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Abstract
The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To 
understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up 
emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical 
transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions 
across broad-based energy and economic sectors and the impacts persisted to 2021. Compared with 2019 business-as-usual emission 
scenario, COVID-19 perturbations resulted in annual decreases of 10–15% in emissions of ozone (O3) and fine particle (PM2.5) gas- 
phase precursors, which are about two to four times larger than long-term annual trends during 2010–2019. While significant COVID- 
induced reductions in transportation and industrial activities, particularly in April–June 2020, resulted in overall national decreases in 
air pollutants, meteorological variability across the nation led to local increases or decreases of air pollutants, and mixed air quality 
changes across the United States between 2019 and 2020. Over a full year (April 2020 to March 2021), COVID-induced emission 
reductions led to 3–4% decreases in national population-weighted annual fourth maximum of daily maximum 8-h average O3 and 
annual PM2.5. Assuming these emission reductions could be maintained in the future, the result would be a 4–5% decrease in 
premature mortality attributable to ambient air pollution, suggesting that continued efforts to mitigate gaseous pollutants from 
anthropogenic sources can further protect human health from air pollution in the future.
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Significance Statement

Near-real-time US emission inventories developed in this work are able to track emission changes from key anthropogenic source sec
tors during the COVID-19 pandemic lockdown and rebounding periods. COVID-induced emission reductions persist to summer 2021 
especially for nitrogen oxides, due to the continuous pandemic impacts on traffic and economic activities despite the stay-at-home 
orders being lifted. Reducing ozone and aerosol precursor emissions annually by 10–15% led to 3–4% decreases in annual fourth max
imum of daily maximum 8-h average ozone and annual fine particles and therefore a 4–5% decrease in premature mortality attrib
utable to ambient air pollution. Long-term sustained efforts to control ozone and aerosol precursor emissions across broad-based 
energy and economic sectors can lessen health impacts in the future.

Introduction
The outbreak of COVID-19 provides an unprecedented opportun
ity to assess changes in anthropogenic emissions and urban air 
quality. A range of lockdown measures were implemented in 

different countries and regions to suppress the local transmission 
of COVID-19, resulting in significant reductions in traffic and eco
nomic activities (1, 2). The subsequent lockdown impacts on 
air quality have been assessed over many countries and regions 
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(3–12), showing large heterogeneity due to different levels of strin
gency in measures (i.e. stringency indexes) aimed at reducing 
spread of the virus (5, 13). Most such studies focus on the observa
tional analysis of air pollutants and fewer on air quality modeling 
(5), mainly due to the lack of up-to-date bottom-up emission in
ventories under the lockdown scenario, which often take multiple 
years to create.

Observation-based top-down estimates of COVID-induced 
emission changes largely rely on data availability. As a result, 
most top-down estimates have focused on nitrogen dioxide 
(NO2) (2, 6, 10, 14–16), with fewer studies on volatile organic com
pounds (VOCs) (17, 18). Both are important precursors for ozone 
(O3) and fine particles (PM2.5). There have also been efforts to de
velop bottom-up emission inventories accounting for the pan
demic perturbations, but mostly at the country level (19–21). A 
systematic quantification of emission changes for major species 
with a high level of detail (e.g. spatial and temporal variability, 
sectoral information) is critical for better understanding the 
drivers of air quality changes especially at a regional scale. In add
ition, uncertainties remain in quantifying air quality impacts in
duced by these emission changes (5) that can be only partly 
addressed by applying meteorological corrections to observations 
(3, 22–24). Chemical transport models are needed to attribute air 
quality changes to various emissions and meteorological drivers 
at a larger scale. However, a lack of comprehensive emission in
puts that account for rapid changes in human activity due to 
the COVID-19 pandemic with high confidence complicates the in
terpretation of modeling results.

Air pollution exposure has numerous adverse health impacts 
and has been linked to premature mortality (25–28). Several stud
ies have been conducted to assess the health impacts of short- 
term exposure to air pollutants during the COVID-19 lockdown 
periods (12, 29–32). However, the chronic effects of air pollution 
on human health are significantly larger than for acute exposure. 
The potential long-term health benefits of similar future, sustain
able emissions reductions have yet to be assessed.

In this study, we have developed comprehensive bottom-up 
emission inventories over the United States capable of 
near-real-time (NRT) emission adjustments (1- to 3-month lag). 
We simulated the COVID-19 perturbations on US emissions in a 
chemical transport model to link emissions to air quality impacts. 
We evaluated the COVID-19 lockdown impact on key emission 
sectors and modeled air quality with various observations. In add
ition, we disentangled air quality changes between emission 
changes and meteorological variability. Lastly, we assessed the 
human health impacts due to changes in anthropogenic emis
sions, to better understand implications for future mitigation of 
air pollution over the contiguous United States.

Results and discussion
NRT emission inventories
Figure 1 shows monthly emissions for major air pollutant species 
relative to 2019 broken down by emission sector. In 2020, the 
emission decreases of carbon monoxide (CO) and nitrogen oxides 
(NOx) were dominated by decreases in mobile sources. 
Specifically, emissions from nonroad engines dominated total 
CO emission changes, whereas emissions from on-road gasoline 
vehicles and diesel vehicles dominated total NOx emission 
changes. The largest decrease in mobile sources occurred in 
April and May 2020, due to the largest drop in gasoline consump
tion (by about 40%) in April and a significant drop in diesel 

consumption during April–June (SI Appendix, Fig. S1A). National 
VOC emission changes were driven by changes in the oil and gas 
(O&G) sector, where the largest drop in wholesale petroleum pro
duction occurred in May 2020 (SI Appendix, Fig. S1E). VOC emis
sions from the O&G sector are sensitive to O&G production as 
estimated in the fuel-based O&G inventory (33). Over urban 
source regions, VOC emission changes were dominated by 
changes from volatile chemical products (VCPs), with the largest 
reduction in April 2020. By the end of 2020, changes in VCP emis
sions were small. Point sources (including industrial and power 
plant sources) dominated the emission changes of sulfur dioxide 
(SO2), with the largest reductions in March–May 2020. The large 
month-to-month variability in SO2 emissions is mainly due to 
electricity generation units with stack monitors reported through 
the Continuous Emissions Monitoring Systems (CEMS; SI 
Appendix, Fig. S2A and B). The overall changes in ammonia 
(NH3) and primary PM2.5 emissions are small (within 2%), as we as
sume no changes in agricultural NH3 emissions and fugitive dust 
emissions due to the lack of specific activity data. However, we do 
not expect large COVID-19 impacts on agricultural activities as 
similar assumptions were investigated over Europe (34). Over 
the urban areas, the major reductions in NH3 emissions 
were due to the decreases in mobile sources, by about 10% during 
the lockdown period. While total annual emissions generally 
decrease from 2019 to 2020, sectoral contributions do not change 
much between 2019 and 2020 (SI Appendix, Fig. S3).

In summary, the COVID-19 perturbations resulted in decreases 
in US NOx and VOC emissions by 20 ± 3 and 19 ± 7% (US average ±  
1σ, state variability), respectively, averaged over April–June. The 
estimated COVID-induced NOx emission reductions during the 
lockdown months in this work are comparable with previous top- 
down or bottom-up estimates (16, 19, 22), but VOC emission re
ductions are slightly smaller compared with other bottom-up es
timates (19), which could be partly due to the different 
adjustments in VCP emissions (SI Appendix, Supplementary 
Text). With the stay-at-home orders being lifted, emissions 
started to rebound, however, were still lower through the rest of 
2020 to spring 2021 compared with the same months in 2019 
(Fig. 1). By summer 2021, emissions have mostly rebounded ex
cept for NOx emissions, which were still lower than emissions in 
summer 2019 by about 10%, mainly due to the continuous 
COVID impacts on economic and traffic activities. Compared 
with a business-as-usual emissions scenario, COVID-induced 
emission perturbations led to overall annual decreases in US 
CO, NOx, VOC, and SO2 emissions by 11 ± 2, 14 ± 2, 13 ± 5, and 
12 ± 10%, respectively, with small reductions in NH3 and primary 
PM2.5 emissions (<2%) during April 2020 to March 2021. The an
nual emission changes of CO, NOx, and VOC due to COVID-19 per
turbations are significantly larger than the annual emission 
trends during 2010–2019 (−3, −6, and −2% per year, respectively) 
reported by the US Environmental Protection Agency (EPA, 35), 
whereas SO2 and PM2.5 emission changes are comparable with 
the annual emission trends (−14 and −2% per year), and NH3 emis
sion changes are in the opposite direction to the long-term trend 
(+2% per year).

Atmospheric evaluation of emission sectors
We focus on tropospheric NO2 column changes to validate activity 
changes in transportation, industrial, and O&G sectors during 
April to June when anthropogenic emission changes were significant 
while fire impacts were minor for 2019, 2020, and 2021 during these 
months (36, SI Appendix, Supplementary Text, Figs. S4 and S5). 
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We consider 2019 emissions as the business-as-usual emission 
scenario (hereinafter referred to as BAU), 2020 emissions as 
COVID-induced emission reduction scenario (hereinafter referred 
to as COV), and 2021 emissions as rebounded emission scenario 
(hereinafter referred to as REB). We evaluate tropospheric NO2 col
umn changes with satellite observations, as they are helpful to de
tect and distinguish emission changes over urban, point sources, 
and O&G regions (15, 37). With our developed emission inventories, 

our model is able to capture satellite observed decreases in tropo
spheric NO2 column concentrations across the United States be
tween April–June 2019 and 2020 (Fig. 2A and B). Specifically, 
multiple satellite observations suggest 14–30% decreases in tropo
spheric NO2 column concentrations over urban source regions 
(Fig. 2C), where the transportation sector dominates NOx emissions. 
Decreases of 11–17% in NO2 columns were observed over industrial 
and power plant source regions (Fig. 2E), and decreases of 15–24% in 
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Fig. 1. Fractional emission changes of major species relative to 2019 by sectors: A) CO; B) NOx; C) VOCs; D) SO2; E) NH3; F) primary fine particulate matter 
(PM2.5). Shaded areas cover the period of April 2020 to March 2021 for the health impact assessment. The lower and upper limits of the error bars 
represent 20th and 80th percentile state-level changes with the circle representing US total changes. Note, decreases in O&G emissions arise from a few 
highly emitting states, and fall below the 20th percentile of state variability trends but drive the overall national VOC trend.
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NO2 columns were observed over O&G production regions from re
duced engine activity associated with drilling and extraction 
(Fig. 2G). These changes are well captured by the model with an over
all model-satellite discrepancy within 10% (Fig. 2D and F). 

The decreases in NO2 columns are largely resulted from 
COVID-19-induced emission reductions with overall meteorological 
impacts within 2% over these emission source regions (SI Appendix, 
Fig. S6), suggesting these sectors are well adjusted in our emission 

A

C E G
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B

Fig. 2. Evaluation of simulated tropospheric NO2 column concentrations with multiple satellite observations during between April–June 2019 and 2020. 
A) Observed NO2 changes based on the average of four satellite instruments (S5P TROPOMI, Aura OMI, S-NPP OMPS, and NOAA-20 OMPS) with air mass 
factors or shape factors in the satellite products replaced by the model profiles. B) Model simulated NO2 changes based on the average of resampled 
model data along each satellite track. C–H) NO2 columns over urban (C and D), industrial/power plant (E and F), and O&G (G and H) source regions from 
satellite data (C, E, and G) and model estimates (D, F, and H) for 2019BAU (x-axis) and 2020 COVID scenario (2020COV, y-axis). Slope is calculated based on 
the orthogonal distance regression with 95% CI.
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inventories. Similarly, with the rebounded emissions in 2021, our 
NRT inventory and model are also able to capture the observed in
creases in NO2 columns over urban, industrial/power plant, and 
O&G source regions (SI Appendix, Fig. S7), demonstrating our cap
ability to generate up-to-date emissions.

For VOCs, we compare our bottom-up estimates of VCP emis
sion changes with ambient measurements at a ground site in 
Boulder, CO, USA (SI Appendix, Supplementary Text). The meas
urements suggest that the emissions of D5-Siloxane, a personal 
care product tracer, decreased by 50% in April–May 2020 relative 
to February 2018, and started to increase in June 2020, which 
shows a similar trend as emissions of benzene, a mobile source 
tracer (SI Appendix, Fig. S8A). In contrast, the emissions of para
chlorobenzotrifluoride, a tracer for solvent-based coatings, 
doubled in April 2020 relative to February 2018 with no significant 
monthly variability afterwards (SI Appendix, Fig. S8B). The emis
sion trends of these individual VCP sectors are consistent with de
clining retail sales of Health and Personal Care stores and 
increasing sales of Building Material stores (SI Appendix, 
Fig. S8C), further demonstrating the consistency of our urban 
VOC emission inventory with atmospheric observations. Over 
O&G regions, it has been demonstrated that NOx emissions from 
engine activity for drilling and production processes are well cor
related with methane and nonmethane VOC emissions (33, 38). 
This suggests that the O&G inventory is able to capture changes 
in NOx emissions in O&G fields due to the pandemic, which pro
vides a first-order inference on how VOC emissions likely changed 
in this sector. In addition, we conduct satellite evaluations for 
tropospheric formaldehyde (HCHO) columns using similar ap
proaches as for tropospheric NO2 columns (SI Appendix, Fig. S9). 
Despite the spatial heterogeneity in the HCHO changes across 
various satellite products, mainly due to the uncertainties in the 
retrieved slant column densities, air mass factors, and reference 
sector corrections (39), our model with developed emission inven
tories is generally able to capture observed HCHO column reduc
tions between 2019 and 2020, with an overall model-satellite 
discrepancy within 10% over urban, point, and O&G source 
regions.

Air quality impacts evaluation and attribution
We also look at the overall model performance in simulating key 
air pollutant concentrations. Our model is generally able to repro
duce observed air quality over the United States for 2019, 2020, 
and 2021, respectively (SI Appendix, Table S4). Comparing April– 
June 2020 with 2019, surface observations from US EPA Air 
Quality System (AQS) show changes in MDA8 O3 varying from 
−12.3 to 17.3 ppb across the United States, with an averaged 
change of −1.0 ± 2.8 ppb based on all the AQS sites (Fig. 3A). 
While there is an overall reduction in MDA8 O3 across the 
United States from 2019 to 2020, there are noticeable increases 
in MDA8 O3 over the Great Lakes, Los Angeles, and Texas metro
politan areas. Our model is generally able to capture these 
changes (for about 75% of total AQS sites) despite small low biases 
over a few urban sites. With the emissions rebounding in 2021, 
MDA8 O3 also increases across most of the US metropolitan areas 
(except Texas and Gulf Coast) as observed by AQS sites with an 
average of 0.9 ± 2.7 ppb, which is also generally captured in our 
model (SI Appendix, Fig. S10A). The observed changes in 24-h 
PM2.5 vary from −5.4 to 4.5 μg m−3, with an averaged change of 
−0.2 ± 1.1 μg m−3 during April–June 2020 relative to 2019 
(Fig. 3B), and an averaged change of 0.8 ± 1.2 μg m−3 during the 
same period in 2021 relative to 2020, which are also generally 

captured by the model (SI Appendix, Fig. S10B). We acknowledge 
model uncertainties associated with the coarse spatial resolution 
of the contiguous model (12 km × 12 km) and process-level repre
sentations, which add uncertainty to simulating ozone chemistry 
and PM2.5 for individual localities. Missing fire emissions, despite 
being small during April–June, could also contribute to the model 
bias in estimating local O3 and PM2.5 concentrations. However, in
clusion of fire emissions may not necessarily improve model per
formance due to uncertainties associated with fire emissions and 
model representations of plume rise (SI Appendix, Fig. S5, and 
Table S5). Nevertheless, on the broader scale, the model demon
strates reasonably good skill in air quality simulations at regional 
and continental scales.

As shown in Fig. 3A and B, the overall impacts on air pollutants 
show large spatial heterogeneity despite relatively consistent 
emission changes across the United States (Fig. 3C and D). There 
are general decreases in MDA8 O3 and 24-h PM2.5 across groups 
of metropolitan areas (shown in black polyline in Fig. 3C and D) 
due to COVID-induced emission reductions during April–June 
2020 compared with the same period in 2019. MDA8 O3 decreases 
by a population-weighted average of 1.4 ppb (or by 3%), with no
ticeably larger decreases over Southern California (−1.7 ± 0.8 
ppb). Jiang et al. (40) showed emission reductions led to small in
creases in MDA8 O3 over urban areas in Southern California dur
ing the lockdown period, which is mainly due to the impacts of 
emission reductions on O3 production regime (e.g. reductions in 
NOx emissions over VOC-limited regime). Similar impacts on sur
face ozone over VOC-limited regimes are also found in China and 
Europe (30, 41, 42). Interestingly, Schroeder et al. (43) showed the 
COVID-induced NOx reductions were sufficient to shift the O3 pro
duction in the South Coast Air Basin into the NOx-limited regime. 
Our inventory suggests urban NOx and VOC emissions reduced by 
22 ± 5 and 16 ± 5% during the lockdown period (April–June). The 
satellite-retrieved ratio of HCHO to NO2 (FNR), used to indicate 
O3 formation chemistry, also shows increases over urban source 
regions during April–June 2020 compared with the same period 
in 2019 (SI Appendix, Fig. S11), which is well captured in our 
model. If we use the FNR derived by Jin et al. (44) as the indicator 
for the transition regime over Los Angeles (4.1 to 5.0), FNR esti
mated in this work also shows Los Angeles shifts toward transi
tion regime with some areas into the NOx-limited regime. The 
impact on O3 formation chemistry over Los Angeles is more con
sistent with Schroeder et al. (43). There is not significant spatial 
heterogeneity in the emission-induced PM2.5 decrease (by a 
population-weighted average of 0.4 μg m−3 or by 5%), dominated 
by reductions in secondary organic aerosol (SOA, 28%), sulfate 
(SO4, 25%), primary organic aerosols (POAs, 18%), and ammonium 
(NH4, 11%). The decreases in PM2.5 components are mainly due to 
the decreases in the precursor emissions (e.g. VOC, SO2, and NH3), 
primary aerosol emissions (e.g. POA), as well as impacts on oxida
tion chemistry or thermodynamics induced by emission reduc
tions for secondary aerosol formation (e.g. SOA and NH4). Over 
Southern California, emission reductions lead to decreases in 
population-weighted PM2.5 by 0.6 ± 0.2 μg m−3 in April 2020, com
parable to the estimates in Jiang et al. (40). However, the overall 
impacts over the United States are considerably smaller 
compared with those estimated in other countries and regions 
(3, 12). For example, Giani et al. (30) estimated the impacts of lock
down to lower PM2.5 by 14.5 μg m−3 over China and 2.2 μg m−3 over 
Europe, and Menut et al. (8) estimated a reduction in PM2.5 by 
5–10% over the Europe. The smaller impacts on PM2.5 over the 
United States are possibly in part due to less stringent lockdown 
measures implemented in the United States (13) and small 
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contributions of primary PM2.5 emissions from the transportation 
sector. Emission-induced changes in O3 and PM2.5 from 2020 to 
2021 generally move in the opposite direction (SI Appendix, 
Fig. S10C and D) compared with the changes from 2019 to 2020.

To assess annual emission impacts, we also extended the con
trolled simulations (driven by same meteorology) from April 2020 
to March 2021 under BAU and COV emission scenarios separately. 
With continuous emission reductions during April 2020 to March 
2021, urban VOC/NOx ratios tends to increase due to larger reduc
tion in urban NOx emissions (by an annual average of 16 ± 4%) 
than VOC emissions (by an annual average of 9 ± 3%), which could 
affect O3 production suggested by the indicator ratios (45, 46). 
Although such ratios indicating the transition regimes (e.g. 3.0– 
4.5) may vary across different megacities (44), there is a noticeable 
increase in FNR by 11–20% over United States major cities due to 
the significant emission reductions during the lockdown period (SI 
Appendix, Fig. S11), with an overall annual increase of 10% over 
urban source regions (SI Appendix, Fig. S12A). This suggests that 
under the COVID emission reducing scenario, O3 formation over 
VOC-limited urban areas tends to shift toward transition or 
NOx-limited regimes and O3 formation over NOx-limited urban 
areas becomes more sensitive to NOx emissions. Therefore, con
trolling NOx emissions would help lower annual O3 concentra
tions over most of the urban regions in the United States. 
Decreases in NOx emissions also suggest lower hydroxyl radicals 
(SI Appendix, Fig. S12B) through photolysis and secondary oxida
tion, resulting in lower atmospheric oxidation capacity. 
Interestingly, the fifth percentile of hourly O3 over urban areas 
slightly increases (SI Appendix, Fig. S12C), likely due to reduced 
nighttime O3 titration as also found in other studies (47). 
Meanwhile, the fourth highest MDA8 O3 (during April 2020 
to March 2021) decreases by a population-weighted average 
of −3.1 ± 1.1 ppb (or by 4%) compared with the business as usual 
emission scenario (SI Appendix, Fig. S12D), which is about three 

times higher than the average annual O3 trend (0.8 ppb per year) 
during 2010–2019 reported from the air quality monitoring net
work (48). Besides the reductions in primary PM2.5 and its precur
sor emissions, the decreased atmospheric oxidation capacity also 
leads to decreases in secondary aerosol formation. Therefore, 
controlling O3 precursor emissions (e.g. NOx and VOC) could also 
reduce secondary formation of PM2.5. The decreases in annual to
tal PM2.5 concentrations are dominated by the decrease in SOA 
(25%), POA (21%), SO4 (21%), and elemental carbon (EC, 12%; SI 
Appendix, Fig. S13A–D). The SOA formation represented in the 
model is based on a volatility basis-set mechanism, with different 
SOA yields depending on high or low NOx conditions (49). With 
comparable reductions in both NOx and VOC emissions (by an an
nual average of 14%), population-weighted anthropogenic SOA 
decreases by 0.04 μg m−3 (or by 3.3%) and biogenic SOA decreases 
by 0.03 μg m−3 (or by 1.5%) despite biogenic VOC emissions remain 
the same in BAU and COV case. Meanwhile, with a 12% decrease in 
annual SO2 emissions, population-weighted SO4 decreases by 
0.06 μg m−3 (or by 5%). Controlling SO4 precursor emissions is 
more efficient than SOA anthropogenic precursor emissions as 
the latter is also affected by nonlinear oxidation chemistry due 
to the emission reductions. In addition, the annual decrease of 
population-weighted nitrate (NO3) and NH4 are about 10 and 6%, 
respectively (SI Appendix, Fig. S13E and F), contributing to 10 
and 11% of total PM2.5 reductions. The decreases in NO3 and 
NH4 are mainly due to the reductions in the precursor emissions 
and impacts on thermodynamics induced by emission reductions. 
The PM2.5 composition does not change much between BAU and 
COV cases, with SOA (32%), POA (22%), primary unspeciated 
PM2.5 (22%) and SO4 (12%) as major PM2.5 components, and NH4 

(5%), EC (4%), and NO3 (3%) with smaller contributions to total 
PM2.5. Due to the overall emission reductions, population- 
weighted PM2.5 decreases during April 2020 to March 2021, by an 
annual average of −0.3 ± 0.1 μg m−3 (or by 3%), which is 

A

B

C

D

E

F

Fig. 3. April–June changes in MDA8 O3 (upper panels, A, C, and E) and 24-h averaged PM2.5 (lower panels, B, D, and F) from 2019 to 2020. A and B) Circles 
overlaid on model simulated air quality changes represent observed changes from AQS surface monitoring sites with size in proportion to the absolute 
changes; site-averaged changes ± SD from AQS observations and model estimates are shown above each figure. C–F) Air quality impacts due to emission 
changes only (C and D) and due to meteorological variability only (E and F); groups of metropolitan areas are shown in black polylines; 
population-weighted averaged changes ± SD from model grids are shown above each figure.
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comparable with the average annual PM2.5 trend during 
2010–2019 reported by the US EPA (50). This suggests additional 
efforts are needed to understand sources of PM2.5 and its 
components so as to better control emissions of primary PM2.5 

and its precursors (e.g. VOC, SO2, and NH3), including from 
agriculture.

Unlike the relatively consistent emissions impacts on air qual
ity across the United States, meteorological variability results in 
much larger spatial heterogeneity of air quality responses 
(Fig. 3E and F). Compared with April–June 2019, regional averaged 
MDA8 O3 and 24-h PM2.5 vary from −2.3 to +1.9 ppb and from −1.0 
to +0.6 μg m−3 across groups of metropolitan areas. Synoptic me
teorological conditions play important roles in affecting regional 
air pollutant concentrations (51, 52). For example, higher tem
perature increases biogenic emissions and secondary formation 
of air pollutants, whereas stagnation associated with slower mix
ing often results in poorer air quality. Compared with April–June 
2019, meteorological conditions in 2020 tend to increase MDA8 
O3 or PM2.5 over several metropolitan areas such as Southern 
California, Arizona, and the Colorado Front Range, where 
the meteorology induced negative air quality impacts 
(increases in concentrations) are mostly compensated by the an
thropogenic emission-induced positive impacts (decreases in con
centrations). On the contrary, meteorological impacts dominate 
over the emission impacts on O3 over the North Central Plains 
states and PM2.5 changes over the South Central Plains states. At 
the same time, meteorology also tends to decrease MDA8 O3 or 
PM2.5 over other metropolitan areas (e.g. Atlanta), amplifying 
the positive air quality impacts induced by emission reductions. 
As a result, there are mixed responses in air quality across the 
contiguous United States. The spatial heterogeneity in the air 
quality responses resulted from meteorological variability also 
stands for the comparison of 2020 to 2021 (SI Appendix, 
Fig. S10E and F).

The controlled model simulations driven by either same emis
sions or meteorology directly link specific driver (e.g. meteorology 
or emission) to air quality changes and provides explicit estimates 
on the air quality impacts at a broader scale, which largely differ 

from previous studies through applying meteorological correc
tions to observations. Therefore, emission impacts on air quality 
estimated in this work by controlling meteorological effects are 
relatively smaller (especially for PM2.5) compared with previous 
estimates with meteorological corrections (3, 53). This further 
highlights the importance to disentangle meteorological and 
emission impacts on air quality in a 3D chemical transport model 
to better understand the implications of emission changes at re
gional and continental scales.

Health impacts assessment
To understand the implications of long-term emission reductions 
on human health, we calculate O3 and PM2.5 attributable mortal
ity for the period of April 2020 to March 2021 under BAU and COV 
emission scenarios. Figure 4 shows the geographic distribution of 
the estimated O3 and PM2.5 attributable mortality for the BAU 
case, COV case, and the difference between the cases, if estimated 
emissions reductions could be sustainably achieved for the long 
term. We estimate 74,400 (95% CI: 38,000–145,000) O3 attributable 
deaths per year in the BAU case, and 70,400 (95% CI: 36,000– 
138,000) O3 attributable deaths in the COV case. There are larger 
totals for PM2.5 attributable deaths, 124,400 (95% CI: 84,000– 
163,000) in the BAU case and 119,600 (95% CI: 81,000–157,000) in 
the COV case than O3 attributable deaths, but a similar absolute 
difference in attributable mortality (4,829 deaths by PM2.5 and 
4,010 deaths by O3). The majority of the O3 attributable mortality 
is in the southwestern states (Fig. 4A and B), where annual mean 
MDA8 O3 concentrations are higher (SI Appendix, Fig. S14). O3 at
tributable deaths are overall lower in the COV case due to lower O3 

concentrations (SI Appendix, Fig. S14) with larger differences over 
Southern California and the eastern United States (Fig. 4C). The 
PM2.5 attributable mortality and mortality differences between 
the BAU and COV case occur primarily in the eastern United 
States where annual mean 24-h PM2.5 concentrations are general
ly higher (SI Appendix, Fig. S14). The spatial pattern of differences 
in PM2.5 attributable mortality between the two cases (Fig. 4F) 
looks similar to that for O3 (Fig. 4C).

A B C

D E F

Fig. 4. O3 and PM2.5 attributable deaths (per year per 105 people) based on BAU (A and D) and COVID scenario (COV, B and E) for April 2020 to March 2021. 
The total attributable deaths due to each air pollutant and scenario are shown above each figure. C and F) Difference in attributable deaths between BAU 
and COV scenarios. The difference in the total attributable deaths are shown above each figure.
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Compared with the business-as-usual emission scenario, the 
emissions of gas-phase precursors of O3 and PM2.5 (e.g. NOx, 
VOC, and SO2) decrease by about 10–15% in the COVID case during 
April 2020 to March 2021 (Fig. 1), leading to annual decreases of 
population-weighted MDA8 O3 and PM2.5 by 0.6 ppb (or by 2%) 
and 0.3 μg m−3 (or by 3%), respectively (SI Appendix, Fig. S14). 
The health impact assessment suggests if COVID-induced emis
sion reductions could be sustained through further control of 
ozone and aerosol precursor emissions, an estimated 4,010 deaths 
could be averted per year due to reduced O3 exposure (5% of esti
mated O3 attributable deaths) and 4,829 deaths could be averted 
per year due to reduced PM2.5 exposure (4% of estimated PM2.5 at
tributable deaths). Comparing 2019 meteorological conditions 
with 2020, there are only 1% difference in population-weighted 
MDA8 O3 and <1% difference in population-weighted PM2.5 con
centrations under the same emission scenario. The results sug
gest 6% of estimated O3 attributable deaths and 5% of estimated 
PM2.5 attributable deaths could be averted per year due to the 
COVID-induced emission reductions under 2019 meteorological 
conditions (SI Appendix, Fig. S15). This suggests there could be 
1% uncertainty in the mortality calculations due to the meteoro
logical variability when assessing emission health impacts. The 
COVID-induced annual emission reductions of NOx and VOC are 
about two to four times higher than the annual emissions trends 
in the preceding decade (2010–2019), which leads to a significant 
drop in the fourth highest MDA8 O3 (by −3.1 ± 1.1 ppb), while the 
PM2.5 change was in-line with long-term trends. In turn, the ozone 
health benefits (Fig. 4C) are of similar magnitude to PM2.5 (Fig. 4F). 
This suggests sustained reductions in ozone precursors have a 
meaningful impact on protecting human health, while also redu
cing secondary formation of PM2.5.

Conclusion
In this study, we have developed NRT emission inventories for the 
United States to better understand the key emission sectors af
fected by the COVID-19 pandemic. Surface and satellite evalu
ation of the Weather Research and Forecasting (WRF) model 
coupled with Chemistry (WRF-Chem) simulations demonstrate 
the reliability of our emission inventory and model capabilities 
in simulating air quality changes. While emission changes domin
ate the changes in the concentrations of primary pollutants such 
as NO2 at large scale, meteorological variability plays an import
ant role in the spatially heterogeneous impacts of secondary air 
pollutants such as O3 and PM2.5. COVID-induced emission pertur
bations result in modest decreases in annual O3 and PM2.5, leading 
to tangible benefits on human health. The significant changes in 
anthropogenic emissions due to the COVID-19 pandemic and 
modeling results of this study suggest that sustained efforts to 
control anthropogenic emission sources over long time periods 
can lower future concentrations of O3 and PM2.5.

Materials and methods
Bottom-up emission inventories
The bottom-up inventory used in this study is a hybrid of several 
bottom-up inventories, as well as regulatory emissions provided 
by US EPA through the National Emissions Inventory (NEI) 2017 
(54). The bottom-up inventories include emissions from mobile 
source engines (fuel-based inventory of vehicle emissions, 55), 
VCPs (56), and O&G (fuel-based O&G, 33). To address rapid 
changes in human activity due to the COVID-19 pandemic, we 
make monthly scaling adjustments to emission sources, where 

data are available. These scaling adjustments are based on 
changes observed in relevant US energy and economic datasets 
and are applied to generate a NRT emission inventory. Power 
plant emissions are updated using CEMS data where possible 
(https://campd.epa.gov/). Other point and area-wide emissions 
are taken from the NEI 2017 and scaled with monthly adjustments 
developed from relevant activity metrics tracking energy con
sumption and economic activity in the United States. Although 
we use the year 2019 as the baseline emission scenario in this ana
lysis, the 2019 emissions also vary based on the applied scalings 
from energy and economic datasets. By using these datasets, lock
down and prelockdown changes to economic activities have been 
taken into account when developing emission inventories 
(e.g. fuel combustion and industrial processes, SI Appendix, Figs. 
S1 and S2). The purpose of these NRT scaling adjustments is to 
generate up-to-date emissions with a minimal lag (1–3 months). 
The process of calculating scaling adjustments for these 
inventories is described in supplementary material (SI 
Appendix, Supplementary Text). Emissions outside of the United 
States for international shipping, Mexico, and Canada are 
from the Copernicus Atmospheric Monitoring Service Global 
Anthropogenic Emissions Version 4.2 (19) for the year 2019. We 
do not make monthly adjustments for the emissions outside the 
United States, as this work focuses on the understanding the im
pacts of emission changes within the contiguous United States.

WRF-Chem model configurations 
and simulations
WRF-Chem (57) version 4.2.2 is applied to simulate emission 
changes and air quality impacts over the contiguous United 
States. The WRF-Chem model is configured at a horizontal spatial 
resolution of 12 km × 12 km, with total 50 vertical layers, extend
ing from the surface to 50 hPa. Chemical boundary conditions are 
provided from the Realtime Air Quality Modeling System (http:// 
raqms-ops.ssec.wisc.edu/) developed by the University of 
Wisconsin. A few sets of model simulations are conducted under 
different meteorological and emission inputs to evaluate the 
emission changes and to disentangle air quality impacts to emis
sion changes and meteorological variability during April to June 
for 2019, 2020, and 2021. We consider 2019 emissions as BAU, 
2020 emissions as COV, and 2021 emissions as REB. Paired simula
tion with the same anthropogenic emissions but different me
teorological inputs (e.g. 2019BAU vs. 2020BAU, 2020COV vs. 
2021COV) is conducted to estimate meteorological impacts. 
Paired simulation with the same meteorological inputs, but differ
ent anthropogenic emissions (e.g. 2020BAU vs. 2020COV, 2021COV 
vs. 2021REB), is conducted to estimate anthropogenic emission 
impacts. In addition, paired simulation for April 2020 to March 
2021 with the same meteorological inputs but different anthropo
genic emissions (BAU vs. COV) are conducted to assess human 
health impacts related to anthropogenic emission reductions, 
and paired simulation with the same setup but for April 2019 to 
March 2020 are conducted to assess meteorological variability 
on mortality estimates. The detailed model configurations and 
simulations in this study are described in the supplementary ma
terial (SI Appendix, Supplementary Text, Tables S2 and S3).

Observations (surface + satellite) and model 
evaluation
We use a python-based diagnostic package MELODIES MONET 
(https://melodies-monet.readthedocs.io, 58) to conduct surface 
evaluation of MDA8 O3 and 24-h averaged PM2.5 against EPA 
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AQS network. We evaluate simulated NO2 and HCHO column con
centrations against multiple satellite observations provided by 
TROPOspheric Monitoring Instrument (TROPOMI) on board the 
Copernicus Sentinel-5 Precursor (S5P) satellite, Ozone 
Monitoring Instrument (OMI) on NASA's Aura satellite, Ozone 
Mapping and Profiler Suite (OMPS) on NASA/NOAA's Suomi 
National Polar-orbiting Partnership and NOAA-20 satellites for 
different source sectors. We start with level 2 satellite product 
and apply filtering criteria (e.g. quality flag, cloud fraction, solar 
zenith angle, and row anomalies) to each retrieval as recom
mended by the user's guides and previous work (37). The simu
lated NO2 and HCHO profiles are extracted along each valid 
satellite retrieval. We recalculate air mass factors in TROPOMI/ 
OMI datasets or shape factors in OMPS datasets with those calcu
lated from model profiles and apply averaging kernels from satel
lite data to the model profiles to have a fairer comparison between 
simulated and satellite-observed tropospheric columns (37, 59, 
60). We focus on the evaluation of urban, point (industrial and 
powerplant), and O&G sources as they are the main sectors im
pacted by COVID-19 perturbations. We follow the approach de
scribed in Li et al. (37) to determine the dominance of urban, 
point, or O&G sources for each grid cell, which is mainly based 
on a fractional mobile, point, or O&G source contribution being 
at least 60% of the total NOx emissions under the 
business-as-usual condition.

Health impacts analysis model
We apply a health impact assessment to quantify the impact of 
changes in annual mean MDA8 O3 and annual mean 24-h PM2.5 at
tributable to COVID-induced emission reductions. We use the 
health impact equation,

Deaths = P × BR × (1 − exp(−β × ΔX)), (1) 

following Anenberg et al. (61) where P is the population, BR is the 
baseline annual mortality rate, and ΔX is the difference between 
the ambient modeled pollutant concentration and the theoretical 
concentration at which no excess risk is assumed. For Eq. 1, β is de
fined as

β = ln(RR/ΔX), (2) 

where RR is the relative risk for all-cause mortality due to long- 
term exposure to ΔX. In this work, we use relative risks for all- 
cause mortality from Turner et al. (62) of 1.02 (95% CI: 1.01–1.04) 
and 1.06 (95% CI: 1.04–1.08) for a 10 ppb increase in O3 and 
10 µg m−3 in PM2.5, respectively. We use 2015–2019 mean county- 
level baseline mortality rates from the Centers for Disease Control 
(CDC)'s WONDER database (63) and population estimates for 2020 
from the NASA SEDAC Gridded Population of the World v11.4 (64). 
We assume no excess risk for mortality at concentrations below 
26.7 ppb for O3 and 2.8 µg m−3 for PM2.5, the minimum annual 
average exposures estimated in Turner et al. (62). All datasets 
are gridded to the same grid as the concentration estimates and 
we conduct the health impact assessment for each grid cell.
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