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ABSTRACT: The electrochemical transition metal-catalyzed cross-
dehydrogenative reaction has emerged as a promising platform to
achieve a sustainable and atom-economic organic synthesis that
avoids hazardous oxidants and minimizes undesired byproducts and
circuitous functional group operations. However, a poor mecha-
nistic understanding still prevents the widespread adoption of this
strategy. In this regard, we herein present an electrochemical
palladium-catalyzed oxidative coupling strategy to access biaryls in
the absence of a stoichiometric chemical oxidant. The robust
palladaelectrocatalysis considerably suppresses the occurrence of
homocoupling and oxygenation, being compatible even with
electron-deficient arenes. Late-stage functionalization and Boscalid
precursor synthesis further highlighted the practical importance of
our electrolysis. Remarkably, mechanistic studies including the evaluation of the reaction order of each component by variable time
normalization analysis (VTNA) and initial rate analysis, H/D exchange experiment, kinetic isotope effect, and stoichiometric
organometallic experiments provided strong support for the involvement of transmetalation between two organopalladium
complexes in the turnover limiting step. Therefore, matching the concentrations or lifetimes of two distinct organopalladium
intermediates is revealed to be a pivot to the success of electrooxidative catalysis. Moreover, the presence of cationic copper(II)
seems to contribute to the stabilization of the palladium(0) catalyst instead of playing a role in the oxidation of the catalyst.

■ INTRODUCTION
Biaryl scaffolds represent an important class of structural
motifs embedded in non-natural pharmaceuticals, agrochem-
icals, ligands, and π-conjugated materials.1 Conventional
halogen- and organometal-based cross-coupling reactions that
access biaryls usually generate superstoichiometric chemical
waste through multiple functional group manipulations.2 In
sharp contrast, palladium-catalyzed cross-dehydrogenative
coupling3 of simple arenes has emerged as a direct and rapid
avenue in line with an atom-economic and green synthesis
(Figure 1a). Significant progress has been made in palladium-
catalyzed double C−H activation for biaryl formation since the
seminal works by inter alia Lu, Fagnou, Deboef, and Sanford.4

Nevertheless, challenges such as reduced catalytic efficacy,
limited substrate scope, and byproduct formation have raised
intriguing questions about the mechanism of such trans-
formation.5

Mechanistically, a commonly accepted rational catalytic
cycle involves one palladium(II) center, which undergoes two
sequential C−H cleavages via concerted metalation deproto-
nation (CMD),6 base-assisted internal electrophilic substitu-
tion (BIES),7 σ-bond metathesis,8 or electrophilic metalation.
However, high-energy barriers have been associated with such
elementary steps, casting doubt on the reaction mechanism.9

Alternatively, organometallic reactions built on a Pd(II)/
Pd(IV) redox system10 have been explored as a feasible

platform for addressing such unfavored energetic limitations.
In this context, Sanford, Michael, and Yu, among others, put
forward C−H activation at palladium(IV) species to provide
distinguished selectivity and functional group tolerance under
mild conditions.11 As an alternative, catalysis involving
binuclear palladium(III) was reported by Ritter,12 providing
new insights into palladium catalysis. Remarkably, mechanistic
studies by Echavarren pointed to transmetalation-type
reactions between palladium(II) complexes being more facile
than a Pd(II)/Pd(IV) redox cycle within the Catellani
regime.13 Although the Pd-to-Pd transmetalation was recog-
nized by Davidson and Triggs as early as 1968,14 few reports
have provided experimental evidence for such a pathway.15 In
2003, Osakada elegantly illustrated an aryl transmetalation
process via an intramolecular ligand exchange (Figure 1b).16

Additionally, Hartwig and Stahl conducted detailed mecha-
nistic studies for the Pd−Pd cooperative modus operandi for
the direct arylation of aryl halide and the homocoupling of
xylene, respectively.9b,17
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Recently, the merger of transition metal-catalyzed C−H
activation18 and electro-organic synthesis19 has surfaced as a
uniquely effective approach for sustainable molecular syn-
thesis.20 Harnessing the advantages of replacing toxic and
undesirable stoichiometric chemical oxidants with electricity,
our group has significantly contributed to the progress on
electrochemical C−H activation catalyzed by 3d-, 4d-, and 5d-
metals.21 Referring to palladaelectrocatalysis,22 we have
extended the scope of oxidative coupling to asymmetric
catalysis23 and undirected C−H olefination.24 However, to the
best of our knowledge, biaryl formation via electrochemical
palladium-catalyzed double C−H activation has proven elusive.
Herein, inspired by the elegant multiple C−H activation

developed by Shi (Figure 1c),5o we report on a novel
electrochemical palladium-catalyzed cross-dehydrogenative
transformation for the synthesis of biaryl devoid of
stoichiometric chemical oxidant and prefunctionalized frag-
ments (Figure 1d). The electrooxidative conditions exhibit
broad applicability, including electron-deficient arenes. Late-
stage functionalization as well as Boscalid precursor synthesis
has been proved feasible under our electrolysis conditions.
Notably, a rare bimetallic mechanism featuring a Pd-to-Pd aryl
transfer process as the turnover limiting step was disclosed.
Mechanistic studies comprising reaction order studies by
VTNA and initial rate analysis, isotope experiments, and
stoichiometric organometallic reactions provided strong
support for a bimetallic Pd-to-Pd transmetalation mechanism.

Moreover, Cu(OTf)2 seems to be crucial for the stabilization
of palladium(0) intermediates rather than participating in the
oxidation of catalysts.5o,25

■ RESULTS AND DISCUSSION
We initiated our studies for the envisioned electrochemical
dual C−H activation using N-acetyltetrahydroquinoline (1a)
and o-xylene (2a) as substrates in a divided cell setup (Scheme
1, Entry 1). Using dichloroethane (DCE) as the solvent
resulted in a drastic reduction in the yield of product 3 (Entry
2). Similarly, changing the solvent ratio led to a drop in
performance, highlighting the H-bonding donor ability of
HFIP on stabilizing intermediates (Supplementary Table 7).26

The metallaelectrocatalysis occurred in the absence of
Cu(OTf)2 or 2,6-lutidine, whereas when present in catalytic
amounts, an improvement in the turnover number and
robustness was observed (entries 3 and 4). Control experi-
ments revealed the indispensable role of both the palladium
catalyst and the electricity in the electrooxidative double C−H
arylation (entries 5 and 6). A divided cell electrolyzer was
beneficial to provide good reactivity and chemoselectivity.
(Entry 7 and Supplementary Table 4).27 Further optimization
demonstrated that adjusting the stoichiometry of reactant 2a
had a substantial influence on the isolated yield (Entry 8). In
addition, 2,6-bis(trifluoromethyl)pyridine (L2) was found to
be an inferior substitute for lutidine (Entry 9). Interestingly,

Figure 1. Novel electrochemical cross-dehydrogenative coupling.
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similar reaction efficiency was obtained when replacing
Cu(OTf)2 and lutidine with 2,6-di-tert-butyl benzoquinone
(L3; Entry 10 and Supplementary Figure 9).28

With the optimized reaction conditions in hand, we explored
the versatility of electro-oxidation (Scheme 2). We were
pleased to find that a wide variety of functional groups
involving labile halides and potential Shono-type oxidation
alkylated amide motifs were compatible with the robust
palladaelectrocatalysis. Acetanilide (1b) and benzanilide (1c)
provided both mono- and bis-arylated products 4 and 5,
respectively. Anilide derivatives bearing a methyl group on the
m-position significantly inhibited the formation of difunction-
alized products, thus delivering monoarylated products 6 and 7
with excellent site selectivity. When a wide range of o-
functionalities were introduced into the acetanilides, a
significant improvement in reactivity was observed when
compared to those bearing no o-substituents (8−15). The

trifluoromethyl group was also identified as a compatible
moiety, thus affording product 12 in moderate yield. Notably,
N-methylacetanilide 1n furnished solely monoarylated prod-
ucts 16, possibly due to steric effects. Furthermore, substrates
containing different ring-size directing groups like pyrrolidi-
none (1o), piperidinone (1p), and azepinone (1q) were also
converted, affording uniquely monoarylated products 17−19.
Next, we explored substrates equipped with alternative
directing groups. Gratifyingly, N-methylbenzamide and N,N-
dimethylbenzamide were compatible under the reaction
conditions (20−21). Unfortunately, carboxylic acid did not
mirror the reactivity and was unable to afford the desired
product.
Thereafter, we examined the scope of directing-group-free

arenes 2 in the electrocatalysis (Scheme 2). A set of
electronically diverse arenes 2 were compatible with the
robust electrochemical conditions, providing products 22−46

Scheme 1. Control Experiments for Palladaelectro Cross-Dehydrogenative Arylationa

aGeneral reaction conditions: divided cell, anodic chamber: 1a (0.20 mmol), 2a (1.0 mmol), Pd(OAc)2 (10 mol %), 2.6-lutidine (20 mol %),
Cu(OTf)2 (10 mol %), nBu4NBF4 (40 mg), HFIP/AcOH (1.0 mL: 2.0 mL), cathodic chamber: 2a (1.0 mmol), nBu4NBF4 (40 mg), HFIP/AcOH
(1.0 mL: 2.0 mL), 100 °C, electrolysis (CCE) at 1.0 mA, 18 h, graphite felt (GF) anode (10 mm × 15 mm × 2 mm), Pt plate cathode (10 mm ×
15 mm × 0.25 mm), NMR yields using CH2Br2 as an internal standard.

bIsolated yield. c80 °C. dWithout Cu(OTf)2.
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in moderate-to-excellent yields. Hence, benzene (2b) and
naphthalene (2c) were tested, giving good yields for the
respective arylated products (22 and 23). Likewise, toluene
(2d) and anisole (2e) were suitable substrates, providing p-
arylated products 24 and 25 as major regioisomers.
Interestingly, in situ deprotected product 26 was observed

when triisopropyl(phenoxy)silane (2f) was subjected to the
reaction conditions. Phenylacetate (2i) was also found to be a
suitable substrate, furnishing the desired product (29) in good
yield. Notably, electronically deficient arenes were compatible
under the electrolysis conditions in conjugation with
trifluoroacetyl (TFA) as a cosolvent, providing the desired

Scheme 2. Versatility for Electrochemical Palladium-Catalyzed Double C−H Activationa

aStandard reaction conditions. The amount of arenes used is indicated. See SI for more experimental details. b20 mol % Pd(OAc)2, 0.5 mL of TFA
as a cosolvent, 90 °C. cAs an isomeric mixture. dTriisopropyl(phenoxy)silane as a substrate. e20 mol % Pd(OAc)2 was used.
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biaryls (30−37) in low-to-excellent yields. Here, TFA was
thought to accelerate the C−H activation of electron-poor
arenes,5k while for electron-rich arenes, it led to the formation
of a homocoupling product as the major product. Unfortu-
nately, bromobenzene was not tolerated under electrocatalysis
conditions. Veratrol (2r) and 2,3-dihydrobenzo[b][1,4]dioxine
(2t) were identified as amenable substrates; however, we
observed that arenes with higher electron densities such as

1,3,5-trimethoxybenzene usually delivered the self-polymerized
product. Furthermore, 1,3-disubstituted and asymmetrical 1,2-
disubstituted arenes were selectively functionalized, affording
products 41−46. We have applied our electrochemical
methodology to late-stage diversification of Tamibarotene
ester, affording a series of arylated products (47−49) in
excellent yields. Furthermore, the precursor (50) for Boscalid
was successfully furnished by our electrocatalysis. However, the

Figure 2. Mechanistic studies; see the Supporting Information for more reaction details. (a−g) VTNA analysis using o-xylene as a substrate. (h−j)
Initial rate studies using 1,2-dichlorobenzene as a substrate. (k, l) H/D exchange experiment. Dideuterated dimethoxybenzene could be a possible
product. (m, n) Kinetic isotope effect.
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presence of the methyl group on the N-center was revealed to
be necessary for the reactivity to unwind.
Hitherto, our preliminary studies of the electrochemical

palladium-catalyzed cross-dehydrogenative arylation left sev-
eral key questions unanswered. First, the failure of
bromobenzene as a starting material and the observation of
palladium black jeopardized the proposal of Pd(IV) in our
mechanism. Second, low yields for the desired products were
usually associated with the homocoupling of simple arenes,
which surpassed the cross arylation. Third, the catalytic
efficiency was sensitive to the concentration of the palladium
catalyst. These questions motivated us to explore the reaction
mechanism in detail.
We began our mechanistic interrogation by determining the

turnover limiting step through kinetic studies (Figure 2). The
kinetic order of the reaction components was determined by
using variable time normalization analysis (VTNA) derived
from the reaction progress kinetic analysis developed by
Blackmond.29 Figure 2a shows the kinetic profile of the

reaction with two different Pd(OAc)2 concentrations, where
two distinct slopes were observed. When the two profiles were
replotted as product concentration versus normalized time
scale by a first-order factor of catalyst concentration (t [Pd]1),
two reaction progress curves failed to overlap (Figure 2b) until
a second-order correlation was used (Figure 2c), indicating
that the kinetic order for palladium is the second order rather
than the first order. The observation of [Pd]2 suggests that two
intramolecular or intermolecular palladium nuclei are involved
in the turnover limiting step. Next, inferior reaction progress
was observed when increasing substrate 1a loading (Figure
2d,e), corresponding to an inverse first order. Therefore, we
hypothesized that losing 1 equiv of 1a from a palladium off-
cycle species is necessary to activate the catalyst.30 Likewise, an
experimental order of one for substrate 2a was obtained by
using an analogous procedure (Figure 2f,g). To further
corroborate the kinetic data obtained from VTNA, we
conducted initial rate analyses using dichlorobenzene (2p) as
the substrate (see the SI, Section 7.2). As a result, the kinetic

Figure 3. Organopalladium studies. See the SI for more details.
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orders obtained from VTNA were supported by the
supplementary initial rate analyses, suggesting that the reaction
pathway of electron-poor arenes is relevant to the mechanism
of the reaction of electron-rich arenes. In addition, initial rate
analyses pointed at zero kinetic orders for copper, lutidine, and
current (Figure 2h−j). Notably, identical initial rates were
obtained even in the absence of these components, supporting
the idea that copper, lutidine, and electricity are solely involved
in the regeneration of the active catalyst. Based on the above
mechanistic findings, we assumed that 2 equiv of palladium, 1
equiv of 1a, and 1 equiv of 2a were involved in the rate-
determining step. With this in mind, two possible reaction
pathway candidates could be accounted for: a Pd(II)-to-Pd(II)
transmetalation mechanism or a previously reported bimetallic
Pd(IV) manifold.30 However, the transmetalation pathway
seems to be a more plausible pathway over the dimeric
palladium catalyst for three reasons: (1) electricity and
Cu(OTf)2 were not involved in the oxidation of Pd(II) to
Pd(IV), (2) the dimeric catalyst was generally considered as
the precatalyst,31 and (3) the observed inverse first order for 1a
contradicted the described transformation between the resting-
state catalyst and the dimeric palladium complex in the
literature.30

To further assess the transmetalation mechanism based on
two organopalladium complexes, it is of interest to know if the
two C−H activation steps proceed before the transmetalation
step or not; thus, we conducted isotope experiments to
investigate the nature of the C−H activation step. H/D
exchange experiments (Figure 2k,l) illustrated that for both
isotopes, the yields exceeded the catalytic amount of
Pd(OAc)2, which can be indicative of a reversible metalation
for each of the substrates. Additionally, kinetic isotope effect
(KIE) studies revealed a secondary KIE or no KIE for substrate
1a and a primary KIE for substrate 2a (Figure 2m,n),
indicative of a facile C−H cleavage of 1a, whereas the step for
2a is slow. The observation of deuterated products and KIE are
consistent with C−H cleavages occurring during the catalytic
cycle but before the turnover limiting step.32 Moreover, the
large KIE for 2a implied that the C−H activation of 2a could
replace the transmetalation as the rate-determining step when
lowering the temperature or reducing the stoichiometry in 2a.
To further validate our finding on cooperative aryl transfer

between the two palladium centers, it is necessary to identify
the relations between the resting-state catalyst and the active
catalyst in the rate-determining step, in particular for the
organopalladium complexes with anilide. Therefore, we first
conducted an HRMS analysis to detect the possible

intermediates under our catalytic conditions. Three inter-
mediates (51−53) could be postulated from the interpretation
of the HRMS spectrum (Figure 3a and Supplementary Figures
64 and 65). Next, we synthesized known dimeric complexes 54
and 55 (Figure 3b) with diacetate bridges using non-
coordinating dichloromethane as a solvent.5j,k,33 The easy
access to complexes 54 and 55 under mild conditions agrees
with the observed KIE value for 1a. Treating dimeric palladium
complex 55 with MeCN at room temperature led to the
formation of monomeric palladium complex 56 in near-
quantitive yield (Figure 3c).34 The stoichiometric organo-
metallic reaction between 55 and 2a afforded 44% of product 8
in 1 h and 55% in 2 h (Figure 3d), implying that
organopalladium 55 could presumably be a precursor for the
active catalyst. The assumption was substantiated by in situ
NMR studies on the reaction of 55 and xylene,35 where an
induction period of precatalyst 55 was observed (Figure 3e and
Supplementary Figure 83).36 Reaction profiles of complexes 55
and 56 obtained from ex situ GC measurements showed a
comparable reaction rate for both intermediates (Figure 3f).
When considering the fact that complex 56 was stabilized by
the strongly coordinated acetonitrile, monomeric palladium
was the more kinetically favored active catalyst. Additionally,
DFT calculations were carried out at the B3LYP-D4/6-
311+G(2d,p)-SDD+ SMD(AcOH)/B3LYP-D3(BJ)/6-31G-
(d,p)-LANL2DZ level of theory (see the SI, Section 7.8),
revealing the C−H activation of xylene on Pd(OAc)2 to be
energetically favorable with an energy barrier of 16.4 kcal
mol−1. However, on a dimeric catalyst, the same elementary
step proved to be more energetically disfavored with a barrier
of 25.2 kcal mol−1. Moreover, cyclic voltammetry (CV)
measurements revealed good stability for complex 55 at
room temperature in HFIP/AcOH (Figure 3g). No catalytic
current was observed at room temperature when adding an
excess amount of 2a, repudiating the proposal of second C−H
activation at the Pd(III) or Pd(IV) center.22d,37 Heating
complex 54 to 90 °C in the solvent mixture used for catalysis
induced the occurrence of complex 58 (Figure 3h and
Supplementary Figure 66). With these observations as well
as our kinetic studies, we proposed that intermediate 52 could
be identified as the resting state and monomer 51 was the on-
cycle active catalyst.
Additionally, we turned our attention to the exact roles of

Cu(OTf)2 and 2,6-lutidine in the regeneration of the active
catalyst. When increasing the amount of 2,6-lutidine in the
presence of 1 equiv of Cu(OTf)2 as a chemical oxidant,
deterioration in the yield of product 3 from 88 to 20% was

Figure 4. Role of Cu(OTf)2 and lutidine. See the SI for more details. (a) Reaction efficacy dependency on lutidine using Cu(OTf)2 or electricity as
the oxidant. (b, c) Cyclic voltammograms. Cu(OTf)2 (5 mM), Pd(OAc)2 (5 mM), lutidine (5 or 10 mM), and 0.1 M nBu4NBF4 in HFIP/AcOH
(1:2), 100 mV s−1, room temperature.
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observed (Figure 4a), while the reaction using electricity as the
oxidation agent retained its catalytic efficiency. This entailed a
diminishing oxidative ability of Cu2+ in the presence of
lutidine, which was supported by CV studies (Figure 4b).
Moreover, the new oxidative event observed in Figure 4c when
palladium and copper were mixed endorsed a heterometallic
interaction. Hence, we proposed that copper salt serves as a
palladium(0) stabilizer rather than a redox catalyst.38 Further
experimentation and electroanalytical studies have been
conducted (see the Supporting Information).
Based on our mechanistic studies, a plausible catalytic cycle

is presented in Figure 5. C−H activations of 1a and 2a occur
concurrently, giving rise to complexes 51 and 59, respectively.
Here, dimeric catalyst 53 is considered a precatalyst for
monomeric palladacycle 51. Off-cycle species 52 could exist in
a different level of concentration depending on the ratio of
substrate 1 and Pd(OAc)2. Then, intermolecular trans-
metalation of 51 to 59 affords 60, followed by reductive
elimination, giving desired product 3. The transmetalation
between two organopalladium complexes was determined to
be the turnover limiting step of the overall reaction. The
generated Pd(0) during product formation is then stabilized by
Cu complexes, which through anodic oxidation form active
Pd(II), thus closing the catalytic cycle.
In summary, we have reported on versatile electrochemical

palladium-catalyzed oxidative double C−H arylation without
chemical oxidants. The robust electrolysis condition exhibited
extraordinary reactivity; thus, a variety of arenes including
electron-deficient arenes were compatible. Late-stage function-
alization highlighted the synthetic value of our methodology.
In addition, detailed mechanistic studies were conducted, thus
supporting a bimetallic mechanism involving a transmetalation
process as the rate-determining step.
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