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Abstract
Computational pathology refers to applying deep learning techniques and algorithms to analyse and interpret
histopathology images. Advances in artificial intelligence (AI) have led to an explosion in innovation in computa-
tional pathology, ranging from the prospect of automation of routine diagnostic tasks to the discovery of new
prognostic and predictive biomarkers from tissue morphology. Despite the promising potential of computational
pathology, its integration in clinical settings has been limited by a range of obstacles including operational, technical,
regulatory, ethical, financial, and cultural challenges. Here, we focus on the pathologists’ perspective of computa-
tional pathology: we map its current translational research landscape, evaluate its clinical utility, and address the
more common challenges slowing clinical adoption and implementation. We conclude by describing contemporary
approaches to drive forward these techniques.
© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Rapid advances in molecular diagnostics, bioinformat-
ics, and computer hardware have facilitated innovation
in healthcare technology, including improved diagnos-
tic, predictive, and prognostic pathways and treatments
for cancer patients [1]. With a globally ageing popula-
tion and increased early detection, and thus increased
incidence, of disease [2–4], the necessity for more cost-
effective, agile, efficient, and equitable healthcare
systems is driving public and private funding streams

in translational and commercial research in this space [5].
Diagnostic pathology, the gold standard of cancer diag-
nostics, is transitioning to a digital workflow (digital
pathology) and will switch from bright-field microscopy
to digital image assessment (Figure 1). This progression
is spurring interest in computational pathology [6,7].
Over the last decade, progress in radiomics and multi-

omics technology has generated a comprehensive map
of the molecular dynamics that govern cancer, aiding in
the discovery of new prognostic biomarkers and treat-
ment targets. Some technologies have successfully been

Journal of Pathology
J Pathol August 2023; 260: 551–563
Published online 14 August 2023 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/path.6163

INVITED REVIEW

© 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

https://orcid.org/0009-0006-7638-6431
https://orcid.org/0000-0003-2434-4978
https://orcid.org/0000-0001-5720-7422
https://orcid.org/0000-0002-8689-5508
https://orcid.org/0000-0002-1864-4301
https://orcid.org/0000-0002-5374-3903
https://orcid.org/0000-0002-1110-3801
https://orcid.org/0000-0003-3434-201X
mailto:anita.grigoriadis@kcl.ac.uk
http://wileyonlinelibrary.com
http://creativecommons.org/licenses/by/4.0/


translated to provide clinically usable insights and guide
the care of cancer patients [8]. In contrast, conventional
histopathology, at the core of cancer diagnostics, has yet
to experience such a technological evolution [1,8].
Histopathologists not only diagnose cancer based on an
assessment of tissue sections but also provide prognostic
information, for example by subtyping and grading the
disease, and patient treatment is largely decided on such
characteristics. Decisions are based on complex visual
features and require significant skill and training [9].
However, a shortage of new entrants in histopathology,
along with an increasing workload, is of concern
[10–12]. To tackle these challenges, advances must be
targeted towards developing computational tools that
can aid pathologists in performing their routine diagnos-
tic work and alleviate their heavy workload, as well as
potentially unlocking new insights to further precision
medicine. Investments are needed in the following four
critical computational pathology domains: the develop-
ment of AI algorithms, the infrastructure and data
management, the integration of machine learning and
analytics into the diagnostic workflows, and collabora-
tive research initiatives.
Computational pathology utilises deep learning

methods to examine whole slide image (WSI) tissue
samples. It aims to create algorithms to execute standard
diagnostic procedures, to establish models that scrutinise
tissue morphology to predict diagnostic and molecular
changes or discover novel biomarkers [1,7,8,13,14].
However, there has been a slow uptake in the diagnostic
setting due to several operational, technical, regulatory,
ethical, financial, and cultural challenges. Centred on the
pathologists’ view, this review describes in detail
the current computational pathology landscape, outlines
key challenges hindering its progress, illustrates the
commercial environment, and explores potential ave-
nues towards adopting these technologies by healthcare
systems (Figure 1).

The translational landscape

Routine histopathology diagnostics: cancer
diagnosis, subtyping, and grading
The 2016 CAMELYON challenge was a launch pad for
computational pathology research that stimulated col-
laboration between oncology, pathology, and computer
science communities [15]. Both CAMELYON16 and
CAMELYON17 challenges demonstrated AI’s potential
to automate the time-consuming diagnostic histopatho-
logical task of lymph node assessment for cancer staging
purposes; convolutional neural network (CNN) models
achieved comparable accuracies to pathologists in
detecting metastasis [15–17]. Computational pathology
algorithms based on CNNs have since demonstrated
expert-level performance across a range of pathology
tasks prone to inter-observer variability, including, but
not limited to, diagnosing and grading prostate cancer
[18–20], counting mitoses in breast cancer [21], grading
tumour budding in colorectal cancer [22], or diagnosing,
subtyping, and detecting associated gene mutations in
lung cancer [23–27].

Detecting known biomarkers with computational
pathology
Computational pathology methods have been
implemented to capture known biomarkers directly from
WSIs, such as the expression of oestrogen receptor (ER),
human epidermal growth factor receptor 2 (HER2), and
programmed cell death protein 1 (PD-1) and its ligand
PD-L1 [27–29]. However, immunohistochemical (IHC)
assays notoriously suffer from a lack of standardisation
in both pre-analytical and scoring methodologies.
Genetic alterations, on the other hand, may cause a
diverse spectrum of morphological features, as is the
case in salivary gland tumours where single gene
rearrangements define a subtype [30–32]. In these

Figure 1. Schematic diagram of the topics discussed in the review. In the conventional histopathology workflow, slides are assessed by a
pathologist under a bright-field microscope. In the digital pathology workflow, slides are scanned with a whole slide image (WSI) scanner and
pathologists assess WSIs digitally on a computer. Challenges to transit from a conventional to a digital pathology workflow are listed.
Opportunities in the translational landscape and key topics for the adoption of computational pathology are indicated. This figure was
created with the aid of BioRender.com.
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situations where the ground truth may be difficult to
establish, computational pathology approaches for
detecting molecular biomarkers from H&E-stained
tissues may add yet another level of complexity. Thus,
whilst the potential to implement molecular testing from
digitised H&E-stained tissue is encouraging, significant
validation is still required to determine whether compu-
tational pathology pipelines will demonstrate clinical
utility.

Clinical guidelines recommend genetic testing in
some patients with solid malignancies; unfortunately,
these assays often have long turnaround times, are
expensive, and have taxing sample requirements [13].
These limitations have so far hindered widespread geno-
mic and molecular profiling implementation, particu-
larly as the number of clinically actionable targets
keeps increasing. There is a demand for inexpensive
and scalable testing options that slot into the routine
diagnostic pathway [13,23,33–36]. Since the genetic
landscape impacts on a cancer phenotype, capturing
the morphology of a lesion and its microenvironment
by computational pathology offers a potential alternative
[13]. Indeed, CNN models applied to routine H&E-
stained tumour sections have been described for the
prediction of biomarkers such as mutations in KRAS
[23,34], BRAF [33,34], TP53 [23,34,36,37], microsatel-
lite instability [34], and tumour mutational burden
(TMB) [35]. Moreover, weakly supervised CNN
model-based frameworks utilise information from histo-
pathology and other clinical reports as the ground truth
label for an entire WSI in a classification or segmenta-
tion task [38]. Without a priori manual annotations,
these networks learn to localise specific regions associ-
ated with a particular clinical, pathological, or genomic
label [33,34,39,40]. One weakly supervised model dis-
covered a new set of genotype–phenotype associations
between histological tissue patterns and homologous
recombination deficiency (HRD), a genomic aberration
in a DNA damage repair pathway often found in cancers
of patients with germline BRCA1/2 mutations. The AI
model, trained to detect HRD, identified the enrichment
of carcinomatous cells with clear cytoplasm and
intratumoural fibrosis as a phenotypic signal of this
deficiency [40].

The composition of the tumour microenvironment
(TME) in solid cancers plays a key role in cancer initi-
ation and progression [6]. Spatial analysis powered by
AI has helped to decipher the TME and revealed path-
ways contributing to both immune escape and the lack of
immune cell ingress [41]. Computational pathology
methodologies capturing tumour-infiltrating lympho-
cytes (TILs) on H&E-stained breast and other cancers
according to guidelines defined by the International
Immuno-Oncology Biomarker Working Group, also
called the TILs-WG [42], have shown potential in
predicting clinical outcome [38,43–45]. The TILs-WG
has organised a public grand challenge for computa-
tional assessment of TIL-counts alone and integrated
into nomograms with established prognostic variables.
In head and neck malignancies, AI-based methodologies

for detecting TILs have shown superiority in separating
patients’ outcomes compared with manual TILs scoring
and a better delineation of stromal TILs from native
lymphocytes in lymphoepithelial tissues such as the
oropharynx [46]. Our group has repeatedly demon-
strated that assessing immune responses in lymph nodes
of triple-negative breast cancer (TNBC) patients adds
prognostic value [43,47,48]. In particular, the formation
of germinal centres and an expanded sinus surface area
in a patient’s lymph nodes are associated with longer
intervals of disease recurrence [43]. By implementing a
multi-scale CNN-based framework, germinal centres
and sinuses on digitised H&E-stained axillary lymph
node sections were robustly quantified, comparable with
inter-pathologist assessments [48,49].
Computational pathology may offer opportunities to

detect early signs of precancerous changes in normal
tissue. The assessment of premalignant lesions and
potential precursor lesions that may or may not
become invasive in a patient’s lifetime suffers from poor
inter-observer reproducibility [50–54]. Grading of oral
dysplasia [52,53] and ductal carcinoma in situ (DCIS)
[38,51], a non-obligate precursor and risk factor of inva-
sive breast cancer, are prime candidates for AI-based
approaches. Given our limited knowledge of precancer-
ous tissue characteristics, AI-assisted computational
pathology pipelines may reveal new features in seem-
ingly normal tissue and, as such, offer new tools for early
cancer detection approaches.

Towards adoption in the diagnostic
histopathological path

Whilst translational research in computational pathology
has created a plethora of AI tools over the last decade,
the clinical utility of these pipelines will ultimately be
determined by the pathologists using them and their
impact on improving patient outcomes. Similar to the
application of AI-based analytics to mammography in
breast radiology, there is an underlying question of
whether AI-based diagnosis will be sufficiently accurate
to be of value to histopathologists. The quantification of
features that are time-consuming and poorly reproduc-
ible through manual assessment, such as the scoring of
biomarkers like Ki67 or TILs (as described above) in
breast or prostate cancer grading, is an area where
pathologists are looking at computational pathology.
For some of these features, image analysis is proven to
be non-inferior to pathologists’ interpretation, despite
the recognised difficulties in standardising pre-analytical
components and the added complexity of digital
pathology (e.g. image variability due to using different
scanners) [55,56].
Computational pathology’s utility beyond diagnostics

has so far largely been understudied. It can be readily
incorporated into routine laboratory practice to
strengthen existing quality control measures and quality
improvement strategies. This is especially important in
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cancer diagnostics, where the quality of tissue staining is
critical for accurate histopathological appraisal and pre-
cision grading of tumours. Computational pathology
algorithms that first evaluate tissue sections for staining
quality can thereby contribute to improved turnaround
times by ensuring that histopathologists will receive
slides that are optimal for reliable assessment.
Additionally, they could potentially be used as a pre-
screening tool for enrolment of patients in clinical trials
based on the morphology of their tumours. Automated
AI systems may well recuperate some of a pathologist’s
time, but the ultimate benefit will be measured, similar to
the clinical utility of genomic testing [57], by their
likelihood of improving health care outcomes.
As well as application in the assessment of time-

consuming and relatively ‘mundane’ scoring tasks, com-
putational pathology solutions may have value for
‘triaging’ cases [54,58]. For example, the detection of
lymph node metastasis is critical for the diagnosis and
staging of many solid tumours, and pathology modern-
isation programmes in hospitals have started to evaluate
AI-based tools to support the pathologists’ workload
and improve the speed of assessment of microscopic
examination [59]. Computational pathology pipelines
need large-scale validation before obtaining regulatory
approval; however, they will have a positive impact on
cancer diagnosis turnaround times.
Current clinical pathways are based on the human

interpretation of histopathology slides, and the role of
AI algorithms in clinical practice needs to be
ascertained. For example, invasive breast cancer is
defined as HER2-positive if >10% of tumour cells show
strong, complete membrane reactivity [60]. An AI algo-
rithm could potentially distinguish between 8%, 10%,
and 12% HER2-positive staining, something the human
eye cannot discern. Since we do not know the clinical
significance of these small deviations of HER2-positive
staining, clinical trials must now be designed to validate
AI-based HER2 scoring. Quality control (QC) and qual-
ity assurance (QA) programmes that are mandatory in
histopathology services are also excellent examples for
similar programmes that will be required with AI algo-
rithms at their core. For example, programmes will need
to consider periodic or continuous monitoring of the data
being fed into an algorithm and will be essential to
monitor the impact of both changes to the underlying
data distribution (data drift) and the relationship between
the input data and output variables (concept drift) on the
model predictions and their deviations from expected
outputs. The magnitude of these deviations and overall
model drift are likely to guide periodic retraining of
deployed AI algorithms so that they remain relevant for
their respective application. While several of these con-
cepts have long existed in the pathology laboratory to
guarantee accurate assessment, guidelines ensuring that
the AI algorithms retain clinical confidence must be
implemented. The diagnostic quality model (DQM)
was recently proposed to offer an operational framework
to guide the implementation of computational pathology
into clinical practice and to measure its nested impact at

the diagnostic test, procedure, laboratory, or healthcare
ecosystem level [61].

Consistency of results across computational pathol-
ogy tools on the same set of WSIs is a critical issue that
will likely hinder their clinical utility and ultimate ben-
efit to patients. The assessment of standard biomarkers,
such as histological grade in breast cancer, has always
suffered from moderate concordance across patholo-
gists, yet is still applied in daily practices worldwide.
Although a degree of discordance is generally accepted
amongst pathologists due to the human nature of manual
assessment, AI-based tools will not be given the same
leniency, potentially due to several (un)conscious rea-
sons (e.g. added costs for implementation and deploy-
ment). This is topped by a current issue, whereby
different computational pathology solutions developed
for the same task exhibit significant variability. One
example is an AI-based tool for HER2-low detection
[62], which as a consequence could lead to different
centres treating a patient differently. The fragmented
approach to standardisation and regulatory approval of
different assays as companion diagnostics is of concern,
as we have seen for the detection of biomarkers such as
PD-L1 in TNBC, where different scoring methods, pos-
itivity thresholds, assay sensitivity, and multiple other
factors lead to different positive prevalence rates. Using
computational pathology tools as companion diagnos-
tics in prospective clinical trials may be prone to diver-
gent outcomes for selecting patients for treatment unless
solutions such as concordance studies to harmonise sim-
ilar AI-based companion assays from different manufac-
turers have been set in place [63]. Computational
pathology tools must be subjected to similar evaluations
before gaining regulatory approval, and reference mate-
rials need to be developed by healthcare authorities to
facilitate robust analysis of the efficacy of these applica-
tions. Furthermore, formally determining the clinical
utility of a prognostic or predictive biomarker currently
requires prospective randomised trials. It is rather
unlikely that trials will be designed to demonstrate that
the AI-derived biomarker expression shows the same
clinical utility as previously demonstrated. The question
then arises: what is the best way to demonstrate the
clinical validity of these tools? Recently, there have been
studies showing that real-world data can give similar
evidence to randomised clinical trials [64,65].
Observational studies, based on the collection of
real-world data in our hospitals and biobanks, could
potentially be leveraged to validate clinical utility for
computational pathology tools.

A looming question remains as to whether clinical-
grade computational pathology tools need to be
fully interpretable for medical diagnostics. AI-based
models are commonly described as unaccountable
‘black-boxes’, due to the opaque nature of their decision
process [1,8,38,66]. Explainable models require
methods that abstract the exact underlying rules that
form a neural network’s decision. Such a requirement
was challenged in a recent survey of 25 pathologists on
their views towards digital pathology, which ultimately
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found that the majority doubted that this would hinder
adoption [67]. As it seems, the algorithm predictions’
robustness, validity, and consistency are likely more
critical to pathologists for their routine clinical practice.

As AI progresses towards greater integration with
diagnostic pathology, pathologists must become central
members of the ‘computational pathology’ team. The
successful adoption of AI algorithms in pathology is
dependent on adequately training pathologists to gain
knowledge and understanding of AI model training and
familiarity with the relevant software. Incorporating AI
subjects in clinical training and integrating AI models
into existing postgraduate teaching platforms may help
to overcome these challenges and, in parallel, entice the
new generation of medical students towards computa-
tionally driven diagnostics. This will further encourage
future histopathologists to embrace computational
pathology as an adjunct diagnostic tool.

Challenges of building clinical-grade
computational pathology systems

The road to clinical adoption of computational pathol-
ogy is paved with a number of challenges, summarised
in Table 1.Whilst a more detailed review can be found in
the corresponding computational pathology article of
this annual review issue by Professor Rajpoot’s group
[68], we highlight some key areas of concern focused on
the pathologists’ perspective.

Operationally, integrating computational tools into
the current workflow of pathologists poses two signifi-
cant challenges. Expensive infrastructure to digitise,
store, and manage WSIs will need to be integrated into
clinical pathways with minimal impact and disruption to
laboratory daily practice [14]. Pathologists will require
time and training to adapt to this new digital workflow.
Technically, the need for large datasets to build scalable
and robust AI and the lack of standardisation in data
collection and processing hinder the development and
validation of AI-based algorithms [39,66]. In particular,
model generalisation is a challenge in AI and is
compounded in pathology due to variations in the qual-
ity and staining of WSIs caused by the divergence in
tissue preparation, staining protocols, and slide scanning
machines used to digitise glass slides [1,8,14,66,69,70].
As such, technical variability must be represented in any
training data, and some have argued a minimum of
10,000 WSIs is needed to build clinical-grade computa-
tional pathology algorithms [39]. While training on
slides from multiple sources would provide a solid foun-
dation for developing robust AI models able to perform
across a wide range of real-world WSIs, sharing sensi-
tive datasets across institutions and possibly country
borders introduces logistical and legal challenges [66].
In the context of regulatory and ethical challenges, the
use of patient data for research and development requires
careful consideration and regulation to ensure privacy
and consent. WSIs do not contain any identifiable

embedded patient data, but accompanying clinical
and/or genomic information must be handled carefully
[14,71,72]. Paramount to the successful adoption of
computational pathology are standardised guidelines
and regulations for integrating AI in pathology, includ-
ing procedures on data acquisition, designing, training,
and validation of models that consider ethical and patient
privacy concerns [71,72]. Guidelines such as the ‘Good
Machine Learning Practice for Medical Device
Development: Guiding Principles’ from the Food and
Drug Administration (FDA) in the USA [73] and the
Medicines and Healthcare products Regulatory Agency
(MHRA) in the UK have provided a generalised frame-
work to build upon. The British Standards Institute (BSI)
has recently developed the first BSI standard for AI in
healthcare: BS 30440. However, currently, there is no
specific regulatory pathway for the approval of AI soft-
ware, with recent computational pathology device FDA
approvals falling under the de novo pathway [27].
Ultimately, the reported ethical–legal concerns regard-
ing the implementation of computational pathology in
daily practice can be mitigated by establishing robust
regulatory frameworks that specifically address issues
pertaining to accountability and liability. As an adjunct
diagnostic tool, however, computational pathology is
still subject to the expert discretion of the histopatholo-
gist, who remains the ultimate custodian of diagnostic
assessment.
Acquired datasets will, to some degree, represent

underlying social biases and, in turn, feed those
prejudices to the models [1,8,66]; this lack of diversity
could perpetuate the underrepresentation of patients
from minority groups and sub-populations with lower
socioeconomic status [71]. With a lower exposure to
histology from specific populations, models may be
prone tomore inaccurate diagnoses for these groups [66].
Therefore, creating fair and equitable systems is
fundamental to providing the best care and building
confidence and trust in computational pathology in
healthcare.
Financially, the cost of implementing andmaintaining

computational pathology systems can be a barrier to
adoption, especially in resource-limited settings. Even
if there is a clear benefit to pathologists’ efficiency and
patient care, there needs to be a clear economic argument
to motivate the relevant stakeholders that digital and
computational pathology are beneficial. There are high
upfront costs for the infrastructure. Although computa-
tional pathology can contribute to democratising care
across countries with different resources, installing the
digital infrastructure will be a barrier to using computa-
tional pathology in laboratories in middle- and low-
income countries. Simply put, we can use the blueprint
from other recent advances (e.g. next-generation
sequencing) that achieved economic sustainability by
demonstrating clinical utility.
As we are still in the early adopter phase of computa-

tional pathology, its current value resides in AI-based
research and education and to a lesser extent in its
immediate clinical application. The next step in
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establishing true innovations will be to ensure financial
sustainability. Prospective trials will have to demon-
strate the utility of computational pathology; however,
additional steps include policy development, negotia-
tion, and contracting, which are necessary to bridge the
last ‘valley of death’ in the translation, utility confirma-
tion, and integration of computational pathology inno-
vations. The successful integration of computational
pathology paradigms into clinical practice relies heavily
on securing sustainable funding, which requires an
understanding of the economic implications and local
cost containment strategies. Countries utilising reim-
bursement models will need to adapt these frameworks
to cover AI-assistive technologies, otherwise there may
be limited incentives to deploy computational pathology
software for diagnosis [27,66]. Thus, while the scientific
advancements in pathology are groundbreaking, the
financial sustainability of these innovations will be cru-
cial to their success. Ultimately, a robust local network
of digital pathology centres will facilitate economies of
scale by expanding the computational pathology com-
munity and, in turn, advancing the technology and the
regulatory environment to promote innovation.

A cultural shift is required for the successful adoption
of AI-based tools in pathology, with buy-in for
AI-powered diagnostics from both clinicians and
patients. Patients will need to be comfortable with a
diagnostics decision being driven by AI-based software,
and pathologists will need to be at ease working in
tandem with new tools to make clinical decisions.
Inertia to a change in direction of established practice
is common with technology. To start with, a paradigm
shift from traditional to digital pathology needs to hap-
pen in our hospitals before computational pathology can
be integrated into a clinical setting. Whilst the digital
transition is underway in some countries, many have yet
to begin. Continued translational research and clinical
evidence demonstrating the predictive power of compu-
tational pathology and its positive impact on patient care
will ultimately be the catalyst for pathology departments
worldwide to make the transition [12].

Towards implementation of computational
pathology

The application of computational pathology systems at
scale will initially depend on adopting digital and com-
putational pathology workflows as well as efficient lab-
oratory information management systems in the local
hospital setting (Figure 2). Ubiquitous adoption of dig-
ital pathology with appropriate infrastructure will fuel
the scaling of computational pathology, including curat-
ing multi-centric large-scale WSI datasets capturing
tissue staining heterogeneity and tackling current obsta-
cles of poor generalisation of models. Standardised pub-
lic datasets have become the norm for developing and
evaluating AI models in other fields, such as the
ImageNet Large Scale Visual Recognition Challenge in

computer vision [1,75,76]. As computational pathology
scales, public large-scale datasets [48] may become
more readily available and virtual biobanks comprising
large multinational cohorts can be created to advance
reliable prospective and retrospective tissue-based can-
cer research globally. Increased robustness, consistency,
and validity of AI models will further fuel confidence in
computational pathology.
Federated and swarm-based learning techniques pre-

sent a scalable network-based solution to leverage data
from multiple centres without compromising data pro-
tection requirements. In a federated approach, data
remain local to each centre and feed training of a
corresponding local model. Intermediate results from
local models are then aggregated by a single global
model, obviating the need for any sharing of data beyond
local firewalls (Figure 2) [77–80]. These strategies are
emerging as strong contenders for addressing many
challenges in developing AI models and could pave the
way to build robust, generalisable, secure, less-biased,
and collaborative computational pathology soft-
ware [66]. High-quality datasets will help to develop
models addressing diseases with lower incidence [81].
One such approach, continual learning, addresses the
problem of ‘catastrophic forgetting’, enabling models
trained on common carcinomas to adapt to smaller
datasets from less common diseases whilst maintaining
a robust memory of prior cancer [81].
Finally, the transformer engine of generative large

language neural networks has surpassed previous archi-
tectures in natural language processing tasks and has
begun to usurp CNNs in computer vision [82]. So far,
applications of these networks in computational pathol-
ogy are in their infancy, but their power to model long-
distance dependencies could unlock new insights into
computational pathology [83,84]. At the time of writing,
OpenAI released the latest in their GPT series, GPT-4, a
multi-modal model that understands both text and
images [85]. The interplay between natural language
and vision of these powerful models could, although
unlikely in the near term, lead to a fully automated,
interpretable computational pathology solution that
might learn from both clinical reports and WSIs to aid
pathologists in their digital assessment and help to pro-
duce a full histopathology report.

The commercial landscape
In 2021, 5 years after the CAMELYON16 challenge,
Paige (New York, USA) received the first FDA approval
for an AI product in computational pathology for
their Paige Prostate solution [8]. This year, the
ARTICULATE PRO project will evaluate the deploy-
ment of Paige Prostate in the prostate cancer pathway at
the Oxford University Hospitals (OUH) NHS
Foundation Trust. IBEX Galen (Tel Aviv, Israel) [86]
was recently awarded the Artificial Intelligence in
Health and Care Award and will begin deploying their
Galen Breast product in October 2023 to assess over
10,000 biopsies as part of routine practice across five
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NHS trusts in the Midlands (UK). Nevertheless, as of
April 2023, the FDA had approved fewer than ten AI-
enabled medical devices in pathology, compared with
nearly 400 in radiology. Similarly, only a small number
have so far achieved Conformité Européenne (CE)
marking in Europe. Besides Paige and IBEX, several
computational pathology companies [e.g. PathAI
(Boston, USA) [87], Aiforia (Helsinki, Finland) [88],
Proscia (Philadelphia, USA) [89], Owkin (New York,
USA) [90], and Panakeia (Cambridge, UK) [91]] are
developing commercial products aiming to assist in both
routine diagnostic tasks, ranging from breast and pros-
tate cancer diagnosis, grading and subtyping, lymph
node metastasis detection, to predicting molecular alter-
ations, overall survival, and response to treatment. For
instance, Aiforia has received CE approval for PD-L1
scoring, a biomarker of immunotherapy response [92];
Owkin has developed a model to predict the overall
survival of malignant mesothelioma patients [93]; and

PathAI has developed a pipeline for the prediction of
HRD from H&E-stained tissue [94]. The emergence
of these nascent ventures illustrates the hope and oppor-
tunity of computational pathology and points to the
areas within pathology where at least researchers and
the private markets believe computational pathology
can have the most impact. Globally, as pathology
departments continue to ‘go digital’ in the upcoming
years, the opportunities for computational pathology
diagnostics will continuously increase. One of the main
challenges with the imminent adoption of clinical com-
putational pathology applications resides in the lack of
appropriate regulatory approval pathways from agencies
such as the FDA and the CE [27]. In the UK, the MHRA
has announced the ‘Software and AI as a Medical
Device Change Programme’ to ensure that regulatory
requirements are fit for protecting patients and also
encourage innovation by not burdening prospective
ventures with high financial or regulatory costs.

Figure 2. Towards a scalable network-based solution of utilising computational pathology. On the left, Centre 1 shows a schematic of a
computational pathology workflow in a local setting. WSIs generated from daily practice, clinical trials, and registry trials are stored digitally
in a cloud-based WSI repository. The pathologist can access computational pathology software, which sits on top of the AI analytical engine
and the WSI management system and is connected to the local electronic health record system. External AI plugins can be added to the AI
analytical engine using programmes such as Python, OpenCV, and QuPath. On the right, an exemplar of a federated learning framework to
train a privacy-preserving multi-centric AI model using WSIs from three different centres is shown. Each centre trains a local model on its
respective dataset and at the end of each iteration of training, intermediate results are sent to a global model for aggregation. The global
model sends back the updated parameters to each local model for the next iteration of training. This framework respects data privacy as
datasets remain at the local site and encourages the development of robust computational pathology systems trained on large multi-centric
datasets. This figure makes use of the QuPath logo courtesy of the open source software QuPath [74] and the Python logo courtesy of the
Python Software Foundation (https://www.python.org/psf-landing). This figure was created with the aid of BioRender.com.
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Conclusions

AI-based tools have the potential to unleash a new era of
precision medicine in oncological pathology. If the bar-
riers to entry can be addressed, computational pathology
will expand the influence of morphological assessment on
diagnosis and treatment for cancer patients. All stake-
holders will need to act, and system design must be led
by pathologists as the ultimate users of these algorithms,
whilst regulators, including pathology bodies, will need to
produce guidelines and standards to harmonise best prac-
tices. Techniques such as distributed learning offer possi-
bilities for building scalable AI models from large
datasets without compromising data privacy. Over and
above histology, combining computational pathology
with molecular data from other nascent technologies
(e.g. single-cell sequencing, spatial transcriptomics, and
proteomics) will further advance our understanding of
the mechanisms that govern disease and potentially
inform on criteria for treatments. Finally, computational
pathology systems, for at least the foreseeable future,
should only be seen as tools, with ultimate medical deci-
sions remaining firmly in the pathologists’ hands.
Utilising computational pathology and AI similar to
advanced molecular technologies may eventually supple-
ment traditional morphological approaches to improve
patient care.
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