
Effect of constitutive law on the erythrocyte membrane response 
to large strains

Marianna Pepona†,a, John Gounleyb, Amanda Randlesa

aDepartment of Biomedical Engineering, Duke University, Durham, NC, USA

bComputational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, 
TN, USA

Abstract

Three constitutive laws, that is the Skalak, neo-Hookean and Yeoh laws, commonly employed 

for describing the erythrocyte membrane mechanics are theoretically analyzed and numerically 

investigated to assess their accuracy for capturing erythrocyte deformation characteristics and 

morphology. Particular emphasis is given to the nonlinear deformation regime, where it is known 

that the discrepancies between constitutive laws are most prominent. Hence, the experiments of 

optical tweezers and micropipette aspiration are considered here, for which relationships between 

the individual shear elastic moduli of the constitutive laws can also be established through analysis 

of the tension-deformation relationship. All constitutive laws were found to adequately predict the 

axial and transverse deformations of a red blood cell subjected to stretching with optical tweezers 

for a constant shear elastic modulus value. As opposed to Skalak law, the neo-Hookean and Yeoh 

laws replicated the erythrocyte membrane folding, that has been experimentally observed, with 

the trade-off of sustaining significant area variations. For the micropipette aspiration, the suction 

pressure-aspiration length relationship could be excellently predicted for a fixed shear elastic 

modulus value only when Yeoh law was considered. Importantly, the neo-Hookean and Yeoh laws 

reproduced the membrane wrinkling at suction pressures close to those experimentally measured. 

None of the constitutive laws suffered from membrane area compressibility in the micropipette 

aspiration case.
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1. Introduction

The dynamics of single red blood cells (RBCs) – commonly modelled as capsules of 

biconcave resting shape, composed of an infinitely thin membrane accounting for the 

mechanical properties of the lipid bilayer and elastic cytoskeleton, and an internal fluid, 

the cytoplasm – have been extensively studied for over half a century. Yet, theoretical, 

computational, and experimental works are further shedding light on how various physical 

and mechanical properties of the capsule, such as the shape [1, 2, 3, 4, 5, 6, 7, 8, 9], 

the membrane constitutive law [8, 9, 10, 11], the rheology of the internal and suspending 

mediums [4, 12, 13, 14, 15, 16, 17], and the membrane viscosity [18, 19, 20, 21, 22, 23, 24], 

affect the deformation and motion of single erythrocytes. Among these properties, the study 

of the effects of the constitutive law, governing the mechanical response of the erythrocyte 

membrane to the external applied stresses, has received less attention despite its paramount 

importance on the accurate modelling of red blood cells. Not only does the choice of the 

constitutive law affect the capsule behaviour, but it also influences the evaluation of the 

membrane mechanical properties, for example the shear elastic modulus, from experimental 

measurements [11, 25].

Even though few studies have dealt with the effect of constitutive law on the response 

of the almost area-incompressible red blood cells to the surrounding flow, a multitude of 

works have explored the impact of constitutive laws on the dynamics of area-compressible, 

spherical and ellipsoidal capsules in various flow conditions. Theoretically, different 

constitutive laws have been compared for capsules undergoing uniaxial extension and 

isotropic dilatation [25]. The influence of constitutive laws on the capsule behaviour 

has been computationally examined in diverse flow situations, for instance in shear flow 

[25, 26, 27, 28], planar hyperbolic flow [27, 29], axisymmetric elongational flow [27], 

capillary flow [30], and radially oscillatory flow [31]. Theoretical predictions have been 

compared with experimental data to identify plausible constitutive laws for the membrane 

material of bioartificial capsules [32]. The previous work has been extended to compare 

numerical results of several constitutive laws with experiments [33, 34]. Simulations have 

also been employed in conjunction with experiments to determine the membrane mechanical 

properties of capsules circulating in a square-section microfluidic channel [35], capsules in 

elongation flow [36], and cells undergoing compression [37]. For comprehensive reviews 

regarding the effect of constitutive laws on the dynamics of area-compressible, spherical and 

ellipsoidal capsules, the reader is referred to the works of Pozrikidis [38] and Barthès-Biesel 

[39]. This plethora of literature articulates the importance of understanding the impact 

that the choice of constitutive law has on the capsule response and the determination 

of its mechanical properties. The aforementioned studies have, however, focused on area-

compressible capsules of initially spherical or ellipsoidal shape, and their findings cannot 

thus be straightforwardly extended to the case of red blood cells, whose response to the 

surrounding flow will be further affected by their membrane surface incompressibility and 

complex shape.

With respect to red blood cells, Mills et al. [10] have performed optical tweezers 

experiments, and compared the experimental results for the axial and transverse diameters 

of the stretched erythrocytes with computational ones considering the neo-Hookean and 
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Yeoh laws. Dimitrakopoulos [11] has reviewed numerous studies in the literature so as 

to analyze the variation in the evaluation of the shear elastic modulus of the erythrocyte 

membrane obtained from fitting different constitutive laws to measurements of various 

experiments, namely experiments of optical tweezers, micropipette aspiration, low-viscosity 

ektacytometry, electrically-induced deformation, and capillary flow. To validate their 

numerical framework, Sinha & Graham [8] have performed simulations of the optical 

tweezers experiment for three different constitutive laws, that is the Skalak, neo-Hookean 

and Yeoh laws. Finally, Siguënza et al. [9] have compared in detail computational results for 

the axial and transverse diameters, in-plane and folding lengths, area variation, and resulting 

shape of RBCs subjected to optical tweezers stretching, when either Skalak or Yeoh law is 

employed for the modelling of the erythrocyte membrane.

However, a careful comparison between the values of shear elastic modulus selected for the 

different constitutive laws has in general been omitted in the aforementioned studies. The 

purpose of the present work is to meticulously compare constitutive laws, whose chosen 

elastic parameters follow theoretical relations, by means of simulations in scenarios for 

which experimental data exist. Further, we are interested in cases where the erythrocyte 

undergoes moderate and large deformations, as it has been shown that all constitutive 

laws produce identical behaviour for the same value of shear elastic modulus in the small 

deformation regime, corresponding to extensions of less than 15% [11, 25]. The focus 

on this deformation regime is also physiologically relevant. RBCs are subjected to large 

deformations when flowing within capillaries [38] or passing through slits of the venous 

sinuses, such as in the spleen [40].

Here, we have chosen to computationally realize the optical tweezers [4, 10, 41, 42] and 

micropipette aspiration [43, 44, 45, 46, 47] experiments, which have been widely used 

to measure the mechanical properties of the erythrocyte membrane. In both experiments, 

the red blood cell sustains moderate and large deformations, specifically up to 100% 

extension in the axial and lateral directions for the optical tweezers and micropipette 

aspiration experiments, respectively. Moreover, correlations between the shear elastic moduli 

of different constitutive laws can be deduced through theoretical analysis in both cases. The 

following constitutive laws have been considered in the present work: Skalak, neo-Hookean, 

and Yeoh laws. The strain-hardening Skalak law is typically employed for modelling 

cellular-scale blood flow [48]. The strain-softening neo-Hookean model has also been 

considered in earlier studies due to its simplicity [49, 50, 51, 52]. Through the optical 

tweezers studies of Mills et al. [10] and Sigüenza et al. [9], Yeoh law, whose nature varies 

with the deformation, has emerged as an alternative owing to its capability of capturing 

the RBC’s deformation characteristics and morphology. Balogh & Bagchi [53] have also 

reported that Yeoh law predicts the experimental results of micropipette aspiration better 

than Skalak law, without, however, exploring the effect of different constitutive laws as 

it was not within the scope of their work. It is worth mentioning that the erythrocyte 

membrane nature coincides with that of Skalak and Yeoh laws at large strains, namely being 

strain-hardening [11]. Despite the difference in nature, the neo-Hookean model is considered 

here also for comparison purposes with Yeoh law, which constitutes an extension of it.
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To facilitate our study on the effect of constitutive laws, certain assumptions have been made 

allowing us to restrict the parameter space. Although the erythrocyte properties, such as the 

shape, dimensions, and cytoplasmic viscosity, may vary considerably with cell age [46, 54], 

temperature [55], and disease [56], their variation poses an additional modelling challenge 

as it consequently alters the RBC’s mechanical properties. For this reason, only healthy 

human RBCs have been considered here, with the aforementioned properties being kept 

invariant. The effect of the erythrocyte membrane viscosity has been omitted in the current 

study, as it has been shown that the membrane viscosity does not influence significantly the 

steady-state deformation of a RBC subjected to optical tweezers stretching [4, 20]. Lastly, 

the bending elastic modulus of the erythrocyte membrane has been kept constant throughout 

our simulations, since it has been demonstrated that, for the optical tweezers experiment, its 

variation has a negligible effect on the RBC deformation [8].

The article is organized as follows. In Section 2, the in-house massively parallel 

computational fluid dynamics solver, HARVEY [57], used to perform simulations is 

presented. HARVEY is based on the lattice Boltzmann method (LBM), described in Section 

2.1, to solve the fluid flow governing equations on a uniform, Cartesian grid. Details 

of the erythrocyte model considered here are given in Section 2.2. The finite element 

method (FEM), employed for evolving the RBC’s membrane equations of motion in a 

Lagrangian description, is discussed in Section 2.3. Lastly, the immersed boundary method 

(IBM), coupling the fluid and structure solvers, is presented in Section 2.4. (For the readers 

interested in HARVEY’s computational performance, we refer them to the works of Randles 

et al. [57, 58, 59] for bulk blood flow simulations, and the works of Roychowdhury et al. 

[60] and Ames et al. [61] for blood flow simulations at the cellular level.) In Section 3, 

theoretical relations between the shear elastic moduli of the constitutive laws examined here 

are derived. In particular, the case of uniaxial extension, the theoretical equivalent of the 

optical tweezers experiment, is treated in Section 3.1, and the micropipette aspiration case is 

analyzed in Section 3.2. The computational results of the optical tweezers and micropipette 

aspiration are, respectively, presented in Sections 4.1 and 4.2. Finally, the key contributions 

of the present work are summarized in Section 5.

2. Computational framework: HARVEY

2.1. Lattice Boltzmann method

To resolve the flow field in the cytoplasm within the erythrocyte membrane and its 

surrounding fluid, which are both assumed to be incompressible and Newtonian, we 

employ the lattice Boltzmann method. In the LBM framework, distribution functions fi(x, t)
representing the density of particles at position x and time t with velocity ci along the itℎ

lattice direction are tracked. The evolution of the distribution functions is governed by the 

lattice Boltzmann equation, where the Bhatnagar-Gross-Krook collision operator [62] and 

the forcing scheme of Guo et al. [63] are used

fi x + ciΔt, t + Δt = fi(x, t) − Δt
τ fi(x, t) − fi

eq(ρ, u) + ΔtF i .

(1)
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The relaxation time τ is related to the kinematic viscosity ν by

ν = cs
2 τ − Δt

2 ,

(2)

where cs = Δx/( 3Δt) is the speed of sound, and Δx, Δt are the lattice spacing and time step, 

respectively. To allow for the ambient fluid and cytoplasm to have different viscosities, we 

follow the approach of Zhang et al. [64]. For the fluid component at position x, its kinematic 

viscosity is given by

ν(x) = νamb + νcyto − νamb H(d(x, X)),

(3)

where νamb and νcyto denote respectively the ambient and cytoplasmic viscosities. The 

Heaviside function H is defined as

H(d) =

0, d < − 2Δx
1
2 1 + d

2Δx + 1
πsin πd

2Δx , −2Δx ≤ d ≤ 2Δx

1, d > 2Δx .

(4)

The variable d(x, X) denotes the shortest distance from the fluid component at position x
to the erythrocyte membrane located at X. This distance is assigned to be positive for the 

cytoplasm, and negative for the ambient fluid.

The equilibrium distribution function fi
eq is expressed as

fi
eq(ρ, u) = wiρ 1 + ci ⋅ u

cs
2 + (u ⊗ u): ci ⊗ ci − cs

2I
2cs

4 ,

(5)

where wi are weight coefficients depending on the chosen lattice arrangement for the 

velocity discretization, and I is the identity tensor. Guo’s forcing F i takes the form

F i = 1 − 1
2τ wi

ci − u
cs

2 + ci ⋅ u ci

cs
4 ⋅ f .

(6)

The force term f is the sum of two contributions: fext accounting for external forces, and fIB

taking into account the interaction between the erythrocyte membrane and its ambient and 

enclosed uid components

f = fext + fIB .
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(7)

The form of the force fIB is discussed in § 2.4.

The fuid density ρ and velocity u are defined as the 0th and 1st moments of the distribution 

function

ρ(x, t) = ∑
i

fi(x, t),

(8a)

u(x, t) = ∑
i

cifi(x, t) + Δt
2 f(x, t) /ρ(x, t) .

(8b)

For simplicity, the lattice spacing is set here equal to the time step as Δx = Δt = 1 in lattice 

units, resulting in cs = 1/ 3. We employ the D3Q19 lattice arrangement, for which the lattice 

velocities (in columns) are defined as

ci =
0 1 −1 0 0 0 0 1 −1 1 −1 0 0 1 −1 1 −1 0 0
0 0 0 1 −1 0 0 1 −1 0 0 1 −1 −1 1 0 0 1 −1
0 0 0 0 0 1 −1 0 0 1 −1 1 −1 0 0 −1 1 −1 1

,

and the weight coeffcients are given by

w0 = 1/3, w1 − 6 = 1/18, w7 − 18 = 1/36.

2.2. Erythrocyte model

The red blood cell is modelled as a capsule of biconcave shape containing the cytoplasm 

enclosed by the cell’s infinitely thin membrane. Its stress-free biconcave shape is described 

by the following parametric equation, similarly to the one in the work of Pivkin & 

Karniadakis [65]

z = R 1 − x2 + y2

R2 C0 + C1
x2 + y2

R2 + C2
x2 + y2 2

R4 ,

(9)

where R, C0, C1, C2 = (3.90 μm, 0.1035805, 1.001279, − 0.561381). This results in a cell of 

diameter D0 = 7.80 μm and maximum thickness W 0 = 2.56 μm with surface area and volume 

of A0 = 133 μm2 and V 0 = 93 μm3, respectively. These measurements fall well within the 

range of those reported for healthy human RBCs [66]. As mentioned earlier, the cytoplasm 
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is considered to be an incompressible and Newtonian fluid with kinematic viscosity about 

five times that of the blood plasma [48], that is νcyto = 6.0 × 10−6 m2/s.

The erythrocyte membrane is composed of an isotropic and elastic material. As discussed in 

§1, several constitutive laws have been proposed throughout the years to model the response 

of such membranes. Here, we focus the discussion on the Skalak, neo-Hookean and Yeoh 

laws.

In Skalak (SK) law [67], the strain energy function W s is given by

W s
SK = Gs

SK

4 I1
2 + 2I1 − 2I2 + CSKI2

2 ,

(10)

where Gs
SK denotes the surface shear elastic modulus associated with this law, and CSK

is a dimensionless parameter representing area incompressibility. Large values of CSK

ensure that the erythrocyte membrane is almost area-incompressible. I1 and I2 are the 

strain invariants of the Green-Lagrange strain tensor, and further details are provided in the 

Appendix.

For the neo-Hookean (NH) law, the strain energy function takes the form [27]

W s
NH = Gs

NH

2 I1 − 1 + 1
I2 + 1 .

(11)

This law does not restrict the area dilatation.

Yeoh (YE) law [68] is a cubic extension of the neo-Hookean model, for which the strain 

energy function is expressed as

W s
YE = Gs

YE

2 I1 − 1 + 1
I2 + 1 + CYE I1 − 1 + 1

I2 + 1
3
,

(12)

where CYE is a parameter taken equal to Gs
YE/30. This value of CYE corresponds to the one 

found by Mills et al. [10] that best matches force-extension data from the optical tweezers 

experiment. Likewise to the neo-Hookean model, the area dilatation is unrestricted in Yeoh 

law.

The bending resistance of the erythrocyte membrane is described by the Helfrich bending 

energy [69] as follows

ℰb = kb
2 ∫

S
2κ − c0

2dS,
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(13)

where kb denotes the bending elastic modulus, and κ, c0 are the mean and spontaneous 

curvatures, respectively. The bending modulus takes the value kb = 1.8 × 10−19 N ⋅ m, as 

measured by Evans [70] via micropipette aspiration experiments. Here, the spontaneous 

curvature is set equal to 0. It is worth noting that the bending energy proposed by Helfrich 

[69] includes also a Gaussian curvature term, which can however be omitted here as its 

integral over a closed surface is a topological invariant according to the Gauss-Bonnet 

theorem.

Finally, in order to conserve the RBC volume, we consider the following volume 

conservation energy [71]

ℰv = kv
2

V − V 0
2

V 0
,

(14)

where kv is a volume penalty coefficient, V 0 and V  represent respectively the RBC volume 

at time t = 0 and subsequent times t. The volume penalty coefficient is set here equal to 

kv = 0.1, resulting in volume variations of less than 1%.

2.3. Finite element method

The erythrocyte membrane surface is discretized using Loop subdivision elements [72, 73], 

composed of linear triangles refined by a subdivision process. Here, we consider successive 

refinements of an icosahedron, known as the control mesh or level 0 of the subdivision, 

and project them onto the initial RBC biconcave shape, resulting in a triangular mesh 

of high homogeneity and isotropy [74]. After Nref refinements, the mesh is composed of 

Nelem = 20 × 4Nref triangular elements, and Nver = Nelem/2 + 2 nodes, also known as vertices. 

The Loop subdivision surfaces offer improved numerical stability and accuracy due to their 

higher regularity compared to the standard linear or quadratic Lagrange C0 elements. In 

the limit of infinite subdivisions, the triangular mesh, referred to as the limit surface, is C2

continuous everywhere except at the so-called irregular vertices, namely the vertices that 

are not linked to exactly 6 elements, where it is only C1. In the case of an icosahedron as 

the control mesh, there are 12 irregular vertices that are linked to only 5 elements. Any 

vertex introduced during the Loop subdivision process is by default regular. The surface 

force density Fm
l  exerted by the lth vertex located at Xl onto the surrounding fluids can be 

computed as discussed in the Appendix.

2.4. Immersed boundary method

To reproduce the effect of Fm
l  on the fluid flow, denoted here by fIB, the following spreading 

operation is used
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fIB(x, t) = S Fm
l (x) = ∑

l = 1

Nver
Fm

l δℎ x − Xl Δs,

(15)

where δℎ denotes the discretized Dirac delta function, and Δs represents the initial distance 

between two neighboring vertices. For the discretized Dirac delta function, the following 

formulation is considered here [75]

δℎ(r) =
1
4 1 + cos πr

2 , r ≤ 2,

0, r > 2.

(16)

In the case of r being a vector, r = rx, ry, rz , the multidimensional δℎ is then given by 

δℎ(r) = δℎ rx/Δx δℎ ry/Δx δℎ rz/Δx /Δx3. Once the force fIB (x, t) is known, the flow field, Eq. 

(8), can be obtained at the next time step t + Δt by solving the lattice Boltzmann equation, 

Eq. (1). The known velocity field u(x, t + Δt) is then interpolated at the vertices as

U Xl, t + Δt = ℐ[u] Xl = ∑
x

uδℎ x − Xl (Δx)d,

(17)

with d being the domain dimensionality, here d = 3. The updated vertices position can be 

subsequently found by Euler’s rule

Xl(t + Δt) = Xl(t) + U Xl, t + Δt Δt .

(18)

This concludes one simulation time step.

3. Comparison of constitutive laws

3.1. Uniaxial extension

We consider here the case of an erythrocyte membrane subjected to uniaxial extension, 

where the principal tensions satisfy the conditions: T1 ≠ 0 and T2 = 0. As mentioned earlier, 

the uniaxial extension can be considered as the theoretical equivalent of the optical tweezers 

experiment. The following analysis provides relationships between the shear elastic moduli 

of the constitutive laws considered here, which will be employed in Section 4.1 to determine 

the appropriate values of Gs
SK, Gs

NH, and Gs
YE, allowing for a direct comparison between them.

It can readily be shown that the principal tension T1 takes, respectively, the following form 

when the Skalak, neo-Hookean or Yeoh law is considered [11, 34]
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T1
SK = Gs

SK

λ1λ2
λ1

2 λ1
2 − 1 + CSK λ1λ2

2 λ1λ2
2 − 1 ,

(19a)

T1
NH = Gs

NH

λ1λ2
λ1

2 − 1
λ1λ2

2 ,

(19b)

T1
YE = Gs

YE

λ1λ2
λ1

2 − 1
λ1λ2

2 × 1 + 3CYE λ1
2 + λ2

2 + 1
λ1λ2

2 − 3
2

.

(19c)

Since the erythrocyte membrane is commonly modelled as an area-incompressible elastic 

material, the below area-incompressibility constraint should be considered: λ1λ2 = 1 [76]. 

Taking this constraint into account, Eqs. (19) can be simplified as

T1
SK = Gs

SKλ1
2 λ1

2 − 1 ,

(20a)

T1
NH = Gs

NH λ1
2 − 1 ,

(20b)

T1
YE = Gs

YE λ1
2 − 1 1 + 3CYE λ1

2 + 1
λ1

2 − 2
2

.

(20c)

It should be mentioned that, under uniaxial extension, the Skalak law is strain-hardening, 

that is its tension grows superlinearly with the strain, whereas the neo-Hookean law is 

strain-softening, i.e. its tension increases sublinearly with the strain [25]. The Yeoh law 

exhibits a more complicated behaviour. At small deformations, it performs similarly to 

the neo-Hookean law. However, at moderate and large deformations, its nature, i.e. strain-

softening or strain-hardening, varies due to the cubic term in Eq. (12) [68].

To correlate the shear elastic moduli of the neo-Hookean and Yeoh laws with respect to Gs
SK, 

the principal tensions T1
NH and T1

YE, Eqs. (20b) and (20c), can be equated to T1
SK, Eq. (20a). 

This equating results in the following relations

Gs
NH = λ1

2Gs
SK, and
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(21a)

Gs
YE = λ1

2Gs
SK

1 + 3CYE λ1
2 + λ1

−2 − 2 2 .

(21b)

The dependence of the shear elastic modulus ratios Gs
NH/Gs

SK and Gs
YE/Gs

SK in Eqs. (21) on the 

principal extension ratio λ1 is depicted in Fig. 1. As seen, the shear elastic modulus ratio for 

the neo-Hookean law increases monotonically with regard to λ1. The ratio Gs
YE/Gs

SK performs 

similarly to Gs
NH/Gs

SK up to λ1 ≈ 1.3, with differences being notable for λ1 ≥ 1.4. It subsequently 

displays an increase up to λ1 ≈ 1.7, with its degree of strain-softening, however, being less 

than that of the neo-Hookean law. After this point, a decrease in the dependence of Gs
YE/Gs

SK

on λ1 can be observed. This trend variation physically represents the change in the nature 

of Yeoh law, from strain-softening to strain-hardening material. It should be noted that the 

threshold value of λ1 for the change in Yeoh law’s nature to occur depends on the particular 

choice of the dimensionless parameter CYE in Eq. (12). As we are interested in the regime 

of moderate and large deformations, that is λ1 ≥ 1.4, the following relations can be deduced 

from Fig. 1

Gs
NH ≈ 2Gs

SK, Gs
YE ≈ 1.90Gs

SK for λ1 ≈ 1.4,

(22a)

Gs
NH ≈ 4Gs

SK, Gs
YE ≈ 1.99Gs

SK for λ1 = 2.

(22b)

3.2. Micropipette aspiration analysis

Through the following micropipette aspiration analysis, relationships between the shear 

elastic moduli of the constitutive laws are established, which will later be used in Section 

4.2 to choose the Gs
SK, Gs

NH and Gs
YE values. It is worth noting that micropipette aspiration 

allows us to additionally compare the effect of constitutive law on the erythrocyte membrane 

response to deformations in the lateral plane, as opposed to the optical tweezers experiment 

where RBCs are subjected to axial and transverse deformations.

Evans [76, 77] proposed the following homonymous constitutive law, which has been 

extensively employed for fitting data in micropipette aspiration experiments

W s
EV = Gs

EV

2
I1 + 2
I2 − 1 − 1 + CEV I2 − 1 − 1 2 .

(23)
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Gs
EV is the shear elastic modulus associated with this law, and the dimensionless parameter 

CEV represents the area dilatation modulus. The principal tension can be found as [11, 34]

T1
EV = Gs

EV λ1
2 − λ2

2

2 λ1λ2
2 + CEV λ1λ2 − 1 ,

(24)

which, under the constraint of area-incompressibility [76], reduces to

T1
EV = Gs

EV λ1
2 + 1
2λ1

2 λ1
2 − 1 .

(25)

It has been shown that, under uniaxial tension, the Evans law is strain-softening [34].

Following the analysis of Waugh & Evans [45], the principal extension ratio λ1 at a point on 

the erythrocyte membrane outside the micropipette entrance is given by

λ1
2 = 1 + Rpip

r
2 2Lasp

Rpip
− 1 for Lasp ≥ Rpip,

(26)

with Rpip being the inner radius of the micropipette, and Lasp the length of the RBC’s aspirated 

part. For the desired resultant λ1, the micropipette suction pressure ΔP  can be found by 

integrating in the plane of the membrane from the micropipette tip outward as

ΔP = 4
Rpip

∫Rpip

∞ Ts
r dr .

(27)

The maximum membrane shear resultant Ts is given by the deviator of the principal tensions, 

namely Ts = T1 − T2 /2. The principal tension T2 for each law can be readily determined by 

substituting λ2 = 1/λ1, owing to the area-incompressibility constraint, into the corresponding 

formulation of T1. Therefore, as shown in the work of Waugh & Evans [45], the maximum 

membrane shear resultant for Evans law can be expressed as

Ts
EV = Gs

EV

2 λ1
2 − λ1

−2 ,

(28)

with the resulting suction pressure taking the form

ΔP = Gs
EV

Rpip

2Lasp
Rpip

− 1 + ln 2Lasp
Rpip

.
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(29)

To establish the relations of the shear elastic moduli of the Skalak, neo-Hookean and Yeoh 

laws with respect to Gs
EV, we follow the same procedure as above. The maximum membrane 

shear resultants for the Skalak, neo-Hookean and Yeoh laws are found, respectively, to be

Ts
SK = Gs

SK

2 λ1
2 − λ1

−2 λ1
2 + λ1

−2 − 1 ,

(30a)

Ts
NH = Gs

NH

2 λ1
2 − λ1

−2 ,

(30b)

Ts
YE = Gs

YE

2 λ1
2 − λ1

−2 1 + 3CYE λ1
2 + λ1

−2 − 2 2 ,

(30c)

with the corresponding suction pressure being formulated as

ΔP = Gs
SK

Rpip

2Lasp
Rpip

− 1 Lasp
Rpip

+ Rpip
2Lasp

+ 1
2 ,

(31a)

ΔP = Gs
NH

Rpip

2Lasp
Rpip

− 1 + ln 2Lasp
Rpip

,

(31b)

ΔP = Gs
YE

Rpip

2Lasp
Rpip

− 1 + ln2 + CYE 8 Lasp
Rpip

3
− 18 Lasp

Rpip

2
+ 12Lasp

Rpip
+ 9

2
Rpip
Lasp

− 3
8

Rpip
Lasp

2

−10 + ln 64] + 1 + 6CYE ln Lasp
Rpip

.

(31c)

By combining Eqs. (31) with Eq. (29), the ratios Gs
SK/Gs

EV, Gs
NH/Gs

EV and Gs
YE/Gs

EV can be 

deduced, which, for simplicity, are illustrated in Fig. 2. For Skalak law, its shear elastic 

modulus, Gs
SK, drops for increasing dimensionless aspiration length. For neo-Hookean law, 

its shear elastic modulus does not change with varying Lasp/Rpip, remaining constant to Gs
EV. 

Yeoh law performs similarly to the neo-Hookean law for Lasp/Rpip ≤ 1.5, when the differences 

between the estimated Gs
NH and Gs

YE are less than 10%. At Lasp/Rpip ≈ 2.25, a change in the 

curvature of the ratio Gs
YE/Gs

EV line can be noted, from concave to convex, coinciding with 
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the shift in Yeoh law’s nature, from strain-softening to strain-hardening. Yeoh law becomes 

more and more strain-hardening as the aspiration length increases, and, for Lasp/Rpip ≥ 4.85, it 

has a higher degree of strain-hardening than Skalak law.

4. Results

4.1. Optical tweezers

4.1.1. Computational setup—In the optical tweezers experiment of Mills et al. [10], 

two silica microbeads of diameter 4.12 μm are attached to diametrically opposite ends of a 

RBC. One microbead is optically trapped by a laser beam, thus remaining stationary, while 

the other one is binded to the surface of a glass slide allowing for motion and consequently 

stretching of the RBC. To computationally reproduce the physics of this experimental setup, 

a force FOT is applied to N+ = εNver vertices, denoted by black square symbols in Fig. 3(a), 

of the erythrocyte membrane with the largest x-coordinates in the positive x-direction, and 

a force −FOT is correspondingly acting on N− = N+ vertices with the smallest x-coordinates 

in the negative x-direction. Hence, the force FOT
l = ± FOT/ εNver  is exerted on each vertex 

l in ℕ+ or ℕ−, with ℕ+ and ℕ− denoting the sets of the N+ and N− vertices with the largest 

and smallest x-coordinates respectively, and it is simply added to Eq. (40) when the vertex 

l ∈ ℕ+ ∪ ℕ−. The vertex fraction ε is related to the diameter dc of the contact area between the 

microbeads and the RBC. When the RBC reaches mechanical equilibrium with the ambient 

fluid, its deformed shape can be characterized by an axial DA and transverse DT diameter, as 

shown in Fig. 3(b). The axial diameter is computed as DA = xmax − xmin , where xmax and xmin

are the maximum and minimum x-coordinates among the N+ and N− vertices, respectively. 

The transverse diameter is calculated as DT = 2 × maxl = 1, …, Nver yl − cy
2 + zl − cz

2, with cy and 

cz being the y- and z-coordinates of the RBC’s center of mass. Following Sigüenza et al. 

[9], the in-plane LP and folding LF lengths, as defined in Fig. 3(c), are also measured at the 

deformed state.

In our simulations, a RBC of diameter D0 is immersed at the center of a rectangular domain 

of size −2D0, 2D0 × −D0, D0 × −D0/2, D0/2 , as in the work of Sigüenza et al. [9]. A domain 

resolution of D0/39 is found to result in grid-independent solutions. In the experiment of 

Mills et al. [10], the ambient fluid is a phosphate-buffered saline (PBS) solution with bovine 

serum albumin (BSA) addition. Although the fluid dynamic viscosity is measured to be 

1.3 × 10−3 Pa · s, no value is reported for the fluid density, which varies depending on 

the room temperature and the BSA percentage in the PBS solution between 1000 to 1100 

kg/m3 [78]. Due to this uncertainty, the ambient fluid is considered to be blood plasma in 

our simulations, whose density and kinematic viscosity values are close to those of the fluid 

used in experiments. It should be noted that, although the choice of the fluid properties may 

have an effect on the transient phase, it does not affect the deformation of the RBC when 

the latter reaches mechanical equilibrium with the ambient fluid [8, 9]. A relaxation time 

of 1 is chosen for the ambient fluid, resulting in a value of 3 in the cytoplasmic region 

following the approach of Zhang et al. [64]. To accurately capture the deformation of the 

RBC, 5 successive refinements of an icosahedron are considered in the discretization process 

of the erythrocyte membrane. The ensuing mesh resolution of the RBC, Δs ≈ 0.12 μm, is 
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comparable to that employed by Mills et al. [10] in their simulations performed with the 

commercial software ABAQUS and finer than the one used in the work of Sigüenza et 

al. [9]. The resulting mesh resolution ratio, Δs/Δx′ = 0.6, lies within the suggested IBM 

range, that is 0.5 ≤ Δs/Δx′ ≤ 1.5 [74]. Finally, the vertex fraction is taken equal to 0.02, 

corresponding to a contact area diameter of 2.0 μm [79].

4.1.2. Choice of the shear elastic modulus value—Hénon et al. [41] measured 

the shear elastic modulus to be Gs = 2.5 ± 0.4 μN/m. However, this value was obtained by 

performing optical tweezers experiments in the linear, small strain regime FOT ≤ 15 pN . 

Yoon et al. [42] found experimentally the shear modulus to be Gs = 3 − 6 μN/m in 

the moderate deformation regime FOT < 50 pN . Mills et al. [10] predicted a value of 

Gs = 5.5 μN/m by fitting the experimental mean values for the axial and transverse diameters 

considering FOT ≤ 88 pN to the strain-softening Evans law [76] under a constant area 

constraint. Here, Gs
SK = 4.0, 5.0 μN/m is chosen to perform simulations with Skalak law, and 

these values lie well within the aforementioned experimental ranges. The parameter CSK in 

Eq. (10) is set equal to 100, which has been shown to ensure area incompressibility [9, 25]. 

Taking into account Eqs. (22a) and (22b), the shear elastic moduli for the neo-Hookean and 

Yeoh laws should be in the range of [8.0, 20.0] and 7.6, 10.0 μN/m, respectively. The shear 

elastic moduli considered here for the neo-Hookean and Yeoh laws take respectively the 

values: Gs
NH = 10.0, 12.0 μN/m and Gs

YE = 10.0 μN/m. These values are within the expected 

theoretical range and the numerical limits found by Dao et al. [4] and Mills et al. 

[10] - Gs
NH ∈ [11.1, 17.7] μN/m and Gs

NH/YE ∈ [5.3, 11.3] μN/m in the corresponding works. The 

simulation parameters are finally summarized in Table 1.

4.1.3. Effect on the axial and transverse diameters—Figure 4(a) shows the results 

for the axial and and transverse diameters as obtained by the different constitutive laws. For 

Skalak law with Gs
SK = 4 μN/m, the results for both DA and DT fall within the experimental 

limits of Mills et al. [10]. When Gs
SK = 5 μN/m, the axial diameter is captured perfectly, while 

small discrepancies from the upper limit of the experimental range can be observed for 

the transverse diameter at FOT ≤ 108 pN. These discrepancies are, however, less than 1.5%. 

This data indicates that the range of [4.0,5.0] μN/m is the recommended one for Skalak 

law. It is clear from Fig. 4(a) that lower values of Gs
SK may result in an overprediction of 

DA, while higher values may cause an overprediction of DT. For the neo-Hookean model 

with Gs
NH = 10 μN/m, deviations from the experimental results occur for the axial diameter at 

FOT > 150 pN, while the transverse diameter is consistently overpredicted with an average 

relative error of ∼ 8%. A similar trend can be noted for DT in the simulations performed with 

the neo-Hookean and Yeoh laws by Mills et al. [10]. It is noteworthy that the axial diameter 

of a RBC undergoing large deformations can be adequately captured at a higher value of 

Gs
NH, without the latter having a significant effect, however, on the transverse diameter. For 

Yeoh law, the axial diameter is resolved well, while the transverse one is overestimated, as 

expected. It is worth mentioning that the neo-Hookean with Gs
NH = 10 μN/m and Yeoh laws 

produce identical results for both DA and DT at FOT ≤ 48 pN when the RBC stretches up 

to ∼ 40% of its original size. Notable differences in DA between the two models occur at 
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FOT > 88 pN when the RBC deforms up to ∼ 65% of its initial size. The variations in DT are 

visible only after FOT > 130 pN. Finally, the results for DA of Yeoh law can be seen to tend to 

those of Skalak law with Gs
SK = 5 μN/m for high values of the stretching force.

4.1.4. Effect on the in-plane and folding lengths—The results for the in-plane 

and folding lengths are presented in Fig. 4(b) and compared qualitatively with those of 

Sigüenza et al. [9] due to the differences in Gs. For Skalak law, the in-plane length does 

not experience initially significant changes, while the folding length increases considerably 

with FOT . At a certain stretching force magnitude, depending on the stiffness of the 

erythrocyte membrane, the in-plane and folding lengths become identical, indicating that 

the RBC transitions from a biconcave to a rounded shape. This is clearly demonstrated 

in Fig. 5. After this transition point, a further increase in FOT  results in a more circular 

RBC shape. It is worth noting that this transition occurs at FOT = 150, 172 pN when 

Gs
SK = 4.0, 5.0 μN/m, respectively. For the neo-Hookean and Yeoh laws, the in-plane and 

folding lengths evolve in parallel, suggesting that the RBC retains its biconcave shape, as 

illustrated in Fig. 5. The in-plane length varies slightly with FOT . The following mean and 

deviation values for LP are reported: LP ± LP
′ = 2.60 ± 0.08, 2.67 ± 0.06, 2.61 ± 0.07 μm for the 

neo-Hookean with Gs
NH = 10.0, 12.0 μN/m and Yeoh laws, respectively. The folding length 

initially experiences a modest increase, with a relative difference of less than 3.5% in all 

cases, and then gradually decreases to ∼ 18 − 26% of its initial folding length. It is worth 

noting that the neo-Hookean and Yeoh laws predict almost identical values of LP, with the 

mean relative discrepancy being 0.1%, for the same shear elastic modulus Gs = 10.0 μN/m. 

For the increased Gs
NH = 12.0 μN/m, the results of the in-plane length deviate from those of 

Gs
NH = 10.0 μN/m at FOT ≥ 48 pN. The above observations indicate that differences in the 

predicted in-plane length occur due to a variation in Gs rather the cubic extension term in 

Yeoh law. Interestingly, Skalak law with Gs
SK = 4.0 and 5.0 μN/m predicts similar values of LP

to those corresponding to Gs
NH/YE = 10.0 μN/m and Gs

NH = 12.0 μN/m at FOT ≤ 108 and 150 pN, 

respectively. Regarding the folding length, the results for the neo-Hookean model overlap, 

while those of Yeoh increasingly deviate when FOT > 108 pN. Finally, the results of both LP

and LF considering Yeoh law are close to the reference ones of Sigüenza et al. [9] despite the 

difference in Gs
YE.

4.1.5. Effect on the erythrocyte membrane area—The area variation, defined 

as: A − A0 /A0 × 100 (%), with FOT  is shown in Fig. 4(c). It is obvious that Skalak law 

causes negligible variations in the erythrocyte membrane area when C = 100. The results 

at Gs
SK = 4.0 and 5.0 μN/m are superimposed, and a maximum area variation of 0.35% and 

0.25% is respectively found for each case. This agrees well with the value of 0.30% 

reported by Sigüenza et al. [9] where Gs
SK = 3.65 μN/m and C = 100 are considered. For 

the neo-Hookean model, the area dilatation increases linearly with the stretching force 

magnitude, and reaches a maximum value of 32.5% and 27.0% at Gs
NH = 10.0 and 12.0 μN/m, 

correspondingly. Similarly to the observations made for DA, Yeoh law results in the same 

area dilatation as in the case of Gs
NH = 10.0 μN/m at FOT ≤ 67 pN. It is worth noting that 

the results curve follows a similar trend to that of Sigüenza et al. [9]. The maximum area 
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dilatation is, however, lower than the reference one, 25.0% as opposed to 28.0%, due to the 

stiffer erythrocyte membrane considered in the current work.

4.1.6. Effect on the erythrocyte morphology—Finally, the red blood cell shapes 

are depicted for different magnitudes of the stretching force and constitutive laws in Fig. 

5. The most important feature to note here is the transition of the erythrocyte membrane 

from a biconcave to a rounded shape in the case of Skalak law, and the conservation 

of the RBC’s biconcave shape when the neo-Hookean or Yeoh model is considered, as 

mentioned earlier. Sigüenza et al. [9] reported that the same shape transition as for Skalak 

law could be observed when simulations were performed with Yeoh law while imposing an 

area conservation constraint at the same time. This implies that the shape transition occurs 

due to the area incompressibility, rather than Skalak law itself. Although the erythrocyte 

membrane is known to be area incompressible, with an area increase of 3 to 4% resulting 

in cell lysis [80], the current constitutive laws are unable to capture accurately the shape 

of a red blood cell undergoing moderate/large deformations under the physically correct 

area incompressibility constraint. The rounded shape found numerically does not correspond 

to reality, as Mills et al. [10] reported that a similar folding to the one occuring for the 

neo-Hookean or Yeoh law, when the area dilatation is not restrained, in Fig. 5 could be 

experimentally observed. Lastly, it would be worth exploring in future studies whether a 

non-zero spontaneous curvature affects the erythrocyte morphology. Sinha & Graham [8] 

studied the effect of spatially-varying spontaneous curvature, that is biconcave discoid, 

oblate spheroid, and sphere spontaneous shapes, on the axial and transverse diameters of a 

red blood cell subjected to optical tweezers stretching, when the Skalak law is considered, 

and they found that its effect is negligible. However, it is not mentioned whether the 

different spontaneous curvatures influenced the morphology of the deformed red blood cell.

4.2. Micropipette aspiration

4.2.1. Computational setup—In the experiment of Waugh & Evans [45], flaccid red 

blood cells are aspirated into a pipette by a suction pressure ΔP . This pressure difference 

is computationally realized by implementing the Zou-He boundary scheme adapted to the 

D3Q19 lattice arrangement [81] at the faces perpendicular to the pipette axis. Once the RBC 

is in mechanical equilibrium with the surrounding fluid for a given ΔP , the length Lasp of 

its aspirated part, shown in Fig. 6(a), is computed as the distance from the tip of the pipette 

to the vertex of the erythrocyte membrane located along the pipette axis with the largest 

x-coordinate [3].

In the simulations, the RBC and micropipette are immersed inside a rectangular domain 

of dimensions L × H × W = 8.6 μm × 11.5 μm × 11.5 μm, similarly to the work of Balogh & 

Bagchi [53]. The pipette is modelled as a rigid, solid cylinder with rounded inlet end and 

thickness W pip = 0.8 μm. Its inner radius Rpip and length Lpip are 0.9 and 4.3 μm, respectively. 

The pipette dimensions considered here are the same as those in Balogh & Bagchi [53]. 

The no-slip condition is enforced at the pipette walls by the half-way bounce-back boundary 

scheme [82]. The RBC’s center of mass is initially placed at a horizontal distance of 1.6 μm
from the tip of the pipette. Both the RBC and micropipette are surrounded by a fluid with 

density and viscosity similar to water. Finally, a resolution of 0.088 μm and 5 successive 
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refinements are employed respectively in the discretization of the computational domain and 

erythrocyte membrane, resulting in Δs/Δx′ ≈ 1.4. These resolutions are on a par with those 

in Balogh & Bagchi [53].

4.2.2. Choice of the shear elastic modulus value—Using micropipettes of 

inner radius < 0.5 μm, Evans & La Celle [43] estimated the shear elastic modulus to 

be Gs = 7.0 μN/m by fitting the experimental data for the aspiration length to Evans 

law. Considering the spherical cap model, Chien et al. [44] found a good agreement 

with experimental results for Gs = 4.2 μN/m. Waugh & Evans [45] studied the effect of 

temperature variations on the shear elastic modulus. At 35.3 °C, they obtained a value of 

6.07 ± 1.08 μN/m for Gs and its standard deviation. Similarly, Linderkamp & Meiselman 

[46] measured Gs = 6.0 ± 1.1 μN/m. In a later study, Evans et al. [47] re-evaluated based on 

Evans law the shear elastic modulus to be Gs = 9.0 ± 1.7 μN/m by accurately measuring the 

inner diameter of the micropipettes. As pointed out by Hochmuth & Waugh [83], greater 

weight should be given to this value, as a 20% error in the measurement of Rpip results 

in a 40% error in the Gs estimation. Assuming thus that Gs
EV = 9.0 ± 1.7 μN/m and taking 

into account the micropipette aspiration analysis in §3.2, the corresponding values of the 

shear elastic modulus can be obtained for the Skalak, neo-Hookean and Yeoh laws. For the 

range of pressure differences and, therefore, aspiration lengths considered here, it is found 

that Gs
SK ∈ [2.6, 7.7] μN/m, Gs

NH ∈ [7.3, 10.7] μN/m and Gs
YE ∈ [3.7, 10.2] μN/m. As mentioned by 

Dimitrakopoulos [11], the values range of Gs for the neo-Hookean and Yeoh laws should be 

scaled up by a factor of 1.3, resulting in Gs
NH ∈ [9.7, 14.3] μN/m and Gs

YE ∈ [4.9, 13.6] μN/m, to 

implicitly account for the area incompressibility constraint, which is satisfied in the cases of 

Evans and Skalak laws by explicitly assigning a large value to the area dilatation modulus. 

Here, we have chosen: Gs
SK = 4.0, 5.0, 6.0 μN/m and Gs

NH/YE = 10.0, 12.0 μN/m, which are 

within the theoretically predicted ranges. Although the values of Gs
YE lie towards the upper 

theoretical limit, they were chosen such that a one-to-one comparison is allowed between 

the results of the neo-Hookean and Yeoh laws. The summary of the simulation parameters is 

finally shown in Table 2.

4.2.3. Effect on the aspiration length and the erythrocyte membrane area
—Figure 6(b) presents the results of the dimensionless aspiration length L′ = Lasp/Rpip as 

a function of the normalized pressure difference ΔP′ = ΔP ⋅ Rpip/2. The results for the 

different constitutive laws are compared with the experimental ones of Waugh & Evans 

[45]. Considering Skalak law with Gs
SK = 5.0 μN/m, a good agreement with the experimental 

results can be reached only for the intermediate pressure differences, with the relative error 

in L′ being less than 6.1%. At ΔP′ = 8.5 and 25.2 μN/m, the discrepancy in the prediction 

of L′ is higher than 20 and 10%, respectively. By increasing the erythrocyte membrane 

stiffness to Gs
SK = 6.0 μN/m, a better agreement with the experimental estimation of L′

can be obtained at ΔP′ = 8.5 μN/m, with the relative error reduced to 12.8%. A further 

increase in Gs
SK, such as 7.0 μN/m, would improve the agreement with the reference result 

of Waugh & Evans [45] for the lowest ΔP′. Similarly, the computationally predicted L′
at ΔP′ = 25.2 μN/m agrees excellently with the corresponding experimentally determined 

value when reducing the RBC stiffness to Gs
SK = 4.0 μN/m. The relative error is less than 
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1.1%. It is noteworthy that both Gs
SK = 7.0 and 4.0 μN/m for which an excellent agreement 

with the reference results at the lowest and highest ΔP′ can be respectively expected or 

observed correspond to values of Gs
EV close its upper limit, that is Gs

EV = 10.7 μN/m. For 

the neo-Hookean law with Gs
NH = 10.0 μN/m, corresponding to Gs

EV = 7.5 μN/m, the aspiration 

length is significantly overestimated in all cases, with the relative error being 13 − 25%. 

Increasing Gs
NH to 12.0 μN/m, corresponding to Gs

EV = 9.0 μN/m, results in a good agreement 

with the experimental data at ΔP′ < 20.0 μN/m. The relative differences in L′ are less than 

2.5% at ΔP′ = 8.5 and 13.2 μN/m and 7.0% at ΔP′ = 15.8 μN/m. The deviation observed for 

the higher pressure differences could be reduced if a higher value of Gs
NH was considered, 

for example 14.0 μN/m. This value corresponds to Gs
EV = 10.5 μN/m. The Yeoh law with 

Gs
YE = 10.0 μN/m performs adequately with the discrepancies in the estimated aspiration 

length ranging from 5% to 12%. An excellent agreement can be achieved by increasing 

Gs
YE to 12.0 μN/m, with the relative error in L′ being less than 3.5% in all cases. It is 

worth mentioning that, as expected by the micropipette aspiration analysis in §3.2, the neo-

Hookean and Yeoh laws predict similar aspiration lengths for the same value of shear elastic 

modulus at ΔP′ < 10.0 μN/m, for which L′ ≤ 1.5. It is clear that only Yeoh law is capable 

of accurately estimating the aspiration length at the whole range of pressure differences for 

a single value of shear elastic modulus. Finally, it should be noted that, despite the large 

deformations the aspirated RBC undergoes, the variations in the erythrocyte membrane area 

are negligible for all constitutive laws. For Skalak law, the area dilatation is restricted to 

0.15%. For neo-Hookean and Yeoh laws, the maximum area dilatation is respectively found 

to be 0.8% and 0.3%.

4.2.4. Effect on the erythrocyte morphology—Although both the neo-Hookean 

and Yeoh laws satisfy implicitly the area-incompressibility constraint in the micropipette 

aspiration simulations performed here, differences in the aspirated RBC shape found by 

the aforementioned and Skalak laws were observed. Figure 6(c) illustrates the erythrocyte 

membrane shapes as obtained by Skalak and Yeoh laws at the highest pressure difference, 

ΔP′ = 25.2 μN/m(ΔP = 56 Pa). Results are presented for Gs
SK = 4.0 μN/m and Gs

YE = 12.0 μN/m
since an excellent agreement with the experimentally estimated aspiration length could be 

achieved for these values of shear elastic modulus in both cases. The shapes resulting 

by the use of the neo-Hookean law are omitted as they are identical to those found by 

employing Yeoh law. As can be seen, the erythrocyte membrane exhibits wrinkling at the 

part of its exterior surface being close to the pipette tip when Yeoh law is considered. At 

ΔP′ < 15.0 μN/m, all constitutive laws produce the same RBC shape. The wrinkling appears 

slightly in the neo-Hookean and Yeoh law cases at ΔP′ = 15.8 μN/m(ΔP = 35 Pa), and it 

becomes more apparent at the higher pressure differences (ΔP ≥ 45 Pa). Folding/buckling 

of the erythrocyte membrane has been reported to occur during micropipette aspiration 

experiments [44, 46]. Evans et al. [47] observed such wrinkling when performing aspiration 

experiments with normal and sickle erythrocytes in micropipettes with inner diameter of 

1.5 μm at a suction pressure of 45 Pa. It is expected that wrinkling will appear at lower 

suction pressures for micropipettes of higher inner diameter, which facilitate the aspiration 

of erythrocytes. Here, the threshold suction pressure for wrinkling to occur is evaluated 

at 35 Pa for micropipettes with inner diameter of 1.8 μm, while it can be easily observed 

Pepona et al. Page 19

Comput Math Appl. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at ΔP ≥ 45 Pa. These experimental observations suggest that the RBC shape found by the 

neo-Hookean and Yeoh laws may correspond to reality; however, more evidence should 

be provided in future micropipette aspiration experiments to verify the exact wrinkling 

morphology.

5. Conclusions

Given the molecular structure complexity of red blood cells, it should not be expected that 

any of the constitutive laws, currently available in the literature, may accurately predict 

all potential erythrocyte behaviours [48]. Yet, it is essential to elucidate their capability of 

accurately capturing the erythrocyte behaviour in terms of different levels of deformation. 

The present work provides insight into the range of applicability of the most commonly 

used constitutive laws in the modelling of the erythrocyte membrane response, that is 

the Skalak, neo-Hookean, and Yeoh laws. We have focused on the moderate and large 

deformation regime, which is commonly encountered also in physiological settings. Two 

configurations, namely optical tweezers and micropipette aspiration, have been examined 

here by means of computational modelling. These configurations allow us to rigorously 

compare constitutive laws for two reasons. First, experimental measurements are available 

in the literature, and, second, relationships between the shear elastic modulus values of the 

different constitutive laws can be theoretically derived. Finally, these configurations allow us 

to cover deformations across all planes, with the erythrocyte being subjected to deformations 

in the axial and transverse planes in the optical tweezers experiment, and in the lateral plane 

during micropipette aspiration.

For the optical tweezers experiment, it has been found that all constitutive laws considered 

here are able to adequately predict the force-extension experimental data, i.e. the axial 

and transverse diameters, over the full deformation range for a constant value of their 

shear elastic modulus. For Skalak law, the optimal value of Gs lies between 4.0 and 

5.0 μN/m, while this value raises up to 12.0 and 10.0 μN/m when considering, respectively, 

the neo-Hookean and Yeoh laws. Although these values of Gs
NH and Gs

YE result in a good 

agreement with experimental data for the axial diameter of the stretched erythrocyte, a 

slight overprediction of ∼ 8% appeared to occur for the transverse diameter. It is worth 

mentioning that, as predicted by the theoretical analysis of uniaxial extension, the neo-

Hookean and Yeoh laws produce identical deformation in the axial direction at FOT ≤ 48 pN, 

corresponding to a maximum extension of ∼ 40%, for the same value of Gs. The differences 

in DA between these two laws become apparent at FOT > 88 pN, when the RBC has 

stretched at least ∼ 65% of its initial size, and can be attributed to the change in Yeoh 

law’s nature (from strain-softening to strain-hardening) which occurs at a RBC extension 

of ∼ 70%. It should also be noted that the results for DA of Yeoh law match those of 

Skalak law at FOT > 170 pN, corresponding to extensions of ∼ 100%, when Gs
YE = 2Gs

SK, as 

anticipated by theory. With respect to the transverse diameter, the following trends have 

been revealed: 1. varying the shear elastic modulus value does not influence significantly 

the estimation of DT for any constitutive law, and 2. the neo-Hookean and Yeoh laws predict 

similar results, demonstrating that the cubic extension term in Yeoh law has a negligible 

effect on the RBC deformation in the transverse direction. Regarding the morphology, a 
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folding on the erythrocyte membrane, similar to that observed in experiments, can be seen 

when considering the neo-Hookean and Yeoh laws, indicating that these laws maintain the 

RBC’s biconcave shape. On the contrary, the erythrocyte shape gradually transitions from 

biconcave to rounded with increasing FOT  for Skalak law. This transition is delayed with 

increasing value of the shear elastic modulus. Lastly, the erythrocyte membrane area does 

not sustain significant variations in the case of Skalak law, when sufficiently high values of 

its dilatational modulus are considered, as opposed to the neo-Hookean and Yeoh laws. A 

short summary of the findings for the optical tweezers experiment can be found in Table 3.

For the micropipette aspiration experiment, it has been demonstrated that only Yeoh law is 

able to precisely predict the aspiration length across the entire range of suction pressures 

considered here for a fixed shear elastic modulus value, found to be Gs
YE = 12.0 μN/m. For the 

Skalak and neo-Hookean laws, the shear elastic modulus value, for which a good agreement 

can be obtained with the experimental results, is dependent on the applied suction pressure, 

and, thus, the resultant deformation. It has been shown that the Gs value should vary between 

4.0 to 7.0 μN/m for Skalak law, and 12.0 to 14.0 μN/m for the neo-Hookean model. In 

accordance with the theoretical analysis, similar aspiration lengths are predicted by the 

neo-Hookean and Yeoh laws for the same value of shear elastic modulus when L′ ≤ 1.5. 

Importantly, it has been revealed that wrinkling occurs on the erythrocyte membrane for 

suction pressures ΔP ≥ 35 Pa when considering the neo-Hookean and Yeoh laws, but not the 

Skalak law. It is noteworthy that the threshold suction pressure for wrinkling to appear in 

our simulations, i.e. ΔP = 35 Pa, is close to that experimentally observed, that is 45 Pa [47]. 

The discrepancy between the two may be attributed to the difference in the inner diameter of 

the pipette considered here (1.8 μm) and used in the experiments (1.5 μm). Finally, negligible 

variations in the erythrocyte membrane area have been reported for all constitutive laws. The 

computational findings for the micropipette aspiration experiment are summarized in Table 

4.

The current study paves the way for further investigations on the effect of constitutive law 

on the erythrocyte behaviour. More physiologically relevant configurations, such as the flow 

of red blood cells through narrow slits similar to those encountered in the spleen, are worth 

exploring in the future. Varying the erythrocyte properties also merits further study, as any 

variation will reflect on the shear elastic modulus value predicted by each constitutive law.
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Appendix: Stresses and forces computation

Stresses computation

Following Green & Adkins [84], we express the erythrocyte membrane mechanics problem 

in the curvilinear coordinate system defined by ξ1 and ξ2. Let X0 ξ1, ξ2  and X ξ1, ξ2, t  be 

the position of a given membrane material point in the reference and deformed states, 

respectively. To describe elastic deformations of a curved surface, it is convenient to use the 

local covariant A1, A2, n  and contravariant A1, A2, n  bases in the deformed state, composed 

of the tangent vectors

Aα = X, α = ∂X
∂ξα

, α = 1, 2,

(32)

and the outward unit normal vector n. The covariant metric and curvature tensors are defined 

in the deformed state as

Aαβ = Aα ⋅ Aβ,

(33a)

Bαβ = Aα, β ⋅ n = ∂Aα
∂ξβ

⋅ n,

(33b)

where α, β = 1, 2. The contravariant representations Aαβ and Bαβ of the metric and curvature 

tensors are defined similarly to Eq. (33), and satisfy the following conditions: AαγAγβ = δβ
α

and BαγBγβ = δβ
α, where δβ

α is the Kronecker delta. The same quantities can be defined in the 

reference state, i.e. Aα
0, Aαβ

0 , Bαβ
0 , etc.

The surface deformation gradient tensor F = Aα ⊗ A0α
 is such that dX = F ⋅ dX0. The Green-

Lagrange strain tensor E is defined as E = 1
2 (C − I), where C = FT ⋅ F is the right Cauchy-

Green tensor, and its strain invariants are given by

I1 = 2 tr(E) = tr(C) − 2 = λ1
2 + λ2

2 − 2,

(34a)

I2 = 2 det (E) = det (C) − 1 = λ1
2λ2

2 − 1,

(34b)
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with λ1 and λ2 being the principal extension ratios. The Cauchy tension tensor T, which 

depends on the strain energy function of the chosen constitutive law, is expressed as

T = 1
Js

F ⋅ ∂W s
∂E ⋅ FT ,

(35)

where the Jacobian Js = λ1λ2 represents physically the ratio between the deformed and 

reference local surface areas. The contravariant representation of T takes thus the form [27, 

85]

Tαβ = 2
Js

∂W s
∂I1

A0αβ
+ 2Js

∂W s
∂I2

Aαβ .

(36)

Finally, the membrane and bending stresses due to the Helfrich bending energy, Eq. (13), 

can be found as [86]

σαβ = 2
A

∂ Aℰb
∂Aαβ

= kb
2 4κ2Aαβ − 8κBαβ ,

(37a)

μαβ = ∂ℰb
∂Bαβ

= kb
2 4κAαβ ,

(37b)

with A being the determinant of the local metric.

Forces computation

The characteristic feature of the Loop subdivision surfaces is that the displacement field 

within an element does not depend on the displacements of only the vertices composing the 

element, but also of its 1-ring neighboring vertices, that is the vertices sharing 1 edge with it. 

For a given element e, the limit position Xe can be computed as [87]

Xe ξ1, ξ2 = ∑
n ∈ En

Nn
e ξ1, ξ2 Xn,

(38)

where the node n belongs to the 1-ring En about the element e, Nn
e are the shape functions, 

and Xn denotes the nodal coordinates. In the current work, we employ the box-spline shape 

functions as presented in the work of Cirak et al. [73].
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To calculate the surface force density Fm exerted by the membrane onto the surrounding 

fluids, the weak form of the equation describing the quasistatic mechanical equilibrium of 

the erythrocyte membrane

∇s ⋅ Tαβ + σαβ + μαβ + Fv − Fm = 0

(39)

needs to be solved, where ∇s denotes the surface gradient and Fv is the volume penalty force 

density corresponding to Eq. (14). The detailed solution process can be found in [86]. The 

surface force density of the lth vertex located at Xl can then be computed as [88]

Fm
l = Fm

∫SNl
edS .

(40)
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Figure 1: 
Variation of the shear elastic modulus Gs of the neo-Hookean (NH) and Yeoh (YE) laws, 

normalized with the shear elastic modulus of Skalak law Gs
SK , with respect to the principal 

extension ratio λ1, so that all constitutive laws produce the same principal tension T1.
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Figure 2: 
Variation of the shear elastic modulus Gs of the Skalak (SK), neo-Hookean (NH) and 

Yeoh (YE) laws, scaled with the shear elastic modulus of Evans law Gs
EV , with regard to 

the dimensionless aspiration length Lasp/Rpip, so that all constitutive laws result the same 

micropipette suction pressure ΔP .
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Figure 3: 
(a) Illustration of the computational setup used to simulate the optical tweezers experiment 

[10]. A stretching force is applied to N+ and N− vertices, depicted by black square markers, 

representing physically the contact area of diameter dc between the silica microbeads and the 

RBC. (b, c) The axial DA and transverse DT diameters along with the in-plane LP and folding 

LF lengths characterize the deformation of the RBC, once the latter reaches mechanical 

equilibrium.
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Figure 4: 
(a) Comparison of the axial (DA) and transverse (DT) diameters obtained for the different 

constitutive laws with the experimental results of Mills et al. [10]. (b) Evolution of the 

in-plane (LP) and folding (LF) lengths with the stretching force magnitude, and comparison 

with the numerical results of Sigüenza et al. [9]. (c) Variation of the erythrocyte membrane 

area with FOT .
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Figure 5: 
Visualization of the deformed red blood cell shape at: (a) FOT = 67 pN, (b) FOT = 130 pN, 

and (c) FOT = 193 pN. Due to symmetry, only half of the erythrocyte membrane is presented.
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Figure 6: 
(a) Schematic diagram of the computational setup employed in the micropipette aspiration 

simulations. A red blood cell is aspirated into a pipette of length Lpip, inner radius Rpip

and thickness W pip. When the RBC reaches mechanical equilibrium, its deformation is 

characterized by the aspiration length Lasp. (b) Comparison of the dimensionless aspiration 

lengths L′ = Lasp/Rpip found by the different constitutive laws at various (normalized) pressure 

differences ΔP′ = ΔP ⋅ Rpip/2 with the experimental results of Waugh & Evans [45]. (c) 

Visualization of the aspirated RBC shape for Gs
SK = 4.0 μN/m and Gs

YE = 12.0 μN/m at 

ΔP′ = 25.2 μN/m.
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Table 1:

Summary of the parameters for the optical tweezers simulation.

Parameter Value

Computational domain size, L × H × W −2D0, 2D0 × −D0, D0 × −D0/2, D0/2
Domain resolution, Δx′ D0/39
Fluid density, ρ = ρplasma 1025 kg/m3

Plasma kinematic viscosity, νamb = νplasma 1.2 × 10−6 m2/s

Cytoplasm kinematic viscosity, νcyto 6.0 × 10−6 m2/s

Kinematic viscosity ratio, λ = νcyto/νamb 5.0

Relaxation time, τ 1 for the plasma and 3 for the cytoplasm

RBC’s center of mass, cx, cy, cz (0,0,0)

RBC discretization, Nref, Nelem, Nver (5,20480,10242)

Shear elastic modulus, Gs Gs
SK = 4.0, 5.0 μN/m CSK = 100

Gs
NH = 10.0, 12.0 μN/m

Gs
YE = 10.0 μN/m

Bending elastic modulus, kb 1.8 × 10−19N ⋅ m
Volume penalty coefficient, kv 0.1

Vertex fraction, ε 0.02

Contact area diameter, dc 2.0 μm
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Table 2:

Summary of the parameters for the micropipette aspiration simulation.

Parameter Value

Computational domain size, L × H × W 8.6 μm × 11.5 μm × 11.5 μm
Pipette’s length, radius, thickness, Lpip, Rpip, W pip (4.3, 0.9, 0.8) μm

Domain resolution, Δx′ 0.088 μm

Fluid density, ρ = ρwater 1000 kg/m3

Water kinematic viscosity, νamb = νwater 1.0 × 10−6 m2/s

Cytoplasm kinematic viscosity, νcyto 6.0 × 10−6 m2/s

Kinematic viscosity ratio, λ = νcyto/νamb 6.0

Relaxation time, τ 1 for the water and 3.5 for the cytoplasm

RBC’s center of mass, cx, cy, cz (−1.6,0,0) μm

RBC discretization, Nref, Nelem, Nver (5,20480, 10242)

Shear elastic modulus, Gs Gs
SK = 4.0, 5.0, 6.0 μN/m CSK = 100

Gs
NH = 10.0, 12.0 μN/m

Gs
YE = 10.0, 12.0 μN/m

Bending elastic modulus, kb 1.8 × 10−19 N · m

Volume penalty coefficient, kv 0.1
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Table 3:

Summary of the optical tweezers findings.

Skalak neo-Hookean Yeoh

Shear elastic modulus, Gs [4.0, 5.0] μN=m 12.0 μN/m 10.0 μN/m

Axial diameter, DA ✔ ✔ ✔

Transverse diameter, DT ✔ slightly overpredicted slightly overpredicted

Erythrocyte folding ✘ ✔ ✔

Area-incompressibility ✔ ✘ ✘
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Table 4:

Summary of the micropipette aspiration findings.

Skalak neo-Hookean Yeoh

Shear elastic modulus, Gs [4.0, 7.0] μN/m [12.0, 14.0] μN/m 12.0 μN/m

Aspiration length, L′ Gs-dependent Gs-dependent Gs-independent

Erythrocyte wrinkling ✘ ✔ ✔

Area-incompressibility ✔ ✔ ✔
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