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Abstract

The overall charge content and the patterning of charged residues have a profound impact on 

the conformational ensembles adopted by intrinsically disordered proteins. These parameters can 

be altered by charge regulation, which refers to the effects of post-translational modifications, 

pH dependent changes to charge, and conformational fluctuations that modify the pKa values of 

ionizable residues. Although atomistic simulations have played a prominent role in uncovering 

the major sequence-ensemble relationships of IDPs, most simulations assume fixed charge states 

for ionizable residues. This may lead to erroneous estimates for conformational equilibria if 

they are linked to charge regulation. Here, we report the development of a new method we 

term q-canonical Monte Carlo sampling for modeling the linkage between charge regulation 

and conformational equilibria. The method, which is designed to be interoperable with the 

ABSINTH implicit solvation model, operates as follows: For a protein sequence with n ionizable 

residues, we start with all 2n charge microstates and use a criterion based on model compound 

pKa values to prune down to a subset of thermodynamically relevant charge microstates. This 

subset is then grouped into mesostates, where all microstates that belong to a mesostate have 

the same net charge. Conformational distributions, drawn from a canonical ensemble, are 

generated for each of the charge microstates that make up a mesostate using a method we 

designate as proton walk sampling. This method combines Metropolis Monte Carlo sampling in 

conformational space with an auxiliary Markov process that enables inter-conversions between 

charge microstates along a mesostate. Proton walk sampling helps identify the most likely 

charge microstate per mesostate. We then use thermodynamic integration aided by the multistate 

Bennett acceptance ratio method to estimate the free energies for converting between mesostates. 

These free energies are then combined with the per-microstate weights along each mesostate to 

estimate standard state free energies and pH dependent free energies for all thermodynamically 

relevant charge microstates. The results provide quantitative estimates of the probabilities and 

preferred conformations associated with every thermodynamically accessible charge microstate. 

We showcase the application of q-canonical sampling using two model systems. The results 
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establish the soundness of the method and the importance of charge regulation in systems 

characterized by conformational heterogeneity.

1. Introduction

Intrinsically disordered proteins (IDPs) highlight the functional importance of 

conformational heterogeneity 1, 2. Studies over the past decade have uncovered relationships 

between IDP sequences and global as well as local features of conformational ensembles 
3–30. To first order, the sequence-ensemble relationships 31–33 of IDPs are governed 

by compositional biases such as the fraction of charged residues (FCR), net charge 

per residue (NCPR), and mean hydrophobicity 34. In addition, sequence patterning of 

oppositely charged residues 29 and the patterning of proline and charged residues vis-à-vis 

other residues 30 can have a profound impact on the overall dimensions, amplitudes of 

conformational fluctuations, and local conformational preferences of IDPs.

Atomistic simulations based on efficient and accurate implicit solvent models 
7, 26, 28, 31–33, 35–40 as well as improved descriptions of protein-solvent interactions 

using explicit models for solvent molecules 41, 42 have been deployed to study a wide 

variety of IDPs 43–48. These simulations have yielded quantitative descriptions of sequence-

ensemble relationships. The overall picture that has emerged may be summarized as follows: 

IDPs come in distinct sequence flavors; and the sequence-specific interplay between 

chain solvation vs. intramolecular interactions leads to distinct relationships between IDP 

sequences and conformational ensembles.

The knowledge base generated to date highlights the importance of charged residues, 

specifically parameters such as FCR, NCPR, and the patterning of charged residues, as 

determinants of sequence-ensemble relationships and as drivers of functional consequences 

of IDPs 29, 33, 34, 38, 49–52. The effects of charged residues can be altered through charge 
screening, charge renormalization, or charge regulation. Charge screening refers to the 

effects of solution ions and conformational fluctuations on the strengths of intra- and 

intermolecular electrostatic interactions among charged residues of IDPs 5, 26, 51, 53. In 

contrast, charge renormalization refers to alterations or even inversions of charge profiles 
54, 55 that result from the accumulation of solution ions, specifically multivalent ions, around 

regions of high charge density. While the effects of charge renormalization have been 

well established for nucleic acids56, this has yet to be demonstrated for IDPs, although 

such effects might prevail for highly charged polyelectrolytes such as histone tails 57, 58, 

protamines 26, and acid-rich sequences such as prothymosin α53. It is also likely that charge 

renormalization contributes to phase separation via complex coacervation of complexing 

IDPs 59–61.

Charge regulation refers to changes in the FCR, NCPR, and charge patterning, and 

these changes may arise through post-translational modifications, due to pH effects such 

as intracellular pH gradients 62, 63, or through conformation-dependent changes to the 

protonation states of ionizable residues 34. Due to their conformational heterogeneity, 

solvent accessibility, and propensity for post-translational modifications, IDPs are likely 

to be much more susceptible to charge regulation than folded domains. The consequences of 
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charge regulation through post-translational modifications such as Ser / Thr phosphorylation 
8–10, 30, Lys acetylation 64–67, and Arg methylation / citrullination 68 are becoming topics 

of intense scrutiny for experimental studies of IDPs. Simulations of the impact of charge 

regulation via post-translational modifications are in their infancy, limited mainly by the 

absence of well-vetted forcefield parameters for modified amino acids.

Recent experiments indicate that charge regulation effects are likely to be important for 

disorder-to-order and order-to-disorder transitions in IDPs 69, the overall charge profiles 

of IDPs 6, and IDP-driven liquid-liquid phase separation 70. As an example, we consider 

data for the intrinsically disordered sidearms of neurofilaments 71, 72. These sequences 

are polymer brushes comprising of multiple repeats of the hexapeptide KSPAEA. The 

brush height is governed by the end-to-end distance distribution of these polymers. At 

extremes of pH, the sidearms are either cationic (low pH) or anionic polyelectrolytes (high 

pH) that form stiff brushes of maximal brush height 71, 72. Between these extremes, the 

polymer brushes should, in theory, be symmetric polyampholytes corresponding to lower 

brush heights. Interestingly, the pH dependence of measured brush heights is suggestive of 

upshifted pKa values for some fraction of the Glu residues. An even more striking example 

of sequence-specific charge regulation in IDPs comes from single molecule nanoscale 

electrometry measurements on prothymosin α 6. These measurements provide an estimate 

of the net charge of the system at very low salt concentrations. At pH 7.0, and very low 

salt concentrations, one would estimate the net charge to be –46 based on the sequence 

of prothymosin α. In contrast, the electrometry measurements suggest an effective charge 

of –28.5 ± 1.2. This implies that at least a third of Glu / Asp residues in prothymosin 

α have significantly upshifted pKa values such that at pH 7.0 they are in their protonated 

(uncharged) states.

Despite their importance, the impacts of pH, sequence, and conformation dependent charge 

regulation are seldom accounted for in simulations of IDPs. Instead, it is common practice to 

fix the charges of ionizable groups using the intrinsic pKa values of blocked amino acids as 

reference. Accordingly, the amine and guanido groups of Lys and Arg are assigned a charge 

of +1, the carboxyl groups of Asp and Glu are assigned charges of –1, and the imidazole 

group of His is typically set to be electroneutral. Critically these charge states are immutable 

throughout the course of a simulation, regardless of the local environment. The use of fixed 

charge models, which are based on the pKa values of blocked amino acids, is a questionable 

approach 31. One way to work around this approximation is to fix the chemical potential 

of the proton, as in constant pH molecular dynamics 73–80 or Monte Carlo approaches 
81–83. In these approaches, pH, sequence, and conformation dependent changes to the charge 

states of ionizable groups are realized via the uptake or release of protons to a proton 

bath. Successes have been achieved in the deployment of constant pH molecular dynamics 

methods 74–76 to calculate pKa shifts of surface ionizable groups of globular proteins 84, 85 

and for pH-dependent protein dissociation 86, 87. However for IDPs where over a third of 

the residues are ionizable, the combinatorics of proton uptake and release options becomes 

computationally unwieldy. This calls for different approaches that adapt advances in free 

energy calculations such as Wang-Landau sampling 88.
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Here, we describe a two-stage method designated as q-canonical Monte Carlo sampling that 

for a fixed temperature (a) samples conformational distributions for all thermodynamically 

relevant charge microstates (defined below) associated with an IDP sequence and (b) 

uses the multistate Bennett acceptance ratio (mBAR)89 estimator to calculate free energy 

changes associated with alchemic conversions between distinct pairs of charge microstates. 

This two-stage sampling allows us to compute pH-dependent weights of different charge 

microstates and their conformational ensembles. The current version of q-canonical Monte 

Carlo sampling is designed to be interoperable with the ABSINTH implicit solvation 

paradigm 28, 90, 91, although the tenets of the model are interoperable with any implicit 

solvation model.

In what follows, we describe the overall methodology and the approaches we have 

incorporated to make the joint sampling of charge microstates and conformational 

distributions a tractable proposition. We illustrate the utility of the method by applying 

it to a pair of archetypal systems comprising of Asp, Glu, and Lys residues.

2. Theory and Computational Details

We introduce the different aspects of q-canonical Monte Carlo sampling using peptide 

models of IDPs that contain multiple ionizable residues. For example, in a sequence such as 

ace-EEE-nme, where ace and nme respectively denote N-acetyl and N′-methylamide, each 

of the three Glu residues can either be protonated (E) or deprotonated (e). For a sequence 

with n ionizable residues, there is a theoretical maximum of 2n distinct charge microstates 

to consider. For ace-EEE-nme, these charge microstates are EEE, eEE, EeE, EEe, eeE, Eee, 

eEe, and eee, respectively. The overall “brute-force” strategy underlying q-canonical Monte 

Carlo sampling is straightforward. For each of the 2n conceivable charge microstates, we 

obtain conformational distributions sampled from the canonical ensemble at temperature T . 

Conformational ensembles for each of the 2n charge microstates are stitched together using 

free energy calculations. This allows us to compute pH-dependent relative populations for 

each of the charge microstates and the conformations for each charge microstate.

The overall computational complexity is vastly reduced by: a) Decreasing the number 

of charge microstates from its theoretical maximum and restricting considerations to the 

thermodynamically relevant microstates; b) Grouping microstates into mesostates and using 

a proton walk algorithm to reduce the computational cost of obtaining conformational 

ensembles to that of a single charge microstate; c) Minimizing the overall number of free 

energy calculations using maximum likelihood methods to identify the most representative 

charge microstates and associated conformational ensembles for each mesostate. The details 

are described in the following sections.

Eliminating forbidden charge microstates:

The effective number of thermodynamically relevant charge microstates can be considerably 

smaller than 2n for sequences with n ionizable residues. This pruning of charge microstates 

is readily achieved for sequences with a combination of acidic and basic groups. Consider 

the case of ace-EKEK-nme. Since n = 4, there are, in theory, 16 distinct charge microstates. 
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Based on the intrinsic pKa values of Glu and Lys, we stipulate that the protonation of Glu and 

deprotonation of Lys are unlikely to occur simultaneously. This allows us to disregard eight 

of the charge microstates (ekek, ekeK, ekEK, ekEk, EKek, EkeK, eKEk, and eKek) and 

designate them as forbidden microstates. Accordingly, we reduce the effective number of 

charge microstates to 7 from 16. The ansatz of forbidden charge microstates is particularly 

effective for sequences that are symmetric polyampholytes, which refers to sequences where 

the number of groups that can be neutralized by uptake vs. release of a proton is essentially 

the same. We use a defined protocol to identify forbidden charge microstates, eliminate 

them, and prune the set of 2n charge microstates to the thermodynamically relevant set of 

charge microstates per mesostate. The protocol uses model compound pKa values to compute 

a reference free energy based on the assumption of additivity and calculates probabilities 

for each of the microstates along a mesostate. If this probability falls below 10–3, then 

the charge microstate in question is ignored. A particular advantage of the forbidden 

states ansatz is the well-documented observation that polyampholytic sequences make up 

roughly 70% of the sequence space of IDPs where FCR exceeds 0.25. Less than 5% of this 

sequence space comprises of polyelectrolytes. Therefore, the forbidden states ansatz leads to 

substantial reduction in the number of thermodynamically relevant charge microstates.

Grouping charge microstates into mesostates:

Charge microstates can be grouped into mesostates based on their net charge. In the example 

considered above, eEE, EeE, and EEe make up a mesostate where the charge per microstate 

is –2; similarly, eeE, Eee, and eEe constitute a mesostate where the charge per microstate is 

–1; finally, EEE and eee belong to the two mesostates where the charge per microstate is –3 

and 0, respectively. Our grouping ensures that all charge microstates within a mesostate will 

have the same net charge. Accordingly, each mesostate is designated by the label qk where 

q denotes the net charge per microstate within the mesostate and k denotes the total number 

of charge microstates within the mesostate. Grouping of charge microstates into mesostates 

also allows us to reduce the cost of conformational sampling per charge microstate. If a 

pair of microstates is within the same mesostate then the free energy changes associated 

with converting between charge microstates will be independent of pH. We use this to 

our advantage in a proton walk sampling approach, as described next. This yields relative 

populations of charge microstates that belong to a specific mesostate.

Proton-walk Monte Carlo sampling:

Consider a qk-mesostate of net charge q that comprises of k charge microstates. The goal is 

to obtain converged conformational ensembles for each of the k charge microstates. We use 

Metropolis Monte Carlo methods92 to sample conformations from the canonical ensemble 

for each charge microstate. Sampling is initiated for a randomly chosen charge microstate 

designated as i. In addition to switching between different conformations for a given charge 

microstate, we also propose switches to the identities of charge microstates. For example, for 

the –13 mesostate of EEE, a switch between charge microstates might involve a switch from 

microstate eeE to Eee or eEe. Such switches involve swapping the positions of protonated 

vs. unprotonated Glu residues in the sequence. One approach to switching of charge 

microstates involves a switch from charge microstate i to charge microstate j while keeping 
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the conformation fixed. This can become computationally inefficient due to inevitable steric 

clashes involving the atom that is introduced at the site of protonation and the rest of the 

peptide. To solve this problem, we adapt the previously developed Hamiltonian Switch 

Metropolis Monte Carlo (HS-MMC or HS for short) 93 whereby we introduce an auxiliary 

Markov process that samples from an alternative potential function to alleviate problems 

associated with switching between charge microstates.

The HS method works as follows: we designate the current conformational state of the 

system of interest as l; an auxiliary Markov process is spliced in whereby sampling from the 

potential of interest is switched to sampling from an alternate, computationally inexpensive 

potential that also enhances conformational exploration; a series of conformational states 

are then generated using the alternate potential; these proposed conformations are accepted / 

rejected using the standard Metropolis criterion; after some number of moves, the system 

finds itself in a new conformation designated as m; the potential is now switched back from 

the alternative one to the actual potential and the new state m is accepted / rejected according 

to the criterion 93:

αl m = min πm
πl

πl
′

πm
′ , 1 ;

(1)

In Equation (1), πm and πl are the Boltzmann weights associated with the potential of 

interest for conformations l and m whereas π′m and π′l are Boltzmann weights associated 

with the alternative potential for conformations l and m, respectively. Gelb has shown 94 

that the structure of the acceptance ratio preserves detailed balance. The HS method allows 

us to make arbitrary choices for the alternative potential. In our case, we use HS aided 

proton walks to switch between charge microstates within a mesostate (Figure 1). To enable 

efficiency in proton walks, we choose an alternative potential – see below – to ensure that 

the sidechain to be protonated / deprotonated is solvent exposed thus reducing the rejection 

of proton walk moves because solvent exposed groups have minimal steric overlaps with 

surrounding peptide atoms. Our use of an implicit solvent model alleviates any concerns 

about overlaps with solvent atoms.

For the standard ABSINTH potential 90, 91, the total potential energy for conformation l
is written as a sum of the direct mean field interaction (DMFI) with the implicit solvent, 

which is essentially the mean-field estimate of the conformation specific free energy of 

solvation, the electrostatic (el) interactions among polar and charged groups screened by 

a conformation specific inhomogeneous dielectric, the Lennard-Jones (LJ) potential to 

model van der Waals interactions, and any other terms that are incorporated to model 

stereoelectronic effects 28 and / or geometric constraints on the system. Accordingly, the 

potential energy for conformation l takes the form:

W ABSINTH
(l) = W DMFI

(l) + W el
(l) + W LJ

(l) + W other
(l)

(2)
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In the alternative potential, we set the electrostatic term to zero and scale the LJ term by 

a factor of 0.5 using a soft-core potential 95 (see Equation (4) below) for residues whose 

charge microstates are to be altered.

The upshot of the HS aided proton walk algorithm is that the system, which is in 

conformation l and charge microstate i prior to the introduction of the auxiliary Markov 

process, can undergo a dual switch to conformation m in charge microstate j (Figure 

1). Since all charge microstates along a mesostate have identical numbers of atoms, the 

switching between charge microstates does not require any special treatment, as would 

be the case in a grand or semi-grand canonical ensemble. Charge microstates and their 

associated conformational ensembles that belong to a specific mesostate make up what we 

refer to as a q-canonical ensemble. From a single Markov process, aided by the auxiliary 

process wherein the switching of charge microstates is realized, one obtains a distribution of 

conformations associated with each of the charge microstates, and the sampling frequencies 

identify the most likely conformations and charge microstates for a given mesostate.

Overall, the HS aided proton walk algorithm requires the specification of three sets of 

parameters: (a) The frequency with which a HS aided proton walk move will be attempted; 

(b) the average number of steps to be taken using the alternative potential before accepting 

or rejecting charge / conformational states; and (c) the maximum number of protons that 

can change position in a single move. The choice of charge microstates for switching the 

positions of protonated vs. deprotonated residues in a proton walk move can either be chosen 

at random or from a pre-set list to restrict sampling to relevant states. If the assumptions 

made to designate forbidden states are correct, then the two methods should yield very 

similar results, although restricting the states to be used for sampling leads to substantially 

improved efficiency. For each mesostate, we pick the most likely charge microstate and use 

this – and its associated conformational ensemble – in free energy calculations as described 

next. When the number of charge microstates per mesostate is large, there is the formal 

possibility that several microstates will have similar probabilities that are equivalent and 

high. In this case, a charge microstate is chosen at random from the most likely set.

In the current setup, the ionizable residues are Asp, Glu, Lys, and His. Extant data suggest 

that Arg does not become deprotonated, even in seemingly hydrophobic environments 

such as the interiors of globular proteins 96 or well inside lipid bilayers 97. A recent 

potentiometric and NMR investigation sets the model compound pKa of Arg to be 13.8 ± 

0.1 98, which is 1.8 pH units higher than the value of ~12 that is quoted in textbooks. 

These data suggest that it is reasonable and appropriate to assume that Arg will always be 

protonated. Histidine has two neutral forms and it is treated as a special case in the proton 

walk algorithm where the proton is allowed to switch positions within a residue as well as 

between other His residues along the sequence. The fundamental structure of the algorithm 

does not change, but the frequency with which proton walks are attempted will increase in 

accord with the number of His residues in the sequence.
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Setup of the free energy calculations:

We shall consider a pair of mesostates adjacent in charge space and designate them 

as qr and qr±1 = qs. The most likely charge microstate within mesostates qr and qs are 

designated as qri and qsj, respectively. We calculate the free energy change associated 

with alchemic conversion between qri and qsj. These calculations are performed using 

modules introduced into the CAMPARI modeling suite (http://campari.sourceforge.net). 

The transformation between charge microstates from adjacent mesostates is based on 

thermodynamic integration (TI) and uses three distinct Kirkwood coupling parameters99, 100 

λLJ, λDMFI and λel, respectively that are inserted as pre-factors into Equation (2). Each 

parameter λ takes values between 0 and 1. The transformation involves addition of a 

proton to a specific site on the peptide of interest. The new site is introduced using four 

distinct steps, with λLJ increasing systematically between 0 and 1 in steps of 0.25. Once λLJ

= 1, the values for λDMFI and λel, are set to unity in one step. Sampling along the alchemic 

path between charge microstates is aided by the use of Hamiltonian replica exchange 
101, 102 between pairs of replicas corresponding to different potentials defined by the 

coupling parameters. Data gathered along the alchemic transformation are combined with 

the multistate Bennett Acceptance Ratio (mBAR) method 89 as implemented in the mBAR 

package (https://github.com/choderalab/pymbar) 103 to estimate the free energy changes 

associated with the transformation.

We use TI 100 to evaluate the free energy change associated with transforming between 

charge microstates from adjacent mesostates. In order to increase the reliability of the free 

energy changes assessed using TI, we calculate relative free energy changes referenced 

to model compounds for which the free energy change associated with protonation / 

deprotonation are known. Not using absolute free energies allows us to circumvent some 

of the limitations of standard free energy methods. For example, the use of fixed bond 

lengths and bond angles in the ABSINTH model 91 allows us to ignore the cost of changes 

to bond lengths and bond angles the in the free energy calculations 104, 105. This contribution 

remains constant and is independent of changes to the rest of the system properties and 

these contributions are dereferenced by subtraction. Accordingly, if the transformation is the 

protonation of a Glu / Asp or deprotonation of Lys, then we perform calculations of the free 

energy change associated with Protonation In a Reference Model-compound (PIRM) and 

dereference this against experimentally derived free energy changes for the same reference 

model compound. Accordingly, we estimate the free energy for the conversion between 

charge microstates qri and qsj using the relationship:

ΔF i(r) j(s) = ΔFPIRM
exp + ΔF i(r) j(s)

mBAR − ΔFPIRM
mBAR ;

(3)

In Equation (3), ΔFPIRM
exp  is the experimentally derived free energy change associated with 

protonation in the relevant reference model compound and ΔFPIRM
mBAR is the estimate obtained 

from the simulations for the same model compound. This approach sets the reference energy 

scales using experimentally derived values for ΔFPIRM. The approach prescribed in Equation 
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(3) allows us to reduce systematic errors in the free energy calculations that arise due to 

errors in the ABSINTH forcefield.

The ABSINTH model allows for simulations as a function of salt concentration using 

explicitly modeled solution ions 91, 106. Additionally, the model is versatile in allowing for 

the incorporation of temperature dependent reference free energies of solvation for model 

compounds that constitute the backbone and sidechain moieties 7. Therefore, care is taken to 

ensure that values for ΔFPIRM
exp  are derived by treating the temperature and salt concentration as 

part of the protein context that will influence changes in pH dependence of the protonation 

reaction. This is important given clear evidence for salt 107 and temperature dependence 
108 of the deprotonation reaction of sidechains with ionizable groups. Salt and temperature 

dependent pKa values used to calculate ΔFPIRM
exp  are obtained from the data of Platzer et al. 109.

Details of the paths chosen for TI:

Since the free energy of solvation is by far the most important change in energy among 

all transformation coordinates, we choose a path for alchemic transformation that allows a 

drastic reduction in the number of replicas while ensuring smooth transformations between 

replicas. To avoid singularities linked to having a charge assigned to a dummy atom, 

changes in LJ parameters are made after charges have been turned off. To further smooth the 

energy landscape across replicas, we use a soft core potential for the changes in LJ potential 
110, using a λLJ dependent potential of the form:

W LJ r; λLJ = 4ελLJ 0.5 1 − λLJ + r
σ

6 −2
− 0.5 1 − λLJ + r

σ
6 −1

;

(4)

Here, ε and σ are the well depth and hard sphere radii for the interaction pair in question and 

the overall functional form derives from previous calibrations 111, 112. We then change the 

free energy of solvation of the appropriate solvation groups, simultaneously, introducing an 

energy bath that compensates for the difference in reference free energy between the two end 

states. We arrived at an optimal schedule for changing the Kirkwood coupling parameters 

that result in relatively high overlaps and low variance for estimates to the changes in free 

energy 113, with just six steps (see Table 1). The creation of an atom ex nihilo is the single 

largest factor that influences rejection rates between adjacent steps along the transformation 

process. Accordingly, as noted above, we vary λLJ in increments of 0.25 whereas all other 

parameters are varied in one step from 0 to 1.

Generation of pH dependent conformational ensembles:

To illustrate the method, we introduce a simple system, ace-EE-nme, and the corresponding 

charge microstates as shown in Figure 2. This system calls for two free energy calculations 

between adjacent mesostates and one HS aided proton walk simulation along the –12 

mesostate. For convenience, we set the free energy of the fully protonated state (ee) to 

be zero. In step (1) we perform HS aided proton walk simulations for the –12 mesostate 

that comprises of charge microstates eE and Ee, which identifies Ee as the most likely 
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charge microstate. We also perform standard Metropolis Monte Carlo simulations for the 

charge microstates EE and ee. These simulations yield conformational distributions for each 

of the charge microstates. In step (2), we pick the most likely charge microstate for the 

–12 mesostate (Ee) and estimate the free energy changes associated with the transformation 

between Ee and EE as well as Ee and ee.

The standard state free energies associated with each of the relevant charge microstates viz., 

FEe
0  and FEE

0  changes are calculated using estimates based on mBAR by setting Fee
0 = 0 and 

using the following equations:

FEe
0 = Fee

0 + ΔFee Ee
mBAR = ΔFee Ee

mBAR;
and FEE

0 = FEe
0 + ΔFEe EE

mBAR = ΔFee Ee
mBAR + ΔFEe EE

mBAR ;

(5)

For an arbitrary pH, we have to also account for the chemical potential of the proton and 

accordingly, the relevant free energies, in terms of the thermal energy RT become:

FeE(pH) = FeE
0 − RT ln 10pH ,

and FEE(pH) = FEE
0 − RT ln 10pH ;

(6)

For systems with n ionizable residues, the standard state free energies and the pH dependent 

free energies for each charge microstate are calculated in direct analogy to the approach 

shown in Equations (5) and (6), respectively. The standard state and pH dependent free 

energies for each of the thermodynamically relevant charge microstates are calculated using 

the results obtained from the free energy estimator and the relative weights obtained for 

microstates along a mesostate using proton walk sampling. For a mesostate qk of net charge q
that comprises of k charge microstates, the calculations analogous to those Equations (5) and 

(6) yield the standard state and pH-dependent free energies for charge microstate i. If wj qk

and wi qk  are the weights obtained from visitation frequencies of charge microstates j and i
from mesostate qk, then the relevant free energies for charge microstates j ≠ i are obtained 

using:

F j qk
0 = F i qk

0 − RT ln
wj qk
wi qk

,

(7)

and F j qk (pH) = F i qk (pH) − RT ln
wj qk
wi qk

;

(8)
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Given the information obtained in Equations (7) and (8), the free energies associated 

with each mesostate can be calculated using information regarding the free energies per 

microstate. For example, the standard state free energies and pH dependent free energies are 

calculated as:

Fqk
0 = − RT ln ∑

i = 1

k
exp −

F i qk
0

RT

and Fqk(pH) = − RT ln ∑
i = 1

k
exp

F i qk (pH)
RT ;

(9)

In Equation (9), F i qk
0  and F i qk (pH) are the standard state and pH dependent free energies, 

respectively for charge microstate i from mesostate qk, while Fqk
0  and Fqk(pH) are the 

standard-state and pH dependent mesostate free energies, respectively. For a system with 

nT thermodynamically relevant charge microstates distributed across all possible mesostates, 

we calculate the pH dependent, charge-microstate-specific Boltzmann probabilities as:

pi(pH) = wi

∑j = 1
nT wj

where wi = exp − F i(pH)
RT ;

(10)

These calculations yield the pH dependent populations for the entire set of 

thermodynamically relevant charge microstates.

Obtaining estimates of errors:

The statistical error associated with free energy estimates based on mBAR are obtained 

using the method of Shirts et al. 89. Errors in estimates of visitation frequencies for distinct 

charge microstates along a mesostate are linked to the quality of the proton walk Monte 

Carlo simulations. These errors are estimated using bootstrapping and a non-parametric 

resampling of the state probabilities, using 103 distinct samples. Errors in estimates of 

standard state free energies for each of the charge microstates are obtained by propagation 

of the errors linked to each method along the path used for their determination. Because the 

probabilities are constructed relative to a reference charge microstate, the error grows as we 

consider charge microstates that are farther away from the reference microstate. To minimize 

the error for all charge microstates, we construct the free energies and their respective errors 

starting from both sides of the pH range (i.e., fully basic vs. fully acidic states). Since the 

charge microstates used for the construction are the same in both directions, the mean is 

independent of the direction used to retrieve the free energies, and only the estimates of 

errors will change. As a consequence, we set the error in the estimate of the free energy as 

the minimum error obtained for each microstate.
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Archetypal systems used to demonstrate the q-canonical method:

We demonstrate the applicability and working of q-canonical sampling use two model 

peptides. The peptide ace-E4K4-nme, designated hereafter as E4K4, is a model system that has 

been used to study the stabilities of so-called Charged Single Alpha Helices (CSAHs) 114. 

Sequences of CSAHs typically contain nearly perfect repeats of four Glu residues followed 

by four Lys residues 115. These repeats of blocks of four Glu and four Lys residues can 

range from being 25 to 200 residues long 116, and they are known to form long, stable 

alpha helices. The presence of alternating repeats of four Glu and four Lys residues lead 

to the postulate that alpha helicity in (E4K4) repeats are stabilized by salt bridges between 

deprotonated Glu and protonated Lys residues that are four residues apart along the sequence 
116. In this context, it is worth noting the (E4K4) repeats are imperfect in that they are often 

interrupted by substitutions for Glu with Gln, Leu or other polar / non-polar residues 117. 

The second system NTL912–23 is a 12-residue peptide excised from the N-terminal domain 

of the ribosomal protein L9. Kuhlman et al.118 used this as a model system to quantify 

the pH dependence of alpha helicity in peptides that fold autonomously into structures they 

adopt in folded states. The sequence of NTL912–23 is: ace-KGKKGEIKNVAD-nme.

Details of the simulation setup for each of the systems:

The simulation temperature was set to 298 K. Four independent simulations were performed 

for the HS aided protonation walk and free energy calculations based on mBAR. Results 

from the four independent simulations were pooled for joint analysis and errors were 

estimated using bootstrap analysis methods as described above. The peptides were enclosed 

in spherical droplets (70 Å for E4K4 and 75 Å for NTL912–23). Solution ions 106 including 

neutralizing counterions and ions to mimic NaCl concentrations of 10 mM and 100 mM, for 

E4K4 and the NTL912–23 peptide, respectively were modeled explicitly as has been the case 

in all ABSINTH-based simulations reported to date.

Each HS aided protonation walk simulation comprises of 5×109 independent steps. On 

average, a HS step that switches to an auxiliary Markov chain was attempted once 

every 2.5×104 steps and each auxiliary process involved sampling for 10 steps using the 

alternative potential. This combination results in an acceptance of ca. 4% of the proposed 

transitions within the auxiliary process. The identities of charge microstates and associated 

conformations were recorded once every 104 steps. Alchemic transformation between charge 

microstates across adjacent mesostates uses 5×109 independent steps of Monte Carlo 

sampling along the TI path. Hamiltonian replica exchange was attempted once every 104 

steps and the native and foreign energies of mBAR were evaluated once every 104 steps.

Results

For the E4K4 system, there are nine possible mesostates corresponding to net charges per 

microstate that range from –4 to +4 (Figure 3). All eight residues are ionizable; accordingly 

the theoretical maximum for the number of charge microstates is 28 = 256. However, 

once we deploy the forbidden microstates ansatz, only ~12% of the conceivable charge 

microstates are thermodynamically relevant. This reduces the number of relevant charge 
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microstates to 31 from 256 (Figure 3). Similarly, for NTL912–23 a theoretical maximum of 

26 = 64 charge microstates is reduced to 19 thermodynamically relevant charge microstates.

For each of the 31 and 19 thermodynamically relevant charge microstates of E4K4

and NTL912–23, respectively we perform HS aided proton walk simulations to obtain 

conformational ensembles for each of the charge microstates. We use a maximum likelihood 

approach to identify the charge microstate that is most representative of a particular 

mesostate as shown in Figure 3 for E4K4. Once the most likely charge microstates for 

each mesostate have been identified, we compute the free energy changes for alchemic 

transformations between mesostates. The path used for free energy calculations for E4K4 is 

also shown in Figure 3.

From the q-canonical simulations that combine HS aided proton walks and free energy 

calculations we are able to compute the pH-dependent probabilities associated with each of 

the thermodynamically relevant charge microstates. These results, obtained for the E4K4 and 

NTL912–23 systems are summarized in Figure 4. Panels (a) and (b) show the pH-dependence 

of charge microstate and mesostate probabilities for the E4K4 whereas panels (c) and (d) 

shows the corresponding profiles for the NTL912–23 system.

For E4K4, the single dominant charge microstate in the pH range of 7–9 is the one where all 

Glu residues are unprotonated and all Lys residues are protonated. Below a pH of 7.0, we 

record contributions from charge microstates corresponding to the +14 and +26 mesostates 

and likewise, above pH 9.0 the charge microstates from the -14 and −26 mesostates start 

to make significant contributions. The pH dependence of the per-residue fractional helicity 

profiles are shown in panel (a) in Figure 5 whereas panel (b) shows the pH dependence of 

the ensemble-averaged radii of gyration (Rg) and standard deviations. The average Rg values 

change by ~0.5 Å between a pH range of 2.0 and 10.0 and decreases more substantially 

for pH values that are above 10.0. The net charge of the system, calculated as a weighted 

average over the contributions of the spectrum of charge microstates shows that the net 

charge is zero only within a narrow pH range of 7.0 – 9.0, falling below zero above 9.0 and 

becoming positive below a pH of 7.0.

Results for the NTL912–23 system are also summarized in Figure 4 (panels (c) and (d)) and 

Figure 5 (panels (d) – (f)). The wild-type sequence belongs to the +21 mesostate. In the pH 

range between 5.0 and 8.5, the NTL912–23 system has a negligible preference for forming 

alpha helices or any other regular secondary structures. This is consistent with observations 

from the studies of Kuhlman et al.118 Below a pH of 6.0 there is a discernible increase 

in alpha helicity, especially within the C-terminal half of the peptide. A similar increase 

in helicity, mostly through the middle of the peptide is observed for pH values above 8.5. 

These preferences can be traced to the contributions of the +32 mesostate in the pH range 

between 3.0 and 6.0 and the +14, 06, and -14 mesostates in the pH range 8.0–11.0. These 

effects, which are indicative of smooth transitions in helical preferences of NTL923 well 

away from the model compound pKa values of Asp, Glu, and Lys are suggestive of upshifted 

pKa values for Glu 17 and Asp 23 combined with downshifted pKa for Lys residues, although 

the magnitudes shifts are dependent on the specific Lys residue.
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Apparent pKa values of ionizable residues depend on sequence context:

In Figure 6 we show our quantification of the probability of deprotonating different Asp, 

Glu, and Lys residues within the two systems. In panel (a) the vertical lines shown in green 

and black correspond, respectively to the model compound pKa values of Glu and Lys. The 

apparent pKa values of the different Glu and Lys residues within E4K4 are estimated as the pH 

value at which the probability of observing the residue in a deprotonated state is precisely 

0.5. Values for the apparent pKa values calculated using the q-canonical simulations are 

shown in Table 2. The apparent pKa value of E1 is downshifted by 0.2 pH units with respect 

to the model compound value; conversely, when compared to the model compound pKa value 

of Glu, the apparent pKa values of E2, E3, and E4 are upshifted by 0.67, 0.73, and 0.57 pH 

units, respectively. The apparent pKa values of the four Lys residues are upshifted by 0.4 pH 

units with respect to the model compound pKa values.

For NTL912–23 the apparent pKa values for Glu17 and Asp23 are 4.45 and 4.35, respectively. 

Kuhlman et al.118 used pH titrations and chemical shift measurements to estimate the 

pKa values of Glu17 and Asp23 to be 4.11 ± 0.17 and 4.11 ± 0.11, respectively. The 

values obtained using q-canonical sampling (Table 2) are in accord with the estimates 

from experiments. The key point being that the apparent pKa values of both residues 

are upshifted with respect to their model compound values, with the shift being more 

pronounced for Asp23, in accord with the experiments of Kuhlman et al.118 These results 

highlight the importance of local sequence contexts on the pKa values of ionizable residues. 

The q-canonical simulations also help quantify the apparent pKa values for Lys residues as 

summarized in Table 2.

Comparison of q-canonical sampling to results obtained using unshifted pKa values and 

fixed charge models:

As noted in the introduction, fixed charge models specify charges for ionizable residues 

using the pKa values of model compounds. We performed simulations using fixed charge 

models and compared the results to those obtained using the q-canonical approach (Figure 

7). In the fixed charge simulations, the charges of ionizable residues are immutable. For 

example, Glu is assumed to be deprotonated for all pH values above its model compound 

pKa and protonated for all pH values below the model compound pKa. Accordingly, for a 

sequence such as E4K4, only the E4K4, e4K4, and E4K4 charge microstates contribute to the 

calculation of the pH dependent profiles. We can allow for charge state fluctuations while 

assuming unshifted pKa values by weighting the contributions of all thermodynamically 

relevant charge microstates by model compound pKa values. Comparisons are summarized 

in terms of the structural quantifies namely, the fractional helicity, calculated in terms 

of ensemble-averaged DSSP-H values – panels (a) and (b) – for E4K4 and NTL912–23 

and the ensemble-averaged Rg values – panels (c) and (d). These comparisons show that 

pronounced deviations from the q-canonical results come from the fixed charge simulations 

thus highlighting the errors associated with quenching charge state fluctuations. Accounting 

for these fluctuations vastly improves the calculated pH dependent profiles vis-à-vis the 
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q-canonical results and this is true even if we assume that the pKa values are unshifted with 

respect to the model compounds. However, the impact of shifted pKa values is made clear 

in the quantitative comparisons of the results from q-canonical sampling and those obtained 

using unshifted pKa values (Figure 7).

Discussion

We have described a new method, which we designate as q-canonical Monte Carlo sampling, 

to model the effects of pH, sequence, and conformation dependent charge regulation in 

peptides and IDPs. We applied q-canonical Monte Carlo sampling to two systems and show 

how the method yields a complete pH dependent description of populations for charge 

microstates and their conformations. The results highlight the holistic picture one obtains for 

the diversity of charge microstates that contribute to conformational distributions. They also 

highlight the highly averaged descriptions one obtains using fixed charge models that do 

not allow for charge regulation. Strictly speaking, the results one obtains using fixed charge 

models will be accurate if and only if sequence context and conformational changes do not 

influence pKa values of ionizable groups. Results obtained using fixed charge models are 

also likely to be reliable if a single mesostate dominates over a range of pH values. This 

is likely to be the case for proteins characterized by minimal conformational heterogeneity 
119–121. In contrast, systems such as IDPs will require full consideration of contributions 

from all thermodynamically relevant charge microstates, and q-canonical sampling enables 

this sort of sampling.

Although we have demonstrated the deployment of q-canonical sampling using the 

ABSINTH implicit solvation and forcefield paradigm, there is nothing about its design 

that prevents its interoperability with other implicit solvation models. However, some of 

the distinct advantages of ABSINTH are likely to be lost in making q-canonical sampling 

interoperable with other classes of implicit solvation models, especially those that come 

under the rubric of Poisson 122, 123 or generalized Born 82 approaches.

Ongoing work:

Effects of charge regulation are likely to become more pronounced in longer sequences 

where long-range interactions between non-nearest neighbor residues can alter charge states. 

Extant data already highlight the effects of charge regulation in sequences where the local 

charge density is high, as would be the case with the striking example of prothymosin 

α 6. Long linear clusters of charged residues 34 and the modulating effects of long-range 

interactions 29 are rather common in intrinsically disordered proteins. Therefore, we expect 

that q-canonical sampling applied to a host of recently studied systems will reveal the 

contributions from charge regulation.

Although we have focused our narrative on the application of q-canonical sampling to 

the effects of charge regulation in IDPs, it is noteworthy that accounts of pKa shifts have 

been well documented for folded proteins, especially variants of staphylococcal nuclease 
96, 98, 119–121, 124–152. The design of q-canonical sampling does not come with a formal 

restriction of being applicable to IDPs alone. The absence of this restriction is also true for 
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ABSINTH / ABSINTH-C models. These are physics-based implicit solvation models that 

are interoperable with standard molecular mechanics forcefields. Accordingly, the model 

itself can be applied in conjunction with q-canonical sampling to modeling the effects of pKa

shifts in folded proteins. This might require the use of hybrid Monte Carlo and torsional 

molecular dynamics methods that have been designed to work with the ABSINTH-style 

models 153. Estimators of enthalpies and entropies designed to be interoperable with the 

mBAR method 95 will help in uncovering the contributions of entropy to charge regulation 

effects. Grouping of microstates into mesostates, and the general approach of decoupling 

proton rearrangements and proton release should be usable in conjunction free energy 

methods for the study of charge regulation effects in folded proteins.

Conclusions

We have presented a detailed description of the q-canonical sampling methodology and 

applied it to a set of short peptides, with the longest sequence being NTL912–23. Our 

demonstration of the initial version of q-canonical sampling was based on the default 

ABSINTH implicit solvation model and forcefield paradigm with one essential distinction: 

we used the bond length and bond angle parameters derived from the CHARMM forcefield, 

which is different from the standard practice of using the Engh and Huber 154 values for 

bond lengths and bond angles. Importantly, recent efforts, based on the development of a 

quantitative touchstone for statistics of backbone dihedral angles for all twenty residues 
155, Choi and Pappu developed an optimized version of ABSINTH, and referred to as 

ABSINTH-C 156, that vastly improves the description of local conformational equilibria. 

As a follow up study to the developments of ABSINTH-C and q-canonical sampling for 

modeling charge regulation effects we are combining the results of the two efforts to 

perform a large-scale calibration of how the two major improvements to ABSINTH-based 

simulations alter our descriptions of conformational equilibria for a variety of IDP systems.
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Figure 1: Schematic of the HS aided proton walk algorithm.
During the transformation, the potential is set such that the two interchanging residues 

are both uncharged, while having the high free energy of solvation of the charged state, 

and the Lennard-Jones are set to half of those of the fully grown atom. Spheres represent 

amino acids, colored in black for uncharged moieties, blue for charged moities, and pink 

for moieties that are in the alternative potential state used for charge transfer in the auxilary 

Markov chain.
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Figure 2: Illustration of q-canonical sampling for the ace-EE-nme system.

The schematic lists the four charge microstates, depicts the grouping of charge microstates 

into mesostates, the use of proton walk sampling to extract weights for different charge 

microstates within a mesostate, and the use of free energy sampling for estimating the free 

energies for alchemic transformation between adjacent mesostates.
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Figure 3: Demonstration of the maximum likelihood minimal transformation approach to select 
the free energy transformation path.
The color of the background of the boxes is representative of the ratio of the population of 

the corresponding charged microstate compared to that of the most populated microstate in 

the corresponding mesostate. Red arrows represent the free energy transformation chosen, 

and black arrows states that are on the same layer. Black lower-case letters represent the 

uncharged states of the corresponding amino acids.
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Figure 4: Probability distributions for all charge microstates and mesostates obtained from 
q-canonical sampling.

(a) Results for the 31 thermodynamically relevant charge microstates of E4K4; (b) Results 

shown in panel (a) synthesized in terms of the mesostates for E4K4; (c) Results for the 19 

thermodynamically relevant charge microstates of NTL912–23; (d) Results shown in panel 

(c) synthesized in terms of the mesostates for NTL912–23. The envelopes for mesostate 

distributions quantify accumulated error in our estimates of the mesotstate statistics.
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Figure 5: Summary of results from q-canonical sampling for the E4K4 and NTL912–23 systems.

(a) Surface plot showing the per-residue alpha helicity, calculated using the DSSP algorithm 
157, for each of the eight residues in E4K4 as a function of pH. (b) Ensemble-averaged radius 

of gyration (blue curve) as a function of pH and standard deviations of the pH-dependent 

distributions for radii of gyration (pink envelope) for E4K4 system. (c) Mean net charge 

(blue curve) as a function of pH and standard deviation for the pH-dependent net charge 

distributions for the E4K4 system. Panels (d), (e), and (f) are results for the NTL912–23 system 

and are equivalent to panels (a), (b), and (c).
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Figure 6: Probability of deprotonating ionizable residues as a function of pH.
(a) Results for the eight ionizable residues within E4K4. The green and black vertical lines 

intersect the abscissa at model compound pKa values for Glu and Lys, respectively. The 

horizontal dashed line intersects the ordinate at the value of 0.5. The intersection of this 

horizontal dashed line with the residue-specific “titration curves” is used to estimate the 

apparent pKa value for the residue in question. The curves are colored according to the 

residues as shown in the legend. (b) Results for the six ionizable residues within NTL912–23. 
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The vertical lines shown in blue, green, and cyan intersect the abscissa at pH values that 

correspond to the model compound pKa values for Asp, Glu, and Lys, respectively.

Fossat and Pappu Page 32

J Phys Chem B. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: Comparison of results obtained using q-canonical sampling (green), unshifted pKa
values that nevertheless use all of the thermodynamically relevant charge microstates (green), 
and fixed charge models (black).
The top row shows how the ensemble-averaged helical propensities, quantified as 

probabilities, vary with pH for the E4K4 system (left) vs. the NTL912–23 system (right). 

The bottom row shows a similar comparative analysis for the ensemble-averaged radii of 

gyration.
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Table 1:

Values for the Kirkwood coupling parameters used in setting up efficient paths for TI calculations.

Replicas λQ off λLJ λFOS λQ on

0 0 0 0 0

1 1 0.25 0 0

2 1 0.5 0 0

3 1 0.75 0 0

4 1 1 0 0

5 1 1 1 1
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Table 2:

Apparent pKa values calculated using q-canonical sampling for ionizable residues within E4K4 and NTL912–23.

E 4 K 4 

Residue Apparent pK a 

NTL9 12–23 

Residue Apparent pK a 

E1 4.11 K12 10.00

E2 4.98 K14 9.74

E3 5.04 K15 9.80

E4 4.88 E17 4.45

K5 10.77 K19 10.00

K6 10.72 D23 4.34

K7 10.70

K8 10.72
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