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Abstract 

Background  Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts 
and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients expe-
riencing chronic critical illness (CCI), remain unstudied.

Methods  We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI follow-
ing sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization.

Results  We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more suscepti-
ble to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients 
is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-
pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood 
metabolites.

Conclusions  The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even 
up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal 
infections in CCI patients.
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Background
The gut mycobiome (fungal microbiome) constitutes 
an important portion of the overall gut microbial com-
munity. While gut-associated fungi occupy a relatively 
smaller niche than bacteria, they play an important 
role in maintaining the gut bacterial microbiome, thus 
serving a crucial function in host homeostasis and 
physiological processes [1]. Over the last few decades, 
research has demonstrated that an imbalance in the 
gut mycobiome (‘dysbiosis’) could contribute to the 
pathogenesis of intestinal diseases, including inflam-
matory bowel disease [2, 3], irritable bowel syndrome 
[4, 5], and colorectal cancer [6]. Moreover, the conse-
quences of a dysbiotic mycobiome are not restricted 
to the gastrointestinal tract and may in fact be closely 
associated with development of extra-intestinal dis-
eases such as allergic airway disease by influencing 
local and peripheral immune homeostasis [7]. Indeed, 
excessive predominance of opportunistic pathogenic 
fungi (‘myco-pathobiome’) under dysbiotic conditions 
can lead to systemic fungal infections such as candidi-
asis that are potentially fatal [8]. Candidiasis is one of 
the most common causes of bloodstream infections 
in hospitalized patients [9, 10]. Due to the mutualistic 
ecological niche between bacteria and fungi, dysbiosis 
in bacterial communities can result in an imbalance 
in fungal communities and the overgrowth of patho-
genic fungi [11]. Conversely, disruptions in fungal com-
munities can also stimulate the growth of bacterial 
pathobionts, ultimately leading to the development or 
exacerbation of intestinal inflammatory diseases [12].

Sepsis and trauma represent two distinct medical 
conditions, with shared post-hospitalization clinical 
features and outcomes. Previous studies have shown 
that both sepsis and trauma patients, that are clas-
sified as ‘critically ill’, suffer extreme dysbiosis in the 

gut microbiome during hospitalization [13, 14], and 
this dysbiotic status closely correlates with the risk of 
in-hospital mortality [15, 16]. Gut dysbiosis in these 
critically ill patients may increase susceptibility to 
hospital-acquired infections, subsequent recurrence 
of sepsis, and multiorgan dysfunction syndrome [17]. 
Generally, critically ill patients may become immuno-
compromised or immunosuppressed due to the con-
tinuing medical conditions [18]. The compromised 
immune system results in uncontrolled proliferation 
of pathogens, allowing opportunistic pathogens and 
indigenous pathobionts to subvert the host immune 
system and alter the gut micro-ecological environment 
[19]. Importantly, antibiotics, commonly prescribed to 
sepsis and trauma patients to combat or prevent sub-
sequent infections, destroy the beneficial gut commen-
sals, triggering an infection-susceptible status [20].

We have previously observed persistent gut bacte-
rial dysbiosis and altered metabolome profiles that 
shift toward a pathobiome state in critically ill patients 
2–3  weeks after intensive care unit (ICU) admission. 
Given the strong and mutualistic relationship between 
bacterial and fungal communities, it is possible that that 
such expansive bacterial dysbiosis would lead to comor-
bid perturbations in the fungal microbiome community. 
However, there exists little to no information on the 
alterations in the broader fungal community, particu-
larly in the later stages of sepsis and trauma patients 
who experience delayed recovery. Given that altered gut 
microbiome in these critically ill patients could under-
lie prolonged inflammation, immunosuppression, and 
catabolism (PICS) [21], we hypothesized that critically ill 
trauma and sepsis patients with delayed recovery will dis-
play a dysregulated mycobiome pattern. Our results show 
that the mycobiome profile in these critically ill patients 
shifts to a pathologic pattern dominated by Candida spp., 
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with concurrent alterations in bacteriome-metabolome 
micro-ecological niches. Since the incidence of recidi-
vism and the predisposition to poor long-term outcomes 
is high in these patients, our findings have direct implica-
tions and relevance for clinical considerations pertaining 
to the critical care and outcomes particularly in patients 
suffering from chronic critical illness, associated ICU 
hospitalization, and recovery therefrom.

Methods
Study population
The overall experimental framework is depicted in 
Fig. 1A. This study was a single-center, prospective obser-
vational cohort investigation conducted from 2019 to 

2023 at a Level-1 trauma center. The inclusion and exclu-
sion criteria are detailed in Additional file  1: Table  S1. 
Primary data collection for specific sepsis patients and 
healthy controls was carried out within the scope of the 
study titled “Persistent Inflammation, Immunosuppres-
sion, and Catabolism Syndrome (PICS): A New Horizon 
for Surgical Critical Care,” approved by the Institutional 
Review Board (IRB) under number 201400611 on Octo-
ber 28, 2014, and registered at ClinicalTrials.gov with 
the identifier NCT02276417. Initial data collection for 
certain trauma patients was conducted as part of the 
study titled “Hematopoietic Stem Cell Dysfunction in the 
Elderly after Severe Injury,” which received IRB approval 
under number 201601386 on September 6, 2016, and 

Fig. 1  Sepsis/trauma patients have persistent fungal dysbiosis and pathobiome. a Schematic study design. b Principal coordinate analysis 
(PCoA) plots showing differences in beta-diversity (Bray–Curtis dissimilarity) between control, sepsis and trauma cohorts with PERMANOVA p 
values between cohorts. Beta-diversity differences between same sex-counterparts of sepsis or trauma versus control with associated p values. c 
Mycobiome alpha-diversity comparing control, sepsis and trauma cohorts represented by Shannon, observed amplicon sequence variants (ASVs), 
and Chao1 index and alpha-diversity comparing males between cohorts or females between cohorts. Intestinal microbiome microbial composition 
at the d phylum and e genus level between cohorts and separated by sex. M—males; F—females. Data are presented as mean ± SD. *p < 0.05
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was registered at ClinicalTrials.gov with the identifier 
NCT02577731. The remaining data were gathered in the 
context of the study titled “Gut Microbiome Dysfunc-
tion in Sepsis and Trauma Survivors,” which received 
IRB approval under number 202102863 on May 3, 2022, 
and was registered at ClinicalTrials.gov with the identi-
fier NCT05357170. This study’s reporting adheres to the 
guidelines outlined in the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) guide-
lines [22].

Ultimately, 19 healthy control subjects, 18 severely 
injured trauma patients, and 18 surgical sepsis patients 
were included. The selection of these sample sizes was 
based on a power analysis, which assumed an 80% or 
greater likelihood (beta) of detecting a 30% change from 
baseline, necessitating a group size of n = 18 for each 
group.

Clinical data and sample collection
Clinical data, including age, gender, race, ethnicity, and 
medical comorbidities, were collected to profile the 
demographic features of the cohorts. Additionally, man-
agement and outcome parameters were documented, 
which included factors like the injury severity score, 
sepsis criteria scoring, blood product transfusions, anti-
biotic administration, dietary intake, as well as hospital 
and ICU lengths of stay. Mortality outcomes were also 
recorded. It is important to note that all trauma and sep-
sis patients included in the study underwent at least two 
weeks of standardized ICU management and met estab-
lished criteria for Chronic Critical Illness (CCI) and PICS 
[23].

Stool specimens were acquired either per rectum, via a 
rectal tube, or from a colostomy between hospital days 14 
and 21. These specimens were then divided into aliquots 
and preserved in vials containing Cary-Blair bacterial 
media (ThermoFisher Scientific, Waltham, MA) at -80ºC. 
Simultaneously, peripheral blood was obtained through 
a single venipuncture using heparinized blood collection 
tubes (Becton–Dickinson & Co., Franklin Lakes, NJ). The 
blood samples were centrifuged at 800 × g for 10 min, and 
the resulting plasma was preserved at − 80 °C.

Mycobiome analysis
Mycobiome measurement and analyses were conducted 
as per our previously described method [24, 25]. Briefly, 
we extracted high-quality genomic DNA from 200  mg 
of fecal samples using the QIAmp PowerFecal Pro DNA 
Kit (Qiagen, Hilden, Germany) and quantified it with 
a Nanodrop spectrophotometer (Thermo Fisher Sci-
entific, Waltham, MA, USA). The internal transcribed 
spacer (ITS) region of the fungal rRNA gene was ampli-
fied, following the Earth Microbiome Project benchmark 

protocol (www.​earth​micro​biome.​org). The resulting 
amplicons were purified using the AMPure® XP mag-
netic beads kit (Beckman Coulter, Indianapolis, IN), and 
the purified products were quantified with the Qubit-4 
fluorimeter (InVitrogen, Waltham, MA, USA). An ampli-
con library was generated following previously estab-
lished methods [26]. The purified library was combined 
in equimolar concentrations and subjected to sequencing 
on an Illumina MiSeq platform (Illumina Inc., San Diego, 
CA, USA) using a 2 × 300 base pairs reagent kit (MiSeq 
reagent kit v3; Illumina Inc.) for paired-end sequencing.

Bioinformatics and statistical analysis
Raw sequences were processed using the Quantitative 
Insights Into Microbial Ecology (QIIME2) bioinfor-
matics software suite (version 2.2023.5) [27]. Quality-
filtering, adapter-trimming, denoising, and removal 
of non-chimeric amplicons were conducted using the 
DADA2 pipeline through the q2-dada2-plugin with 
default parameters [28]. All identified amplicon sequence 
variants (ASVs) were aligned using MAFFT [29]. Taxo-
nomic assignment for these ASVs was accomplished by 
employing the sklearn classifier, which utilized a pre-
trained naïve Bayes taxonomy classifier. The classifica-
tion process involved alignment against the 99% UNITE 
9.0 database. Alpha-diversity was quantified using the 
number of observed ASVs, Chao1, and Shannon index 
metrics. To assess beta-diversity, the Bray–Curtis dissim-
ilarity index was utilized, and the results were presented 
with a principal coordinate analysis (PcoA). Statistical 
analyses, including the nonparametric Kruskal–Wallis 
test and PERMANOVA with 999 random permutations, 
were applied to identify significant differences in micro-
bial diversity and structure. The differential abundance 
of taxa was determined through the ANOVA-Like Dif-
ferential Expression (ALDEx2) approach [30]. To pre-
dict the group based on microbial composition through 
supervised classification, the q2-sample-classifier plugin 
in QIIME2 was utilized. This process involved a nested 
stratified fivefold cross-validation using the Random For-
est classifier, which was built with 5,000 trees. To evalu-
ate the impact of two factors, group and sex, on taxa 
abundance and potential interaction effects, a two-way 
ANOVA was conducted. To examine the correlations 
between fungal taxa and bacterial taxa, gut, and plasma 
metabolites, Spearman’s rank correlation was used. Net-
works connecting fungal taxa and gut metabolites were 
established by calculating Spearman correlations, and 
significant associations (Spearman correlation coef-
ficient > 0.30 and Benjamini–Hochberg corrected p 
value < 0.05) were visualized using Cytoscape v3.9.1 [31]. 

http://www.earthmicrobiome.org
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Data visualization was carried out using ‘R’ or ‘Python’ 
packages.

Results
Subject characteristics
Patient characteristics of healthy control subjects (con-
trol), sepsis patients, and trauma patients are summarized 
in Additional file  1: Table  S2. No significant differences 
in age, sex, race, or ethnicity were observed. When com-
paring medical comorbidities (including hypertension, 
hyperlipidemia, renal disease with creatinine > 1.5 mg/dL, 
coronary artery disease, diabetes, congestive heart fail-
ure, chronic obstructive pulmonary disease, and cancer), 
significant distinctions among the groups were noted 
only for hypertension and coronary artery disease. Both 
the sepsis and trauma cohorts had a higher prevalence of 
hypertension compared to the control group, while the 
sepsis cohort exhibited a greater number of patients with 
a history of coronary artery disease. It is noteworthy that 
all sepsis and trauma patients received antibiotics during 
their hospital stay. As expected, sepsis patients received 
a larger variety of antibiotics for longer durations, pri-
marily because all sepsis patients required antibiotics 
for source control. All patients in the sepsis and trauma 
groups received enteral nutrition, which included tube 
feeds or an oral diet. Only one sepsis patient received 
total parenteral nutrition for ten days. The sepsis group 
experienced significantly longer stays in the ICU and the 
hospital compared to the trauma cohort.

Dysbiotic mycobiome signatures shift 
toward a pathobiome profile susceptible to infection 
following sepsis or trauma
To investigate alterations in the gut mycobiome fol-
lowing hospitalization in critically ill sepsis and trauma 
patients, we conducted an evaluation of the fungal com-
munity diversity and composition. Additionally, we 
explored differences based on host sex (Fig.  1b, c). The 
overall mycobiome profiles of the sepsis and trauma 
cohorts were found to be nearly similar, while both sig-
nificantly contrasted from the composition in the con-
trol cohort. In control group, the beta-diversity distance 
(a measure of the similarity of microbial communities 
between two samples or ecosystems) between subjects, 
transformed into a two-dimensional plot using PCoA 
analysis based on dissimilarity, exhibited closer proxim-
ity among females compared to males. This resulted in 
more distinctly divergent arrays between healthy adults 
versus sepsis or trauma patients among females (Fig. 1b), 
indicating the existence of dissimilar mycobiome pro-
files between these groups. In all groups, the microbial 
alpha-diversity (species richness) of patients exhibited a 

high degree of dispersion. However, sepsis patients dis-
played significantly lower microbial diversity compared 
to healthy adults and trauma patients, as measured by the 
Shannon index, which measures both microbial richness 
and evenness. While there were no differences between 
groups in the total number of amplicon sequence vari-
ants (ASVs, an indirect proxy for species number), which 
represent the observed count of genes potentially origi-
nating from different bacteria, and microbial diversity 
measured by the Chao1 index-measuring solely micro-
bial richness-indicating no variation in microbial rich-
ness among the groups, only the sepsis group exhibited 
distinct microbial evenness. In the healthy control group, 
male subjects exhibited higher diversity than their female 
counterparts, whereas the opposite trend was observed 
in sepsis and trauma patients. Only male sepsis patients 
demonstrated significantly lower Shannon diversity 
and had fewer ASVs than healthy males. Male trauma 
patients also exhibited modestly reduced diversity than 
healthy males. In contrast, female sepsis and trauma 
patients demonstrated almost comparable or slightly 
higher diversity compared to healthy females (Fig.  1c). 
At the phylum level, the mycobiome community was 
dominated by two major fungal phyla, Basidiomycota 
and Ascomycota. It is noteworthy that Basidiomycota, 
which otherwise made up a considerable proportion of 
the composition in healthy adults, was nearly depleted in 
both sepsis and trauma patients (Fig. 1d). Further deeper 
analyses revealed that this difference was primarily due 
to an explosive increase in the levels of genus Candida 
in both sepsis and trauma patients. In healthy adults, 
Rhodotorula, Saccharomyces, Penicillium, and Candida 
were the major genera comprising the gut mycobiome, 
with Candida being the sole predominant genus in sep-
sis and trauma patients. Particularly in sepsis patients, 
Candida accounted for more than 95% of the mycobiome 
abundance on average (Fig. 1e). In differential abundance 
analysis, Candida was identified as the most significantly 
proliferated genus in both sepsis and trauma patients, 
followed by Fusarium, while Penicillium and Saccha-
romyces were nearly depleted (Fig.  2a, b). Additionally, 
further analysis using ANOVA distinguished Candida, 
Penicillium, Fusarium, and Rhodotorula as major taxa 
differing significantly among the three groups (Fig.  2f ). 
Additionally, healthy adults exhibited distinct microbial 
compositions based on sex. Male adults had higher lev-
els of Candida and Penicillium; while, female adults har-
bored more Saccharomyces and Rhodotorula (Fig. 1e, 2e). 
In both sexes, the abundance of taxa other than Candida 
was insignificantly low in sepsis and trauma patients, but 
Aspergillus tended to be more prevalent in female sepsis 
patients than in males, and Chimonocalamus tended to 
be more abundant in female trauma patients compared 
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Fig. 2  Dysbiotic mycobiome signatures in sepsis/trauma patients are primarily linked with pathobiont Candida species. Genera which are 
significantly more or less relatively abundant in either the a sepsis or the b trauma cohort compared to the control group, with p values displayed 
on the right column, and c–e differences between same sex-counterparts with associated p values. f Circular heatmaps showing two-way ANOVA 
results (group and sex) for all three groups comparing the mycobiota. p values were shown by converting to –log (Statistical significance: ● p 
value < 0.05). g–i A Random Forest prediction model between groups based on abundance data of mycobiome. h Receiver Operating Characteristic 
(ROC) curve depicts the classification accuracy; while, i a bar graph highlights the top 10 most strongly predictive genera based on relative 
importance scores. Detection rate and abundance of Candida j genus and k species. Difference in detection rate between groups was assessed 
using Chi-square test. The abundance of Candida species was determined by calculating the proportion (relative abundance) of each species 
within the overall Candida genus. l Principal coordinate analysis (PCoA) based on Bray–Curtis dissimilarity calculated with only the abundance 
of Candida species. m–o A Random Forest prediction model between groups based on abundance data of Candida species. n Receiver Operating 
Characteristic (ROC) curve depicts the classification accuracy; while, o a bar graph highlights the strongly predictive Candida species based 
on relative importance scores. **p < 0.01, ***p < 0.001
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to males. A higher level of Rhodotorula was observed in 
female subjects across all groups (Fig.  2c–e). Although 
no taxa were identified as significantly differing by gen-
der in ANOVA, Rhodotorula and Chimonocalamus were 
the most affected taxa by gender, regardless of the group, 
among all taxa (Fig. 2f ). We further trained and executed 
a machine-learning model to predict and capture the pri-
mary distinctions between sepsis or trauma patients and 
healthy subjects, aiming to understand the abnormalities 
of their mycobiome. The control group demonstrated 
the highest prediction accuracy (AUC = 0.92); while, 
the sepsis and trauma groups exhibited relatively lower 
accuracy (AUC = 0.74 and 0.75, respectively) (Fig.  2h). 
Within the sepsis group, samples that were incorrectly 
predicted were more likely to be categorized as belonging 
to the trauma group rather than the control group, and 
the same pattern was observed within the trauma group 
(Fig. 2g). This may be attributed to the similar microbial 
profiles observed in both sepsis and trauma patients. 
Candida was consistently identified as the most impor-
tant feature for prediction, followed by Curvularia and 
Penicillium, and these taxa were most abundant in sepsis, 
trauma, and control groups, respectively (Fig. 2i).

In each analysis, Candida reproducibly proved to be 
the most significant and distinctive genus for distinguish-
ing sepsis and trauma patients from healthy adults. We 
investigated whether the Candida profile alone could 
accurately characterize the groups and be exclusively uti-
lized as a group prediction factor. Overall, not only the 
abundance but also its detection rate in sepsis and trauma 
groups was significantly higher than in the healthy con-
trol group (Fig.  2j). Although the average abundance of 
Candida was highest in the sepsis group, the detection 
rate was slightly lower than in the trauma group, where all 
patients had Candida carriage. All the ASVs identified as 
Candida were successfully assigned to the species level, 
resulting in six species. Candida species profiles exhib-
ited substantial differences between the healthy control 
group versus sepsis and trauma patients; while, sepsis and 
trauma patients shared relatively similar profiles. Specifi-
cally, C. orthopsilosis and C. sake were only identified in 
the healthy control group and represented a significant 
portion of the Candida flora in this group. In contrast, 

C. dubliniensis and C. parapsilosis, which were major 
species in the sepsis and trauma groups, were either not 
detected or barely detected with very low abundance. C. 
albicans and C. tropicalis were the most abundant and 
highly detected species in all groups, although the sepsis 
and trauma groups had relatively higher abundance and 
detection rates compared to the control group (Fig. 2k). 
When examining the PCoA analysis based on Candida 
species profiles, the healthy control group exhibited a 
distinct profile and was significantly separated from the 
sepsis and trauma groups. Intriguingly, the overall pro-
file within each group was nearly identical to the group 
structures generated with all ASVs, indicating that ASVs 
assigned to Candida species were the major features 
determining the overall group structures and driving the 
differences between the groups (Fig.  2l). Furthermore, 
the prediction accuracy of the model trained solely with 
Candida species showed analogous patterns to the pre-
diction model trained with all microbiome data (Fig. 2m, 
n). C. tropicalis and C. albicans were consistently identi-
fied as the most important species for determining and 
predicting the groups (Fig. 2o).

Mycobiome dysbiosis signatures correlate with perturbed 
bacteriome‑metabolome micro‑ecological niches
The gut is a highly complex ecosystem with various 
forms of symbiosis. Changes in one domain vastly 
affect other domains and the microbial by-products 
produced after their metabolism. We have previously 
observed significant reduction in the gut bacterial 
diversity in sepsis and trauma patients, accompanied 
by significant shifts in the composition of the micro-
biota, including the emergence of specific pathobiome 
patterns. Additionally, both trauma and sepsis were 
associated with discernible changes in fecal and plasma 
metabolites (Additional file  2: Figure S1). Therefore, 
to understand the ecological niche and fundamental 
co-regulation of mycobiome communities within the 
gut, we applied correlational analyses of fungal taxa 
with gut bacteriome as well as with gut and plasma 
metabolome arrays (Fig. 3a–e). Bacterial taxa that had 
at least one significant co-occurring relationship with 
fungal taxa were divided into two branches based on 

(See figure on next page.)
Fig. 3  Mycobiome dysbiosis signatures correlate with perturbed gut bacteriome and gut-plasma metabolome arrays. Correlation arrays 
between mycobiome and a microbiome, b gut metabolites, and c plasma metabolites calculated with all samples from control, trauma and sepsis 
cohorts (Statistical significance: ● p < 0.05) Significant correlation networks d between mycobiome and microbiome (shown ρ > 0.35) and e 
between mycobiome and gut and plasma metabolites (shown ρ > 0.35). f Mycobiome-gut metabolites co-occurrence network. Circular nodes 
represent Fungi; while, yellow octagon nodes represent gut metabolites. Only significant links are shown here (Spearman’s rank correlation 
coefficient (ρ) > 0.3; Benjamini–Hochberg corrected p < 0.05). Red links denote positive correlation and black links indicate negative correlation, 
with line thickness corresponding to the correlation coefficient value
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their hierarchical clustering of correlational relation-
ships. One branch primarily consisted of bacteria 
associated with gastrointestinal infections, such as the 

Enterobacteriaceae family, Escherichia–Shigella, Ente-
rococcus, and Staphylococcus. These bacteria tended to 
positively correlate with fungal taxa found abundant in 

Fig. 3  (See legend on previous page.)
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sepsis and trauma patients. The other branch mostly 
contained commensal and beneficial taxa, including 
Bifidobacterium, Akkermansia, and Ruminococcus, 
which tended to co-occur with fungal genera more 
abundant in healthy adults (Fig. 3a). Specifically, three 
major genera, Candida, Fusarium, and Penicillium, 
exhibited the most significant correlations with com-
mensal bacteria, including Faecalibacterium, Anaero-
stipes, and the [Eubacterium] hallii group. Candida and 
Fusarium, which were increased in sepsis and trauma 
patients, negatively correlated with these bacteria, 
while Penicillium, more abundant in the healthy con-
trol group, showed a strong positive correlation with 
these bacteria. Additionally, several beneficial bacteria, 
such as Akkermansia and Blautia, demonstrated a posi-
tive correlation with Penicillium and a negative correla-
tion with Candida. Meanwhile, we observed a reverse 
trend with Lactobacillus, which was positively corre-
lated with fungal taxa abundant in sepsis and trauma 
patients (Fig. 3d).

Gut microbial metabolites were also clustered hierar-
chically based on their co-regulation networks with fun-
gal taxa. One cluster contained short-chain fatty acids 
(SCFAs), including butyrate and propionate, which were 
positively correlated with fungal taxa prevalent in healthy 
adults. Another cluster consisted of by-products of 
microbial metabolism, including lactate, trimethylamine-
N-oxide (TMAO), and ethanol, which were positively 
correlated with taxa more abundant in sepsis and trauma 
patients (Fig. 3b). Candida showed a strong negative cor-
relation with SCFAs; while, Penicillium demonstrated a 
robust positive correlation with butyrate. These results 
were also reflected in the network analysis, where Can-
dida showed a co-occurrence network with alanine and 
sorbitol and a mutual exclusive network with butyrate. In 
contrast, Penicillium showed exactly opposite networks 
with these metabolites (Fig.  3f ). Curvularia exhibited a 
similar correlational profile with Candida, primarily neg-
atively correlating with essential metabolites associated 
with gut integrity, such as propionate, cholate, and threo-
nine. While Issatchenkia and Alternaria exhibited several 
significant correlations and networks with amino acids, 
their low prevalence rates (9.4% and 5.7%, respectively) 
suggest that the significant results may be misleading 
due to the skewed distribution of data. In blood (plasma) 
metabolome, three metabolites, including lactate, glu-
tamate, and alanine, were found to be common with 
gut metabolites. Among these, only lactate displayed a 
similar correlational pattern with fungi as observed in 
the gut lactate, although it did not reach statistical sig-
nificance. Overall, only Candida and Penicillium dem-
onstrated strong and distinct correlations with plasma 
metabolites, and these two genera had inverse profiles. 

Penicillium negatively correlated with 3-hydroxybutyrate, 
the primary ketone bodies produced during ketogenesis, 
while positively correlating with acetate, glutamate, and 
alanine, which are involved in gluconeogenesis. Can-
dida however showed an inverse relationship with these 
metabolites (Fig. 3c, e).

Discussion
The microbiome serves as the first line of defense against 
gut pathogens, and disturbances in the gut microbiome 
(dysbiosis) can lead to an increased susceptibility to 
serious infections. Indeed, previous studies have shown 
that patients exposed to antibiotic treatment during 
hospital stay are at a higher risk of subsequent sepsis-
related hospitalization, primarily because of gut dysbio-
sis and pathobiome [32]. While substantial disruptions 
in the mycobiome are envisaged in septic or post-injury 
patients during hospitalization, the research in this area 
remains limited, with studies focusing solely on the bac-
terial microbiome. Herein, we demonstrate the presence, 
persistence, and phenotype of the gut mycobiome dys-
biosis in septic or post-injury patients after two weeks of 
hospitalization. The findings reveal the existence of late 
dysbiosis in critically ill sepsis and trauma patients who 
do not rapidly recover and remain in the ICU for at least 
two–three weeks or longer. Notably, the incidence of 
recidivism and the predisposition to poor long-term out-
comes is high in these patients.

Overall, we identified dysbiosis in the mycobiome char-
acterized by reduced diversity (species richness), altered 
microbial structure, a sharp increase in Candida, and 
a depletion of commensal fungal taxa, including Peni-
cillium and Saccharomyces, in both sepsis and trauma 
patients. Given the fact that these fungi are the major 
genera comprising the mycobiome community with high 
prevalence, the sepsis and trauma patients may experi-
ence a significant disturbance in the fungal ecological 
niche and are exposed to a high risk of subsequent fun-
gal infections like candidiasis. While no specific stud-
ies have reported overall mycobiome changes in sepsis 
and trauma patients, there is a consensus that critically 
ill patients in the ICU have an infection-susceptible gut 
micro-environment [20]. Previous studies have reported 
that the bacterial community is severely disrupted, and 
the fungal community, which has mutualistic interac-
tions with the bacterial community, is also altered dur-
ing the ICU stay. As a consequence, immunomodulatory 
metabolites and key metabolites, including SCFAs and 
bile acids (BAs), are depleted or altered [20]. Addition-
ally, the observation of similar pattern in two distinct 
medical conditions provides evidence of a potential 
causal link between trauma and the development of sep-
sis in these patients. Previous studies have reported that 
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severe trauma can induce drastic dysbiosis within a short 
period and lead to sepsis due to disruptions in the intes-
tinal epithelial barrier [33, 34]. We also observed a differ-
ence in microbial diversity changes between the sexes. 
Male patients demonstrated a drastic decrease in diver-
sity, especially among the sepsis cohorts, whereas female 
patients’ microbial diversity either slightly decreased or 
barely changed, suggesting that males experienced rela-
tively more severe dysbiosis. This finding aligns with our 
previous observations regarding bacterial communities, 
where the female microbiome displayed better resistance 
to infection or injury [24, 35, 36]. These results might 
suggest that there is a tendency for severe sepsis to be 
more prevalent in men, and sex dimorphism in dysbiosis 
may be one of the crucial reasons for the higher severity 
and prevalence of sepsis in males [37, 38].

One of the strongest factors driving these dysbiotic 
conditions is undoubtedly the antibiotics regimen. Anti-
biotic administration can lead to an overgrowth in Can-
dida while disrupting the overall microbial communities, 
as observed in this study [20, 39, 40]. In total, six Can-
dida species were identified, with four species found 
to be more abundant in sepsis and trauma patients. C. 
parapsilosis and C. dubliniensis, exclusively detected 
in sepsis trauma patients, are not commonly found in 
the gut, but rather on the hands and in the oral cavity, 
respectively [41, 42]. Whereas C. albicans and C. tropi-
calis were found in all groups but were more prevalent 
and abundant in sepsis and trauma patients. Both species 
are taxonomically close and share pathogenic traits [43], 
making them well-known inducers of candidiasis and 
often found in ICU patients treated with antibiotics. [20]. 
Taken together, both exogenous and endogenous Can-
dida species readily proliferated within the gut of sepsis 
and trauma patients because of their disrupted ecologi-
cal niches and immunocompromised state. Furthermore, 
studies on patients or neonates in the ICU have suggested 
that broad-spectrum antibiotics and high exposure to 
antibiotic therapy may contribute to the incidence of 
invasive candidiasis [44, 45]. Additionally, the expansion 
of pathogenic Candida species can be an early marker 
of systemic candidiasis [8]. The mechanistic pathways 
through which these species dominate the gut during 
dysbiosis and induce candidiasis may be multi-factorial 
and multi-dynamic. For instance, the loss of commensal 
bacteria and concomitant SCFAs reduction can trigger or 
inhibit the proliferation of Candida. Specific commensal 
bacteria have been shown to inhibit C. albicans coloni-
zation by activating innate immune effectors and anti-
microbial peptides [40]. Peptidoglycan directly affects C. 
albicans growth by activating the adenylyl cyclase Cyr1p, 
which controls hyphal morphogenesis [46]. Antibiotic 
treatment can increase the availability of peptidoglycan 

fragments by facilitating the release of peptidoglycan 
subunits, leading to C. albicans hyphal growth [47]. Our 
co-regulation analyses revealed a strong negative cor-
relation of Candida with various commensals, includ-
ing gram-positive ones. This suggests that sepsis and 
trauma patients not only lose inhibitory effects from 
compromised commensals but also develop a favorable 
ecological niche for the proliferation of Candida due to 
increased peptidoglycan fragments. SCFAs have inhibi-
tory effect against the growth and development of Can-
dida components, including germ tubes, hyphae, and 
biofilms; accordingly, reduced SCFAs levels have been 
linked to increased C. albicans susceptibility in animal 
models [39]. Likewise, our findings showed a strong neg-
ative correlation of Candida levels with SCFAs, indicat-
ing the weakening or loss of Candida-suppressive effects 
of SCFAs in sepsis and trauma patients due to depleted 
population of SCFAs-producers.

While we observed a diminution of Penicillium and 
Saccharomyces in sepsis and trauma patients, it may be 
noted that Penicillium spp. are known to produce diverse 
secondary metabolites, including fatty acids with anti-
bacterial activities [48]. Though there is some argument 
regarding the viability of Penicillium in the gut environ-
ment due to growth constraints in certain species [49], it 
has been identified with high abundance in healthy adults 
[50, 51] and has demonstrated antimicrobial effects 
against pathogenic bacteria [52]. Similar to Penicillium, 
Saccharomyces has also been found in high proportions 
in healthy adults and exhibits a strong negative corre-
lation with Candida [53, 54]. Saccharomyces can also 
effectively serve as a functional replacement for intesti-
nal bacteria, providing protection against mucosal tissue 
damage and enhancing the responsiveness of circulating 
immune cells [55]. Studies have shown that the adminis-
tration of S. cerevisiae in antibiotic-treated mice not only 
ameliorates dysbiosis by restoring bacterial commensals 
[56, 57], but also significantly improves mortality and 
susceptibility to viral infections [55]. Although there are 
conflicting results regarding the inhibitory effect of Sac-
charomyces on C. albicans [58], several studies have dem-
onstrated that the administration of Saccharomyces sp. 
reduces the intestinal colonization of C. albicans and the 
incidence of invasive candidiasis [59, 60].

Importantly, we observed significant correlations of 
mycobiome with altered metabolomic niches. Among 
these associations, one important observation was for 
plasma 3-hydroxybutyrate. As previously mentioned, it 
is one of the ketone bodies synthesized by the liver dur-
ing periods of low carbohydrate intake or fasting [61]. 
Elevated levels of this compound are observed in sep-
sis and trauma patients, consistent with prior research 
on sepsis patients [62, 63], indicating that these patients 
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may enter in a ketogenic state due to the scarcity of glu-
cose in their blood and inadequate gluconeogenesis. Criti-
cally ill patients frequently experience hypoglycemia [64], 
likely due to mitochondrial disorders induced by oxidative 
stress [65, 66]. Additionally, patients in the ICU receiving 
enteral nutrition often encounter enteral feeding intoler-
ance, primarily because of altered gastrointestinal motil-
ity and gastroparesis [67] with its prevalence reaching 
up to 75% (38.3% on average) [68]. Together, these and 
our findings suggest that sepsis and trauma patients may 
exhibit abnormal blood sugar levels and reduced sugar 
availability in the gut due to their medical conditions. In 
our correlational analysis, Candida displayed a positive 
association with plasma 3-hydroxybutyrate and gut lac-
tate. Previous studies have indicated that severe hyper-
glycemia and ketonemia, characterized by high levels 
of 3-hydroxybutyrate, can lead to a reduction in human 
antigen-specific T cell proliferation. This reduction makes 
patients more susceptible to fungal infections, particularly 
those caused by C. albicans, as well as manifested Can-
dida sepsis [69, 70]. These results imply that during the 
ICU stay, patients may be exposed to a higher risk of Can-
dida infection because of the prolonged ketonemic state. 
In addition, Candida, especially C. albicans, is known for 
its remarkable metabolic flexibility, allowing it to utilize a 
variety of nutrients in sugar-limited environments, with 
lactate being the most readily available alternative carbon 
source. Intriguingly, C. albicans grown on lactate is less 
detectable by the host immune system and thus are less 
efficiently phagocytosed by immune cells [71]. This sug-
gests that altered nutrient availability in host niches dur-
ing sepsis and trauma not only promotes the growth of 
fungal pathobionts but may also enhance their virulence.

Conclusions
In summary, our findings for the first time unveil the per-
sistence and signatures of the gut mycobiome dysbiosis 
shifting toward an infection-susceptible pathobiome state 
two weeks after sepsis or trauma. Like any study of this 
nature, our study has limitations. We were able to collect 
samples at a single timepoint, because of which we could 
not investigate the trajectory of major fungal taxa over time 
and the duration of hospitalization. Although there were no 
differences among groups in terms of ethnicity, most of the 
participants were Caucasian. Additionally, we failed to con-
trol for other factors that might possibly affect the mycobi-
ome, including the type of enteral nutrition and anesthesia 
[72, 73]. Nevertheless, the study was adequately powered 
for each group, revealing the persistence of mycobiome 
dysbiosis in both sepsis and trauma settings, even up to two 
weeks post-sepsis and trauma. The tenacity of these per-
turbations in patients with delayed or complicated clinical 
trajectories strongly suggests that targeting this dysbiosis 

could be a viable focus for therapeutic regimens aimed at 
reducing the risk of subsequent fungal infections. Such 
regimens might employ anti-Candida microbiome reha-
bilitation strategies such as S. cerevisiae administration or 
pro/pre/postbiotic pharmacological activation of the innate 
immune defense system against colonization by opportun-
istic pathogenic fungi [40]. The findings call for and should 
facilitate future studies to explore novel approaches to min-
imize the incidence of fungal infection and develop thera-
peutic interventions aimed at preventing dysbiosis and 
restoring gut micro-ecological homeostasis for improved 
health outcomes and quality-of-life following recovery 
from hospitalization and critical illness.
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