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Abstract

Both plasma biomarkers and brain network topology have shown great potential in

the early diagnosis of Alzheimer's disease (AD). However, the specific associations

between plasma AD biomarkers, structural network topology, and cognition across

the AD continuum have yet to be fully elucidated. This retrospective study evaluated

participants from the Sino Longitudinal Study of Cognitive Decline cohort between

September 2009 and October 2022 with available blood samples or 3.0-T MRI brain

scans. Plasma biomarker levels were measured using the Single Molecule Array plat-

form, including β-amyloid (Aβ), phosphorylated tau181 (p-tau181), glial fibrillary acidic

protein (GFAP), and neurofilament light chain (NfL). The topological structure of brain

white matter was assessed using network efficiency. Trend analyses were carried out

to evaluate the alterations of the plasma markers and network efficiency with AD

progression. Correlation and mediation analyses were conducted to further explore

the relationships among plasma markers, network efficiency, and cognitive perfor-

mance across the AD continuum. Among the plasma markers, GFAP emerged as the

most sensitive marker (linear trend: t = 11.164, p = 3.59 � 10�24; quadratic trend:

t = 7.708, p = 2.25 � 10�13; adjusted R2 = 0.475), followed by NfL (linear trend:

t = 6.542, p = 2.9 � 10�10; quadratic trend: t = 3.896, p = 1.22 � 10�4; adjusted
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R2 = 0.330), p-tau181 (linear trend: t = 8.452, p = 1.61 � 10�15; quadratic trend:

t = 6.316, p = 1.05 � 10�9; adjusted R2 = 0.346) and Aβ42/Aβ40 (linear trend:

t = �3.257, p = 1.27 � 10�3; quadratic trend: t = �1.662, p = 9.76 � 10�2;

adjusted R2 = 0.101). Local efficiency decreased in brain regions across the frontal

and temporal cortex and striatum. The principal component of local efficiency within

these regions was correlated with GFAP (Pearson's R = �0.61, p = 6.3 � 10�7), NfL

(R = �0.57, p = 6.4 � 10�6), and p-tau181 (R = �0.48, p = 2.0 � 10�4). Moreover,

network efficiency mediated the relationship between general cognition and GFAP

(ab = �0.224, 95% confidence interval [CI] = [�0.417 to �0.029], p = .0196 for

MMSE; ab = �0.198, 95% CI = [�0.42 to �0.003], p = .0438 for MOCA) or NfL

(ab = �0.224, 95% CI = [�0.417 to �0.029], p = .0196 for MMSE; ab = �0.198,

95% CI = [�0.42 to �0.003], p = .0438 for MOCA). Our findings suggest that net-

work efficiency mediates the association between plasma biomarkers, specifically

GFAP and NfL, and cognitive performance in the context of AD progression, thus

highlighting the potential utility of network-plasma approaches for early detection,

monitoring, and intervention strategies in the management of AD.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a progressive neurodegenerative disorder

characterized by cognitive decline, memory loss, and the inability to

perform daily activities (Ballard et al., 2011). As the most common

form of dementia, AD accounts for an estimated 60%–80% of demen-

tia cases worldwide, and the number of individuals with AD is

expected to nearly triple by 2050 (Anon, 2021; Hebert et al., 2013).

The current lack of a cure and the irreversible nature of AD highlight

the critical importance of early diagnosis, particularly at the preclinical

stage. While biomarker detection in cerebrospinal fluid (CSF) and posi-

tron emission tomography (PET) imaging has advanced preclinical

diagnosis (Jack et al., 2018), there remains a pressing need to explore

practical, noninvasive, and cost-effective methods for identifying

preclinical AD features.

A growing body of evidence implies that the pathophysiologic

process of AD begins 15–20 years before the onset of clinical symp-

toms, especially in biomarkers and neuroimaging (Jack et al., 2018;

Wang et al., 2020). With the rapid development of ultrasensitive

assays, it is now possible to measure trace levels of brain-specific pro-

teins in the blood (Andreasson et al., 2016). Plasma biomarkers are

playing an increasingly important role in this area. Recent studies have

shown that amyloid-β (Aβ) 42/40 and phosphorylated tau (p-tau) from

plasma appear to be the best candidate markers during both symp-

tomatic AD and preclinical AD (Nakamura et al., 2018; Ovod

et al., 2017). While blood levels of neurofilament light (NfL) and glial

fibrillary acidic protein (GFAP) are abnormal in a range of neurodegen-

erative disorders, there is a growing body of research that explores

the potential of these markers as biomarkers for AD (Benedet

et al., 2021; Mattsson et al., 2019). A recent investigation revealed

that plasma levels of GFAP experience a noteworthy elevation during

the preclinical stage of AD (Guo et al., 2023). Moreover, plasma GFAP

exhibits the most effective performance for monitoring longitudinal

disease progression (Chatterjee et al., 2022). Despite the potential of

plasma biomarkers as diagnostic tools in routine clinical practice, their

diagnostic efficacy alone may still fall short of being sufficient.

With the development of brain imaging and network modeling

techniques, human brain connectomics has provided valuable insights

into understanding dynamic neuronal network changes at the system

level in various brain disorders (Bassett & Sporns, 2017). As a discon-

nection syndrome, AD is characterized by both structural and func-

tional network changes throughout its continuum (Chen et al., 2023;

Yu et al., 2021). With diffusion MRI, our previous studies have dem-

onstrated decreased topological efficiency of the white matter

(WM) structural network in amnestic mild cognitive impairment (MCI)

and subjective cognitive decline (SCD) patients (Shu et al., 2018),

especially involving key regions of the default mode network and

striatum network (Rasero et al., 2017). Structural network efficiency

measures the brain's infrastructure supporting interneuronal commu-

nication (Bassett & Sporns, 2017). Recent investigations have unveiled

a significant correlation between network efficiency, AD pathology,

and relevant biomarkers (Yu et al., 2021). Specifically, a noticeable

decline in local efficiency with AD progression has been detected

(Prescott et al., 2014), with these changes closely associated with hall-

mark pathological features, including Aβ deposition and tau tangles

(Jonkman et al., 2020; Kocagoncu et al., 2020).
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The interplay between pathological molecules in plasma and cog-

nitive decline during the progression of AD constitutes a complex and

multifaceted topic. One possible mechanism by which GFAP influ-

ences cognitive function is through glial activation and neuroinflam-

mation (Bellaver et al., 2023). Simultaneously, plasma levels of NfL

may impact cognitive function in AD through various pathways,

including brain atrophy, neuronal damage, and glucose hypometabo-

lism (Mattsson et al., 2019). Notably, we emphasize the mediating role

of brain imaging-based biomarkers in the relationship between cogni-

tive function and plasma biomarkers in AD (Moscoso et al., 2021).

However, there is a paucity of comprehensive studies investigating

the relationship between plasma biomarkers, neuronal networks, and

cognition. Thus, the objectives of the present study are threefold:

(1) to explore the dynamic changes in plasma biomarkers related to

AD, specifically GFAP, across different stages of the AD continuum;

(2) to investigate the dynamic alterations in brain network efficiency

within AD-related regions; and (3) to assess the associations between

brain network efficiency, plasma markers, and cognitive performance

across the AD continuum.

2 | METHODS

2.1 | Participants

In this study, all participants were enrolled in the Sino Longitudinal

Study of Cognitive Decline (SILCODE) cohort. SILCODE is an ongoing

prospective multicentre AD cohort study in the Han population of

mainland China (Li et al., 2019). A total of 474 participants were

recruited, and all participants were divided into different data sets

depending on research needs: plasma data set (complete data on AD-

related plasma markers were available for each participant), imaging

data set (each participant had complete imaging data available for

brain network analysis), and combined data set (participants in the

first two data sets who matched plasma and imaging time differences

for no more than 80 days). A flow chart of participant selection is

available in Figure S1.

The diagnosis of normal controls (NCs) was based on the exclu-

sion of MCI and dementia (Albert et al., 2011; Bondi et al., 2014),

requiring a CDR score of 0, no overt affective disorder, and normal

MMSE scores for the education subdomain (greater than 17 for illiter-

ate individuals, 20 for those with primary school education, and 24 for

participants with middle school or higher education) and memory sub-

domain. Diagnostic criteria for SCD rely on defining and characterizing

SCD (Jessen et al., 2020). The diagnosis of MCI was made based on

neuropsychological criteria (Bondi et al., 2014). To qualify for AD

dementia, the entry criteria must meet the proposed criteria for prob-

able AD-induced dementia (Albert et al., 2011). Ultimately, the plasma

data set (n = 287) included 121 NC, 107 SCD, 41 MCI, and 18 AD.

The imaging data set (n = 395) included 129 NCs, 112 SCD patients,

17 MCI patients, and 7 AD patients. The combined data set (n = 55)

included 25 NCs, 17 SCD patients, 8 MCI patients, and 5 AD patients.

All participants or their legal guardians provided written informed

consent. All procedures were approved by the Medical Research

Ethics Committee and Institutional Review Board of Xuanwu Hospital.

The cohorts were registered with ClinicalTrials.gov (SILCODE:

NCT03370744). For each participant, clinical data were collected,

including age, gender, years of education, and apolipoprotein E

(APOE) genotype. Neuropsychological assessments were administered

to evaluate global cognitive function, including the Mini-Mental State

Examination (MMSE) and Montreal Cognitive Assessment-Basic

Version (MoCA-B) (Chen et al., 2016).

2.2 | Plasma biomarkers

Blood samples (2 mL venous blood) were taken between 7:00 and

8:00 in the morning after an overnight fast using EDTA tubes,

and blood samples were collected in the following manner. Superna-

tants were collected as plasma after being centrifuged several times

for 15 min at 4�C (speed: 2500 g/min). All plasma samples were

stored at �80�C and immediately thawed on ice before assay. Plasma

levels of β-amyloid (Aβ), phosphorylated tau181 (p-tau181), GFAP,

and NFL were measured using the Single Molecule Array (Simoa™)

platform (Quanterix Corporation, Billerica, MA, USA) following the

manufacturer's instructions. The Simoa assays were performed using

the following commercially available kits: β-amyloid (1–42) (Aβ42) and

β-amyloid (1–40) (Aβ40)—Simoa™ β-Amyloid 42 (1–42) and β-Amyloid

40 (1–40) Advantage Kits, phosphorylated tau at threonine

181 (ptau181) Simoa™ p-tau181 Advantage Kit, GFAP Simoa™ GFAP

Discovery Kit and Neurofilament light chain (NfL)—Simoa™ NF-light®

Advantage Kit. All assays were performed in duplicate, and the

average concentration values were reported. Sample concentrations

below the lower limit of quantification (LLOQ) were assigned a value

of half the LLOQ.

2.3 | Image acquisition and preprocessing

In the SILCODE cohort, MRI data were acquired using an integrated

simultaneous 3.0 T TOF PET/MR (Siemens PET/MR, GE Healthcare, Mil-

waukee, WI, USA) at the Xuanwu Hospital of Capital Medical University,

Beijing, China. Regarding SMRI, the parameters for T1-weighted

3D brain structural images were as follows: SPGR sequence,

FOV = 256 � 256 mm2, matrix = 256 � 256, slice thickness = 1 mm,

gap = 0, slice number = 192, repetition time (TR) = 6.9 ms, echo time

(TE) = 2.98 ms, inversion time (TI) = 450 ms, flip angle = 12�, and voxel

size = 1 � 1 � 1 mm3. The DTI data were obtained with a single-shot

spin–echo diffusion-weighted echo planar imaging sequence with the

following parameters: FOV = 224 � 224 mm2, data matrix = 112 �
112, slice thickness = 2 mm, gap = 0, slice number = 70, slice

order = interleaved, TR = 16,500 ms, TE = 95.6 ms, 30 gradient direc-

tions (b = 1000 s/mm2) and 5 b0 images, and voxel size = 2 �
2 � 2 mm3.
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The preprocessing of diffusion MRI data involved denoising, head

motion correction, and eddy current correction. Specifically, we first

denoised the raw diffusion data with the dwidenoise command from

MRtrix3 software (https://mrtrix.readthedocs.io/) (Tournier et al.,

2019), which produced a denoised diffusion-weighted data file. The

fslroi command was then used to extract a single volume from the

denoised data, which was used as the reference image for head

motion correction and brain extraction. The bet2 command was

applied to this reference image to obtain the brain mask. Finally, eddy

current correction was performed using the eddy_openmp command

with the denoised data, brain mask, and gradient information as

inputs.

2.4 | Brain structural network construction

To construct the individual structural network, we used the bet com-

mand to extract the brain and the fast command to segment it into

different tissue types on the T1-weighted image with FSL software

(https://fsl.fmrib.ox.ac.uk/) (Jenkinson et al., 2012). The WM segmen-

tation in T1 space was transformed into diffusion space and used as a

seed mask for further tractography. The Bedpostx command was then

performed on the preprocessed diffusion MRI data to generate distri-

butions on diffusion parameters at each voxel, with three fibers mod-

eled per voxel, burn-in period set to 3000, and deconvolution model

with sticks. Deterministic tractography was performed using a track

command from CAMINO software (http://camino.cs.ucl.ac.uk/) (Cook

et al., 2005) with the “bedpostx_dyad” input model and various

parameters, including nearest-neighbor interpolation, fourth-order

Runge–Kutta method as the tracking algorithm, and tracking step size

set to 2 mm. Compartments with a mean volume fraction below 0.1

were discarded, tracking was terminated if the curvature exceeded

45� degrees at each 5-mm interval, and fibers with a length below

20 mm or above 250 mm were removed. To define network nodes,

the BNA template was applied and transformed into individual diffu-

sion space to parcellate the brain into 246 regions (https://atlas.

brainnetome.org/) (Fan et al., 2016). Finally, tractography and brain

parcellation were combined to generate a streamline-number

weighted connectivity matrix with the conmat command, represent-

ing the individual WM structural network.

2.5 | Network efficiency computation

Based on the brain structural network, we calculated three network

efficiency measures with the BCT toolbox (https://www.nitrc.org/

projects/bct/) (Rubinov & Sporns, 2010), including global efficiency,

local efficiency, and generalized local efficiency. Each measure was

calculated at both the regional and network levels. Here are the

detailed descriptions of network efficiency measures:

Global efficiency reflects the integration of region i, which was

calculated as

Eglob i,Nð Þ¼ 1
n�1

X
jϵN,j≠ i

1
Li,j

,

where Li,j is the shortest path length between node i and node j within

network N.

Local efficiency captures region i's segregation and fault tolerance

capabilities, which was computed as the mean of global efficiency

across all nodes encompassed within i's neighborhood:

Eloc i,Nð Þ¼ 1
jNi j

X
j � Ni

Eglob j,Nið Þ,

where Ni is the subnetwork of node i comprising i's neighbors with

the connections among them (Figure 3b).

Generalized local efficiency enhances robustness against irrelevant

factors and establishes weight-scale invariance (Wang et al., 2017), as

calculated with

EZloc i,Nð Þ¼ 1

max Wð Þ13

P
j,hw

1=3
ij w1=3

ih dwjh Ni
0ð Þ

h i�1

P
j,hw

1=3
ij w1=3

ih

,

where wi,j is the weight (fiber-number) between region i and j, and

dwjh Ni
0ð Þ is the adapted shortest distance between region j and h, calcu-

lated as the shortest distance in network Ni
0 containing all neighbors

of i excluding node i while considering a replacement of the weight of

the edge ( j, h) to w0
jh ¼w1=3

jh .

3 | STATISTICAL ANALYSIS

The demographic variables were analyzed using ANOVA for continu-

ous variables, including age, years of education, MMSE scores, MOCA

scores, levels of plasma markers, and network efficiency. For discrete

variables such as sex, chi-squared tests were employed. These statisti-

cal analyses were performed across four diagnostic groups (NC, SCD,

MCI, and AD) separately on three data sets: plasma, imaging, and

combined data sets.

Trend ANCOVA (analyses of covariance) was then conducted to

assess plasma markers, regional and whole-brain network efficiency,

and cognitive performance, accounting for age, sex, years of educa-

tion, and APOE4 status as covariates. Post hoc comparisons were per-

formed on measures displaying significant linear or quadratic trends

using two-sample t tests, with Bonferroni corrections applied. Sepa-

rate analyses were conducted for plasma markers and network effi-

ciency within the plasma and imaging data sets.

Correlation analyses were carried out to assess the relationships

between plasma markers, network efficiency, and cognitive perfor-

mance across the AD continuum. Partial correlations were evaluated

between plasma markers and cognitive performances (MMSE and

MOCA score) in the plasma data set and between network efficiency,
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plasma markers, and cognitive performances in the combined data set.

Linear models were used to control for the effects of age, sex, years

of education, and APOE4 status before computing Pearson's R.

Additionally, the mediation of network efficiency in the relation-

ship between plasma markers and cognition was examined using the

mediation package. The significance of indirect effects and 95% confi-

dence intervals (CIs) were obtained using bootstrapping procedures

with 10,000 resamples. The effects of age, sex, years of education,

and APOE4 status were accounted for by including them as covariates

in the main effects and mediating effects paths. To enhance the reli-

ability of the findings, we conducted a comprehensive robustness

analysis, considering various bootstrap resample numbers ranging

from 500 to 20,000 (Figure S4).

All statistical analyses were performed using R (version 4.1.1). For

regional statistics, false discovery rate (FDR) corrections were applied in

trend analyses and regional correlations. We considered significance at a

nominal 5% level for corrected p values. Mediation effects were consid-

ered significant if the 95% CIs of the indirect effect did not include zero.

4 | RESULTS

4.1 | Cohort characteristics

Demographics of the plasma data set (n = 287), the imaging data set

(n = 395), and the combined data set (n = 55) are separately pre-

sented in Table 1, Table S1, and Table 2. Among individuals with MCI

and AD, we observed a higher likelihood of advanced age in the

plasma data set (p = .025) and the combined data set (p = .071).

Additionally, MCI and AD patients exhibited significantly decreased

cognitive performance (p < .0001) in the plasma data set. When con-

sidering plasma biomarkers, significant between-group differences

were found for plasma NfL (p < .001), GFAP (p < .0001), and

p-tau181 (p < .0001) in both the plasma and combined data sets.

However, the plasma Aβ42/Aβ40 ratio was significant only in the

plasma data set (p < .001), while no significant differences were

observed for Aβ42 and Aβ40 (p > .05). Furthermore, whole-brain gen-

eralized local efficiency demonstrated significant differences in both

the imaging data set and the combined data set (p < .01).

4.2 | Plasma markers related to AD progression

Across four diagnostic groups (NC, SCD, MCI, and AD), significant

varying trends with AD progression for all four plasma markers were

observed in the plasma data set. Specifically, GFAP emerged as the

most sensitive marker (linear trend: t = 11.164, p = 3.59 � 10�24;

quadratic trend: t = 7.708, p = 2.25 � 10�13; adjusted R2 = 0.475),

followed by NfL (linear trend: t = 6.542, p = 2.9 � 10�10; quadratic

trend: t = 3.896, p = 1.22 � 10�4; adjusted R2 = 0.330), p-tau181

(linear trend: t = 8.452, p = 1.61 � 10�15; quadratic trend: t = 6.316,

p = 1.05 � 10�9; adjusted R2 = 0.346), and Aβ42/Aβ40 (linear trend:

t = �3.257, p = 1.27 � 10�3; quadratic trend: t = �1.662, p =

9.76 � 10�2; adjusted R2 = 0.101) (Figure 1 and Table S2). We also

observed significant correlations between these plasma markers and

general cognitive performance in the plasma data set (Figure 2,

p < .00001 for GFAP, NfL, and p-tau181. See Figure S2 for the corre-

lation of all plasma markers and cognition).

TABLE 1 Sample characteristics in the blood data set.

NC (n = 121) SCD (n = 107) MCI (n = 41) AD (n = 18) Overall (n = 287) Statistics (p)

Sex (M/F) 42/79 33/74 19/22 7/11 101/186 3.243 (.518)

Age 69.0 ± 5.58 68.1 ± 7.28 69.8 ± 8.02 73.8 ± 6.81 69.1 ± 6.80 2.803 (.025)

Education 12.4 ± 3.17 13.2 ± 3.51 10.9 ± 4.05 12.4 ± 2.66 12.5 ± 3.48 3.418 (<.01)

APOEε4 carriers

(percentage)

18.2% 34.6% 41.5% 66.7% 30.7% 22.862 (<.001)

MMSE 28.8 ± 1.19 28.6 ± 1.52 26.5 ± 2.63 15.4 ± 6.55 27.5 ± 3.93 73.054 (<.0001)

MoCA-B 25.7 ± 2.89 25.6 ± 2.48 21.6 ± 3.21 9.89 ± 5.94 24.1 ± 4.98 64.563 (<.0001)

Plasma Aβ42 (pg/mL) 6.26 ± 1.45 6.14 ± 1.53 6.22 ± 1.52 5.17 ± 1.60 6.14 ± 1.51 2.111 (.078)

Plasma Aβ40 (pg/mL) 104 ± 21.1 99.5 ± 21.6 108 ± 17.8 109 ± 26.9 103 ± 21.4 1.755 (.137)

Plasma Aβ42/Aβ40 0.0624 ± 0.0167 0.0623 ± 0.0106 0.0575 ± 0.0109 0.0482 ± 0.0095 0.0607 ± 0.0139 5.092 (<.001)

Plasma NfL (pg/mL) 16.2 ± 7.80 15.3 ± 6.66 20.0 ± 13.0 31.5 ± 14.0 17.4 ± 9.64 13.073 (<.0001)

Plasma GFAP (pg/mL) 126 ± 56.5 116 ± 54.0 156 ± 82.3 303 ± 88.9 138 ± 76.4 29.455 (<.0001)

Plasma p-tau181 (pg/mL) 2.03 ± 1.07 2.09 ± 0.91 2.35 ± 1.16 4.67 ± 1.50 2.27 ± 1.23 21.764 (<.0001)

Note: Continuous data are presented as the mean ± SD. Analyses of variance were utilized for continuous variables, while chi-square tests were employed

for categorical variables across NC, SCD, MCI, and AD.

Abbreviations: Aβ, amyloid β; AD, Alzheimer's disease; APOE, apolipoprotein E; GFAP, glial fibrillary acidic protein; MCI, mild cognitive impairment; MMSE,

Mini-Mental State Examination; MoCA-B, Montreal Cognitive Assessment Basic; NC, normal control; NfL, neurofilament light chain; p-tau, phosphorylated

tau; SCD, subjective cognitive decline.
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4.3 | Decreased network local efficiency with AD
progression

Across the four diagnostic groups, we found a significant

decreasing trend in the generalized local efficiency of the

brain structural network in the imaging data set (linear trend:

t = �2.25, p = .025; quadratic trend: t = �2.58, p = .011). Further

analysis at the regional level revealed that 16 brain regions

exhibited significant linear decreases (p < .05, corrected), mainly

located in the bilateral frontal, temporal, parietal cortex, and

subcortical regions (Figure 3a). Global efficiency and local effi-

ciency did not show significant trends at either the whole-brain

(Table S3) or regional level (Table S4).

We defined the 16 brain regions with a significant linear

trend (p < .05, corrected) as AD progression-related regions (ADPRs).

Then, we extracted the first principal component of generalized local

efficiency across ADPRs with the principal function from the psych

package (Figure 3c). The number of components was set to 1, as

TABLE 2 Sample characteristics in the combined data set with network efficiency.

NC (n = 25) SCD (n = 17) MCI (n = 8) AD (n = 5) Overall (n = 55) Statistics (p)

Sex (M/F) 8/17 5/12 3/5 1/4 17/38 0.473 (.976)

Age 65.7 ± 4.98 61.4 ± 8.03 69.5 ± 9.55 69.2 ± 8.91 65.2 ± 7.53 2.228 (.071)

Education 12.6 ± 3.21 13.5 ± 3.94 13.1 ± 3.52 13.0 ± 4.24 13.0 ± 3.50 0.162 (.957)

APOEε4 carriers

(percentage)

28.0% 35.3% 75.0% 40.0% 38.2% 5.76 (.218)

MMSE 28.8 ± 1.48 29.0 ± 1.17 24.8 ± 3.11 12.0 ± 7.91 26.7 ± 5.61 16.406 (<.0001)

MoCA-B 24.9 ± 3.88 26.5 ± 2.45 19.4 ± 2.83 8.80 ± 5.76 23.1 ± 6.17 13.688 (<.0001)

Plasma Aβ42 (pg/mL) 6.09 ± 1.21 5.71 ± 1.85 5.98 ± 1.27 4.84 ± 1.48 5.84 ± 1.47 0.808 (.523)

Plasma Aβ40 (pg/mL) 100 ± 20.2 93.5 ± 28.3 111 ± 15.5 96.9 ± 37.3 99.4 ± 24.2 0.754 (.558)

Plasma Aβ42/Aβ40 0.0631 ± 0.0155 0.0625 ± 0.0115 0.0540 ± 0.0102 0.0517 ± 0.00658 0.0605 ± 0.0135 1.358 (.253)

Plasma NfL (pg/mL) 15.1 ± 6.05 13.1 ± 4.82 18.8 ± 8.88 30.8 ± 7.68 16.4 ± 7.89 6.429 (<.001)

Plasma GFAP (pg/mL) 114 ± 47.6 113 ± 49.9 201 ± 105 359 ± 69.9 149 ± 94.7 11.43 (<.0001)

Plasma p-tau181 (pg/mL) 1.53 ± 0.526 1.88 ± 0.729 3.07 ± 1.32 4.66 ± 2.28 2.14 ± 1.34 8.887 (<.0001)

Global efficiency 6.55 ± 5.71 5.18 ± 2.94 5.05 ± 3.49 5.87 ± 6.30 5.85 ± 4.69 0.278 (.891)

Local efficiency 13.2 ± 13.4 10.5 ± 6.23 10.5 ± 7.73 12.3 ± 11.1 11.9 ± 10.5 0.21 (.932)

Generalized local

efficiency

0.242 ± 0.0175 0.249 ± 0.0112 0.245 ± 0.0211 0.213 ± 0.0167 0.242 ± 0.0186 4.182 (<.01)

Note: Continuous data are presented as the mean ± SD. Analyses of variance were utilized for continuous variables, while chi-square tests were employed

for categorical variables across NC, SCD, MCI, and AD.

Abbreviations: Aβ, amyloid β; AD, Alzheimer's disease; APOE, apolipoprotein E; GFAP, glial fibrillary acidic protein; MCI, mild cognitive impairment; MMSE,

Mini-Mental State Examination; MoCA-B, Montreal Cognitive Assessment Basic; NC, normal control; NfL, neurofilament light chain; p-tau, phosphorylated

tau; SCD, subjective cognitive decline.

F IGURE 1 Distribution and significance of linear trends in plasma markers of Aβ42/Aβ40 (a), GFAP (b), NfL (c), and p-tau181 (d) among
normal controls (NCs), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer's disease (AD) groups. Aβ, β-amyloid;
GFAP, glial fibrillary acidic protein; NfL, neurofilament light chain; p-tau181, phosphorylated tau181.
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suggested by a prior parallel analysis with 10,000 iterations. As higher

local efficiency relates to greater robustness to pathological changes

(Figure 3b), the small number of components suggested a highly

covarying pattern among these regions, which may exhibit similar

pathological changes across the AD continuum.

4.4 | Network disruption is related to cognitive
decline and plasma markers

We further examined the correlation between network efficiency with

plasma markers and cognitive performance in the combined data set.

F IGURE 2 Correlations between plasma markers and general cognition. Correlations were controlled for age, sex, years of education, and
APOE4 status (upper panel: MMSE; lower panel: MOCA). Aβ, β-amyloid; AD, Alzheimer's disease; GFAP, glial fibrillary acidic protein; MCI, mild
cognitive impairment; MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment; NC, normal control; NfL, neurofilament
light chain; p-tau181, phosphorylated tau181; SCD, subjective cognitive decline.

F IGURE 3 Local efficiency disruptions and principal component analysis. (a) Brain regions exhibited a significant linear decreasing trend of
generalized local efficiency across the AD continuum (p < .05, FDR corrected). These regions were mainly located in the bilateral frontal, temporal,
parietal cortex, and subcortical regions. (b) Higher local efficiency is associated with greater robustness to pathological changes. (c) Parallel analysis with
10,000 iterations suggested that the number of principal components was one. AD, Alzheimer's disease; FDR, false discovery rate.
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The component score of generalized local efficiency among ADPRs

demonstrated significant correlations with cognitive performance

(Pearson's R = 0.66, p = 5.7 � 10�8 for MMSE; R = 0.56,

p = 9.5 � 10�6 for MOCA) and plasma markers sensitive to AD pro-

gression, including GFAP (Pearson's R = �0.61, p = 6.3 � 10�7), NfL

(R = �0.57, p = 6.4 � 10�6), and p-tau181 (R = �0.48, p = 2.0 � 10�4).

However, no significant correlation was observed with Aβ42/Aβ40

(R = �0.068, p = .62). Notably, the component score of ADPRs exhibited

a stronger correlation with pathological and clinical measures (Figure 4a)

compared to the whole-brain averaged local efficiency (Figure 4b).

The discrepancy may suggest the potential of ADPRs in predicting

AD-related changes in plasma markers and cognitive decline. See Figure S3

for all the correlations between network efficiency measures and plasma

markers as well as cognitive performances.

4.5 | Mediation analysis

To investigate the mediating role of network efficiency in the

relationship between plasma markers and cognitive performance,

F IGURE 4 Relationship between local efficiency and plasma markers with cognition. The correlations of (a) the component of generalized
local efficiency among AD-progression-related regions (ADPRs) were stronger than the correlations with (b) whole-brain averaged efficiency.
These correlations were controlled for age, sex, years of education, and APOE4 status. Aβ, β-amyloid; AD, Alzheimer's disease; GFAP, glial

fibrillary acidic protein; MMSE, Mini-Mental State Examination; MOCA, Montreal Cognitive Assessment; MCI, mild cognitive impairment; NC,
normal control; NfL, neurofilament light chain; p-tau181, phosphorylated tau181; SCD, subjective cognitive decline.

F IGURE 5 Local efficiency mediates the relationship between plasma markers and cognition. GFAP-MMSE (a), GFAP-MOCA (b), NfL-MMSE
(c), and NfL-MOCA (d). This mediation effect was found in the AD-Progression-related Regions (ADPRs), determined through 10,000
bootstrapping. The 95% confidence intervals of the indirect mediation effects are presented. GFAP, glial fibrillary acidic protein; MMSE, Mini-
Mental State Examination; MOCA, Montreal Cognitive Assessment; NfL, Neurofilament light chain.
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we conducted mediation analyses using both the ADPR component

and whole-brain average local efficiency. We found a significant

average causal mediation effect, determined through 10,000

bootstrapping, in the relationship between GFAP (ab = �0.224, 95%

CI = [�0.417 to �0.029], p = .0196 for MMSE; ab = �0.198, 95%

CI = [�0.42 to �0.003], p = .0438 for MOCA) and NfL (ab = �0.346,

95% CI = [�0.710 to �0.036], p = .0188 for MMSE; ab = �0.300,

95% CI = [�0.634 to �0.017], p = .0266 for MOCA) with cognitive

performance (Figure 5). The direct effect of NfL on cognitive perfor-

mance (β = �.283, p = .021 for MMSE; β = �.195, p = .107 for

MOCA) was weaker than the indirect effects mediated by the ADPR

score. Notably, we did not observe significant mediation effects

through whole-brain averaged local efficiency on the relationship

between any plasma marker and cognition. The significant indirect

effects of the ADPR component on the relationship between plasma

markers and MMSE scores were robustly observed under a range of

bootstrap resample numbers ranging from 500 to 20,000 (Figure S4).

5 | DISCUSSION

Our investigation identified plasma markers and network efficiency

highly sensitive to AD progression and cognitive decline. Plasma

GFAP emerged as the most sensitive AD progression indicator, as it

was strongly correlated with cognitive status. Generalized local effi-

ciency demonstrated a significant downward trend in multiple regions

as AD advanced, whose component was inversely correlated with

plasma GFAP, NfL, and ptau181 but positively correlated with cogni-

tive level (MMSE and MoCA). Integration of plasma biomarkers and

magnetic resonance imaging may offer a minimally invasive, cost-

effective approach for AD diagnosis, supported by their impact on

cognition through network efficiency mediation.

Four plasma biomarkers showed significant trends in AD progres-

sion, including Aβ42/Aβ40, NfL, pTau181, and GFAP. Notably, GFAP

exhibited the highest sensitivity, displaying significant variations at

the early stage and increasing levels as the disease advanced

(Abdelhak et al., 2022; Kim et al., 2023). The literature consistently

supports the diagnostic utility of plasma biomarkers in AD, individually

or in combination with other markers (Baiardi et al., 2022; Chatterjee

et al., 2023; Cullen et al., 2021; Janelidze et al., 2020; Kim

et al., 2023). Elevated plasma GFAP levels were observed in cogni-

tively intact individuals with Aβ positivity, particularly distinguishing

Aβ+ from Aβ� individuals (Chatterjee et al., 2022). GFAP emerged as

the earliest and most significantly altered biomarker from preclinical

to symptomatic AD, predicting progression and cognitive decline (Guo

et al., 2023; Shen et al., 2023). While GFAP levels can be influenced

by other neuroinflammatory factors (Abdelhak et al., 2022), integrat-

ing multiple plasma biomarkers with structural efficiency can enhance

the precision of staging patients along the AD continuum. Associa-

tions between plasma biomarkers and cognitive changes were evi-

dent, with GFAP exhibiting notable sensitivity. Previous studies have

also demonstrated a strong correlation between plasma GFAP levels

and cognition in AD patients (Chatterjee et al., 2021; Shir et al., 2022),

further validating its diagnostic value in assessing AD trajectory and

predicting progression.

We observed a significant declining trend in whole-brain general-

ized local efficiency from the cognitively normal stage to the SCD,

MCI, and AD stages. Recent studies have shown a discernible decline

in local efficiency as AD advances and a noteworthy correlation

between network efficiency and hallmark pathological features of AD,

such as Aβ deposition and tau tangles (Jonkman et al., 2020;

Kocagoncu et al., 2020; Prescott et al., 2014). In conjunction with the

literature, our findings underscore the potential of local efficiency as a

noninvasive biomarker to detect AD-related brain pathological

changes.

We found regional disruptions in both hub regions (insular and

superior parietal lobule) and peripheral regions (inferior parietal lobule,

lateral temporal lobe, striatum, orbital gyrus, and middle frontal gyrus).

The literature on topological disruptions along the AD continuum

(Daianu et al., 2015; Lo et al., 2010; Rasero et al., 2017; Yan

et al., 2018) supports the outcomes of our investigation, highlighting

the potential of network efficiency as a cost-effective, effective, and

noninvasive biomarker for AD imaging. Moreover, we note that the

distribution of ADPRs overlaps with the pathological progression fre-

quently observed in the frontal, cingulate, precuneus, striatum, parie-

tal, and lateral temporal cortices (Chen et al., 2023; Villemagne

et al., 2018). The cerebral regions identified in our study closely align

with confirmed sites of AD pathology deposition, strongly indicating

that pathological deposition may contribute to deviations in local effi-

ciency, ultimately resulting in cognitive decline. Overall, we propose

that local efficiency may capture a broad spectrum of brain damage

across different AD stages.

The mechanisms underlying the impact of pathological molecules

on cognitive decline along the AD continuum are complex. Building

upon the possible mediating effect of neuroimaging biomarkers on

the link between cognitive function and plasma biomarkers, several

plasma biomarkers, such as pTau181 and NfL, have been found to

potentially impact brain network efficiency by altering WM micro-

structure (Nabizadeh, Balabandian, et al., 2022; Nabizadeh,

Pourhamzeh, et al., 2022). In our study, we delved deeper into the

intricate connections between these biomarkers, particularly GFAP

and NfL. The relationship between NFL and specific network effi-

ciency metrics may not be intuitive. Structural network efficiency pre-

dicts resistance to cognitive decline in the elderly at risk for AD

(Fischer et al., 2021). Education impacts functional network efficiency

in Alzheimer's patients (Kim et al., 2021). Our findings demonstrate

that network efficiency mediates the NfL-cognition association. Deep

learning-based cognitive function quantification validates graph

theory-based brain network features. Increased NfL levels indicate

neurodegeneration, but cognitive decline requires specific network

efficiency impairment (He et al., 2021). These findings enhance our

understanding of Alzheimer's cognitive decline mechanism. Impor-

tantly, we found that the principal component of local efficiency

among AD pathological regions exhibited robust correlations with

plasma biomarkers and cognitive function, surpassing the overall brain

local efficiency. Notably, these mediation effects were only significant
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within the principal components among ADPRs, rather than the aver-

age efficiency of the entire brain. This observation aligns with previ-

ous studies revealing significant reductions in local efficiency within

the AD population (Sami et al., 2018). Moreover, individuals carrying

the apolipoprotein E ε4 allele displayed even greater reductions in

local efficiency, underscoring its role as a reliable and distinctive indi-

cator across the AD continuum (Korthauer et al., 2018). Overall, our

study contributes novel insights into the complex mechanisms driving

pathological cognitive decline in the AD process, elucidating the

pivotal role of network efficiency.

Several limitations should be considered in interpreting the find-

ings of this study. First, it is important to note that this preliminary

investigation was conducted at a single center with a relatively mod-

est sample size. Future studies should involve larger sample sizes from

multiple centers to enhance the robustness and generalizability of our

results. Second, it is worth mentioning that not all participants in the

SILCODE cohort had complete blood and imaging data, leading to

the division of the cohort into separate data sets for analysis. Collect-

ing comprehensive clinical data during recruitment would facilitate

more thorough follow-up investigations. Third, it is noteworthy that

amyloid-PET data were unavailable for all individuals with AD and

MCI included in our study. Consequently, the diagnostic process

relied primarily on clinical data and imaging markers (Dartora

et al., 2021; Sheng et al., 2020). Future research should incorporate

ample gold-standard evidence, including amyloid-PET imaging, to

strengthen diagnostic validity. Finally, the sample size of the AD group

was relatively small due to the focus on the ultra-early stage of AD in

the SILCODE cohort, which aimed to track the potential conversion

of NC and SCD to later stages of AD. To mitigate the impact of the

varying sample sizes, we adopted a comprehensive approach by

employing disease continuum models, enabling more inclusive

analyses that encompass the entire participant cohort. Taking these

limitations into consideration in future studies will enhance the valid-

ity and clinical applicability of our findings in the field of neurology.

6 | CONCLUSION

In conclusion, our study highlights the significance of plasma GFAP

levels as a valuable indicator for the early detection and prognosis of

AD. We also emphasize the utility of generalized local efficiency in rel-

evant brain regions as a sensitive marker for tracking disease progres-

sion. Furthermore, our findings demonstrate the significant mediation

of network efficiency among AD-related regions in the relationship

between plasma markers and general cognition. These results under-

score the potential of integrating brain network connectivity effi-

ciency and plasma biomarkers as a cost-effective strategy for

screening and diagnosing AD. Combining these approaches holds

promise in enhancing the accuracy and efficiency of AD diagnosis and

prognosis, ultimately benefiting patients and advancing our under-

standing of the disease. Further research in larger cohorts is

warranted to validate and expand upon these findings.
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