gene in an expression quantitative trait locus study).

Doublets
Two or more cells (also called multiplet) captured and processed in the same droplet

Fine-mapping
The process of localizing association signals to causal variants using statistical, 

bioinformatic or functional methods
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Fluorescence-activated cell sorting (FACS)
Experimental technique to select cells based on physical and chemical characteristics of 

individual cells. Single cells from a sample are suspended in a fluid and then injected into an 

instrument that uses lasers to detect cell morphology and fluorescently labelled features and 

sort cells based on these qualities.

Gene regulatory network (analysis)
A gene regulatory network is a set of interacting regulatory elements and genes that jointly 

control expression patterns that dictate a specific cell function.

Genome-wide association studies (GWASs)
Statistical procedure to identify associations between individual genetic variants and 

variation in continuous traits (for example, height) or risk of disease (for example, type 

2 diabetes)

Interaction
Interplay between different sources of variation (for example, genetic variation and 

environmental exposure — GxE) that results in a joint effect on the trait of interest beyond 

the individual additive effects

Mendelian randomization
Statistical method using measured variation in an instrumental variable (for example, a 

genetic variant) to test the causal effect of an exposure (for example, the expression of a 

gene) on an outcome (for example, a common trait or disease)

Minor allele frequency
Population frequency for the least common (that is, minor) alleles within the population of 

interest

Non-negative matrix factorization
Dimensionality reduction method to decompose a matrix of non-negative values into two 

matrices of vectors capturing the essential features of a data set. Unlike principal component 

analysis, non-negative matrix factorization components are not orthogonal

Polygenic risk scores (PRSs)
Quantification of total risk of an individual for a given disease based on genetic contributors 

alone. PRSs are calculated by summing the dosage of an individual of thousands of variants 

weighted by the strength of their association with the trait (as estimated from a genome-wide 

association study for that trait).

Principal component analysis (PCA)
Dimensionality reduction method to identify main orthogonal axes of variation in a dataset, 

called ‘principal components’

Pseudotime
Approximate ordering of cells along a latent dimension based on single-cell RNA 

sequencing data. The ordering represents sequential changes along a transition (for example, 

during cell differentiation)
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Response eQTL
An association between a genetic variant and RNA level (that is, an expression quantitative 

trait locus) that only becomes apparent when the cells the RNA is measured in are 

stimulated in some way (for example, immune activation)

Single-cell phenotypes
Cell characteristics (for example, function, gene expression and position along a transition) 

that can be estimated using single-cell-resolved molecular profiling (for example, single-cell 

RNA sequencing)

Sparse
Containing a large number of 0s. In single-cell data, sparsity is due to the combination of 

inefficient sampling and true absence of expression

Trajectory inference
Also known as trajectory mapping. A computational technique used in single-cell data 

to determine the form of a dynamic process experienced by cells (for example, lineage 

specification and differentiation) and then arrange cells based on their progression through 

the process, usually using a pseudotime approach

Transcriptome-wide association studies (TWASs)
Statistical method that uses estimated associations between variants and gene expression 

(for example, from expression quantitative trait locus studies) to infer expression for all 

individuals in a genome-wide association study and to identify associations between genes 

and traits/diseases.

Unique molecular identifiers (UMI)
Complex indices added to sequencing libraries before any PCR amplification steps, enabling 

the accurate bioinformatic identification of PCR duplicates. They are common in many 

single-cell RNA sequencing protocols
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Box 1

Experimental design trade-offs and considerations

As single-cell studies expand from hundreds or thousands of individuals to even larger 

cohorts, experimental design will have important implications on downstream analyses.

More individuals or more cells per individual?

Assuming budget constraints limit the total number of cells that can be assayed, 

researchers face a trade-off between maximizing the number of cells per individual or 

the total number of individuals. More unique, unrelated individuals will increase the 

power for genetic associations, especially with rarer variants. By contrast, more cells per 

individual may capture rarer cell types, although it increases the chance of doublets.

Multiplexing strategies

Large-scale single-cell experiments often multiplex samples in library preparation and 

sequencing and computationally assign cells to individuals a posteriori. This increases 

throughput and reduces cost and batch effects, while improving doublet detection. Yet 

choosing the optimal number of individuals per pool is not trivial. Combining more 

samples into one pool may mitigate batch effects, but can increase doublets and decrease 

sequencing coverage per individual.

Single cell versus single nucleus

Single-cell transcriptomic assays measure RNA either from whole cells (single-cell RNA 

sequencing) or from isolated nuclei (single-nucleus RNA sequencing). The latter is 

preferred for frozen or hard-to-dissociate tissues, where nuclei remain intact even under 

stress. The transcriptomic profiles are largely concordant, but there are inherent trade-

offs. Single-nucleus RNA sequencing detects intronic pre-mRNA but cannot measure 

transcripts outside the nucleus, for example, mitochondrial genes. Cells that are more 

sensitive to the stress of dissociation, such as myocytes, are under-represented in single-

cell RNA sequencing.

Scaling to large data sets

Scaling experiments to thousands of individuals requires logistical considerations. First, 

strategies to monitor the quality of cells and consistency of output (total number of 

cells, cell-type composition and doublet rate) across samples can minimize compounding 

effects of batch as well as human error. Analyses should consider scale to optimize 

memory and computations for increasingly large data sets by parallelizing, using graphics 

processing unit and storing data in sparse matrices
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Box 2

Modelling considerations

Traditional genetic association testing for quantitative traits (be it gene expression or 

height) uses the linear mixed model. It tests for (additive) effects of the SNP on the 

phenotype while accounting for covariates and population structure. The effect size 

coefficient (β) provides both the magnitude and the direction of the effect.

The model in the figure (part A) assumes the phenotype (y) to follow a Gaussian 

distribution, which is largely recapitulated when using bulk transcriptomics (see the 

figure, part Ba).

However, single-cell RNA sequencing data follow a distribution better described by a 

Poisson distribution (see the figure, part Bb). The histograms show the expression levels 

of the SRGAP2 gene in induced pluripotent stem cells from the same ~100 individuals78, 

considering bulk counts across individuals (see the figure, part Ba) and single-cell counts 

across cells (see the figure, part Bb).
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Box 3

Cell types and states

Single-cell genomics has introduced a paradigm shift in our understanding and 

definitions of cellular identity, type and state. In traditional bulk assays, discrete 

populations of cells have been defined and sorted a priori on the basis of extracellular 

markers. These correspond to cell types, which may be defined as groups of cells from 

distinct, irreversible developmental lineages.

With single-cell transcriptomics, we can define cell populations after assaying the cells 

on the basis of their expression of key marker genes (see the figure). These populations 

are more granular than what could have been sorted on the basis of extracellular markers 

and reveal cell states: functionally specialized, often plastic, subpopulations of cells. 

These states can be discrete (for example, T helper cells) or continuous (for example, 

developmental states).

Single-cell resolution allows us to then define the most disease-relevant populations of 

cells (which might be a whole cell type or might be a transient state).
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Fig. 1∣. Overview of single-cell expression quantitative trait locus studies.
Single-cell studies published in the past 5 years. On the x axis is the date of publication, and 

on the y-axis is the number of unique individuals considered. The size of the dots represents 

the average number of cells per individual included in each study (when this number was 

not reported in this study, we estimated it as the total number of cells divided by the total 

number of individuals).
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Fig. 2∣. Human genetics and single-cell genomics, a 20-year timeline.
Fundamental genomic resources (red), genetic studies (blue), sequencing technologies 

(yellow) and statistical methods and software (green) have contributed to the current state 

of single-cell genomics and human genetics, including expression quantitative trait locus 

(eQTL) mapping studies. References 42-44,49,52 and 170-176 are for landmark studies 

and initiatives, respectively; refs. 22,24,27,57,58,124 and 177-183 are for technological 

and statistical advances, respectively; and refs. 5,19,51,61,63,155,184-189 are for eQTL 

mapping. GWAS, genome-wide association study; HCA, Human Cell Atlas; PRS, polygenic 

risk score; RNA-seq, RNA sequencing; snRNA-seq, single-nucleus RNA sequencing; 

TWAS, transcriptome-wide association study.
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Fig. 3∣. Types of single-cell expression quantitative trait locus.
Single-cell-resolved expression matched with genotype information allows one to consider 

different types of expression quantitative trait locus (eQTL) mapping strategies. When 

mapping cell-type-specific eQTLs, the single-cell resolution is exclusively utilized to 

more precisely characterize transcriptionally similar cells. Variance eQTLs test for genetic 

variants associated with cell-to-cell variability of gene expression (versus average expression 

level). Finally, to map dynamic eQTLs, single cells are ordered along a continuous 

trajectory, and the test consists in identifying eQTLs, the strength of which is modulated 

by such a trajectory.
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Fig. 4∣. Downstream effect of context-dependent single-cell expression quantitative trait locus.
Identification of the specific contexts in which a disease-associated genetic variant regulates 

gene expression may ultimately lead to new therapeutic strategies. eQTL, expression 

quantitative trait locus.
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