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Abstract 
 
Acute Kidney Injury is a severe clinical condition with a high risk of multi-organs complications and mortality. For 
this reason, early recognition is crucial. Our proposal based on a 3-window framework discovers all hidden 
regularities, called Approximate Predictive Functional Dependencies, with the aim to enable early recognition of 
high-risk patients during hospitalization in the Intensive Care Unit (ICU). We evaluated the different severity stages 
according to the Kidney Disease Improving Global Outcomes (KDIGO) guidelines, building different pathological 
state patterns, from admission to the discharge from ICU. According to the clinical practice, for each patient, we 
examined various characteristics expressed as a temporal history of events that may predict a pathological state 
pattern. We evaluated our proposal exploiting the MIMIC-IV dataset, a collection of Electronic Medical Records from 
ICU. The obtained results showed promising possibilities to use this type of dependency to support clinical practice. 
 
Introduction 
 
Current clinical database systems have the capacity to store vast amounts of data. However, extracting relevant 
knowledge from these large datasets requires sophisticated data mining techniques that can handle the temporal 
dimension of the data. Temporal data mining is a crucial research area that can help us gain a deeper understanding 
of complex systems and phenomena that evolve over time, revealing hidden temporal knowledge. 
The analysis of these clinical data sources holds great potential for predicting medical events, understanding various 
disease mechanisms, and improving patient care quality. However, defining a pathological state can be challenging 
as it often depends on inherently temporal criteria. Therefore, temporal data mining plays a critical role in analyzing 
clinical data to extract valuable insights and improve patient outcomes. 
 
One clinical example that illustrates this issue is Acute Kidney Injury (AKI), a critical event characterized by a sudden 
loss of kidney function. AKI is typically diagnosed based on increased serum creatinine levels (a marker of kidney 
excretory function) and reduced urinary output (oliguria) (1). Unfortunately, the management of AKI is often 
suboptimal, and there is currently no real cure for this syndrome. Therefore, the early prediction of deterioration could 
play a central role in improving patient outcomes. Identifying an increased risk of AKI sufficiently in advance to 
perform preventative actions before the event occurs could be crucial. To delineate more precisely the patient's 
healthy/pathological state, two main needs must be addressed: (i) representing the evolution of potentially changing 
pathological states, which must be periodically re-evaluated, and (ii) enabling the early prediction of such states, as 
they may be known after some (possibly varying) delay. This could help reduce the overall risk for patients and allow 
for the timely preparation of suitable therapies and interventions. 
 
Based on the depicted scenario, our approach offers the opportunity to identify patients at risk within a time window 
that enables potential early treatments. Specifically, we adopt a 3-window framework and use Approximate Predictive 
Functional Dependencies (APFDs), as partially presented in (2), to discover hidden knowledge expressed as 
dependencies between the patients' history and the following evolution of AKI stages over time. We apply this original 
approach to the MIMIC-IV database. Apart from discussing the technical details, we also delve into the clinical 
implications and the most significant mined APFDs. By leveraging this approach, we aim to facilitate the early 
identification of patients at risk of AKI and help healthcare professionals initiate timely interventions to improve 
patient outcomes. 
 
Background 

Acute Kidney Injury 
 
Acute Kidney Injury (AKI), previously known as acute renal failure (ARF), is a syndrome characterized by sudden 
kidney failure or kidney damage that occurs within a few hours or a few days and rarely has a sole and distinct 
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pathophysiology. The need to evaluate the adequacy and efficacy of different therapeutic protocols, in addition to the 
possibilities of prevention and/or limitation of the damage, has led to formulate a classification of AKI that also 
includes slight alterations in the renal function. AKI is not a single organ failure clinical event, but a syndrome where 
the kidney plays an active role in the progress of multi-organ dysfunction, with different critical clinical conditions 
ranging from a slight increase in creatinine to anuria, namely the complete cessation of urine flow (3). 
 
The early detection, the prompt treatment, and the anticipated interventions are elements that likely provide benefits 
for the patient which has the possibility to avoid temporary support from a dialysis machine or death itself. AKI is 
often a quickly evolving clinical event with high morbidity that represents an important complication in patients 
admitted to the hospital (10-15% of all hospitalizations). The mortality rate can be very high, between 50% and 80%, 
especially for patients in the Intensive Care Unit (ICU), where it sometimes exceeds 50% (4). The major challenge to 
AKI diagnosis and treatment is that specific syndromes often coexist, without the immediate onset of alarming 
symptoms such as chest pain, dyspnea, palsy, or blindness; hence, diagnosis requires specific technical assessments. 
 
Functional dependencies 
 
Our proposal is based on a specific type of functional dependency. Before the introduction to the method, we recall 
some basic information proper to delineate our technique. We briefly describe the definition of functional dependency 
(FD), and then introduce its extensions: Approximate Functional Dependency (AFD) and Temporal Functional 
Dependency (TFD). Such concepts will lead to the definition of Approximate Temporal Functional Dependency 
(ATFD), where ATFD inherits the properties both from AFD and from TFD.  
To extract knowledge from clinical databases, there are different methodologies. Functional dependencies can be seen 
as hidden regularities that are present in the database. For example, suppose we are studying the different drug 
administrations, in order to discover recurrent adverse events. We may discover that given a symptom, we always 
have the same administered drug, or given an administrated drug we always have the same adverse reaction. We can 
formally define the concept of Functional Dependency (FD) (5) as follows:  
Let r be a relation over the relational schema R(U): let 𝑋, 𝑌 ⊆ 𝑅 be sets of attributes of U. We assert that r fulfils the 
functional dependency 𝑋 → 𝑌 (written as 𝑟 ⊨ 𝑋 → 𝑌) if the following condition holds: ∀𝑡, 𝑡! ∈ 𝑟(𝑡[𝑋] = 𝑡![𝑋] ⇒
𝑡[𝑌] = 𝑡![𝑌]). The 𝑋 represents the antecedent, while 𝑌 is the consequent.  
When we consider temporal aspects, so considering to extend the concept of FDs to deal with data temporalities, we 
talk about Temporal functional dependency (TFD) (6). Using the previous motivating example, a TFD may express a 
concept as: for each symptom and an adverse reaction, the administered drug does not change over a time span of 6 
months. 
In real-world data, noise is often present, and as a result, some errors are expected when discovering dependencies. 
Therefore, it is necessary to accept a certain degree of error in the discovered dependencies. So, from the plain concept 
of FD derives the concept of approximation (7), first introduced in (5). Given a relation r where an FD holds for most 
of the tuples in r, we may identify some tuples for which that FD does not hold. 
 
Methods 

MIMIC-IV  

MIMIC-IV (8) is a publicly available database, the result of a collaboration between Beth Israel Deaconess Medical 
Center (BIDMC) and the Massachusetts Institute of Technology (MIT). They collected electronic health records 
regarding the decade from 2008 to 2019. Data contains seventy thousand admissions of patients hospitalized in ICU. 
The recorded information mainly contains demographic data, vital signs, laboratory results, procedures, and 
medications.  

Different criteria have been used to gather accurate conclusions on the epidemiology of this syndrome. The first one 
was the International consensus criteria introduced by the Acute Dialysis Quality Initiative, and afterwards modified 
by the AKI Network (9) until 2012 when KDIGO (10) provided the new guidelines. In this study, we employ the 
KDIGO criteria based on AKI stages: 

Stage 1: Serum creatinine is 1.5–1.9 times baseline, or an increasing equal or greater than 0.3 mg/dl (26.5 mmol/l), or 
a urine output less than 0.5 ml/kg/h for at least 6 hours; 

Stage 2: Serum creatinine is 2.0–2.9 times baseline, or a urine output less than 0.5 ml/kg/h for at least 12 hours; 
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Stage 3: Serum creatinine is ≥ 3.0 times baseline, or an increase in serum creatinine equal or greater than 0.4 mg/dl 
(greater or equal to 353.6 mmol/l), or the initiation of renal replacement therapy, or a urine output less than 0.3 ml/kg/h 
for at least 24 hours, or anuria for 12 hours. 

Data pre-processing: AKI definition and patient features  
 
To effectively predict the risk of AKI, the first crucial step is to gather all relevant information about each patient, so 
that their medical history can be accurately represented. Using data from the MIMIC-IV database, we extract 
information for patients between the ages of 18 and 90, resulting in a cohort of approximately 70,000 individuals. To 
ensure that our predictions are as accurate as possible, we exclude patients who are admitted to the ICU with an already 
established AKI, analysing the first two occurrences of creatinine and treating these patients as unstable. 
From a clinical perspective, from the entire database we identify several potentially relevant features for predicting 
AKI. Specifically, we focus on medications administered during the patient's ICU stay, including diuretics, 
antihypertensives, and nephrotoxic drugs. Additionally, we consider whether a patient was admitted to a specific post-
surgery ICU (e.g., Surgical Intensive Care Unit (SICU), Trauma SICU (TSICU), Medical/Surgical Intensive Care 
Unit (MICU/SICU), …), whether the patient was diagnosed with sepsis and, if so, which type of sepsis (e.g., puerperal 
sepsis, salmonella sepsis, listeria sepsis, …) was present, whether the patient received a procedure involving contrast 
medium and the systolic and central venous pressures. To make the analysis more manageable, we discretize 
continuous variables into low, medium, and high categories based on clinical literature. 
To evaluate each patient's risk of AKI, we use the KDIGO criteria and assign a label of 0 (if AKI is not present), 1, 2, 
or 3 at specific time points, from the time of the ICU admission until the discharge. By using different moving windows 
following the criteria specifications, we continuously monitor the patient history and track the evolution of the AKI 
stages. If a patient satisfies concurrent multiple criteria, serum creatinine and urinary output variations, for different 
AKI stages, we consider the worst one. This is because, by the end of the observation period, the characteristic is 
already underway, so we assume that the predicted event, such as an AKI diagnosis, started at the beginning of the 
observation period. In Figure 1, we illustrate how we evaluate the urine criteria. By considering the patient's entire 
history, we assess all stages of the criteria every 6 hours, using a different temporal window depending on the severity 
stage. The light blue section refers to the first criterion, which considers an observation period of 6 hours for urine; 
The green one refers to the second criterion, which considers an observation period of 12 hours for urine; The orange 
one refers to the third criterion, which considers an observation period of 24 hours for urine. Ultimately, we evaluate 
all pathological state patterns and choose the one with the worst severity. 
 

 
Figure 1. Temporal valuation of different AKI stage criteria: the worst satisfied stage is assigned every 6 hours. Red 
crosses refer to unsatisfied criteria, while green check marks refer to satisfied criteria. 
 
The proposed model: Approximate predictive functional dependencies and the 3-window framework 
 
In this section, we first introduce a 3-window model for the interpretation of predictive temporal data, and then we 
illustrate the definition of Approximate Predictive Functional dependencies (APFDs).  
Typically, prediction models rely on two-time windows: the data collection or observation window, and the prediction 
window. We investigate the possibility to predict a future event using three temporal windows as follows: we collect 
information that could be relevant to a future event over a certain time span in the observation window (OW); we 
introduce a temporal gap before the event occurs, which we call the waiting window (WW); finally, we observe how 
the event evolves over time span in the prediction window (PW). It is worth noting that the length of the temporal 
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windows may vary according to the problem at hand. We may choose to collapse the waiting window to zero in case 
of observations with an instantaneous observable effect. Figure 2 provides a visual representation of this 3-window 
framework. 
 

 
Figure 2. The 3-window framework. The temporal windows can be either fixed to a specific time point or movable 
along the time axis. The bar charts in the observation window represent various clinical parameters that have been 
observed, while the bar charts in the prediction window represent the observed clinical outcomes. 
 
Within this 3-window framework, our goal is to define a general framework that captures a specific type of functional 
dependencies, with the antecedent composed of a set of characteristics called predictive attributes, and the consequent 
composed of the predicted event. Our proposal consists of three main elements. 
Firstly, we propose that the relation containing the values of the predicted attribute, the target expression, is interval-
based, i.e., its valid time represents the interval during which the considered value is true (11). A general target 
expression has schema 𝑅"#	2𝑍𝐵 ∪ 6𝑉𝑇%&'(&,𝑉𝑇*+,9: , where Z is the patient ID, B represent the predicted event (i.e. 
the diagnosis pattern), and 𝑉𝑇%&'(& , 𝑉𝑇*+, 	are the attributes representing the temporal dimension of the tuples, namely 
the start and the end of each diagnosis pattern. The second element, the K-State Evolution Expression (KSE), contains 
the predictive attributes. We define a relation K-State Evolution Expression as: 
 

𝑅-.#(𝑍𝑈=	/𝑈=0. . 𝑈=	1 ∪ {𝑉𝑇@@@@	/, 𝑉𝑇@@@@ 	0, . . , 𝑉𝑇@@@@ 	1}) 
 
where attributes 𝑈=	2 represent properties holding at a valid time 𝑉𝑇@@@@ 	2 for 1 ≤ 𝑖 ≤ 𝑘; and for each tuple 𝑡 ∈ 𝑅-.# it 
holds 𝑡[𝑉𝑇@@@@	2 	] < 𝑡G𝑉𝑇@@@@(24/)H for 1 ≤ 𝑖 ≤ 𝑘 − 1. Therefore, the predictive attributes are temporally ordered. 
Finally, we can define the third element, the K-State Prediction Expression (KSPE). We define a relation as K-State 
Prediction Expression as: 
 
𝑅-.6# ≡ {𝑡|𝑅-.#(𝑡[𝑍𝑈=	/𝑈=	0. . 𝑈=	1 ∪ {𝑉𝑇@@@@ 	/, 𝑉𝑇@@@@ 	0, . . , 𝑉𝑇@@@@ 	1}])		⋀	𝑅"#2𝑡G𝑍𝐵 ∪ 6𝑉𝑇%&'(&,𝑉𝑇*+,9H:	⋀	𝑡[𝑉𝑇@@@@ 	1] − 𝑡[𝑉𝑇@@@@ 	/]

≤ 𝑂𝑊	⋀	𝑡[𝑉𝑇%&'(&] − 𝑡[𝑉𝑇@@@@ 	/] 	> 𝑂𝑊 +𝑊𝑊	⋀	𝑡[𝑉𝑇*+,] − 𝑡[𝑉𝑇@@@@ 	/] < 𝑂𝑊 +𝑊𝑊 +𝑃𝑊}	 
 
In Figure 3, we report the general idea of a K-State Prediction Expression (KSPE), underlying which are the different 
involved parts, namely the K-State Evolution Expression (KSE) and the Target Expression. 
 

 
Figure 3. Graphical representation of an example of KSPE. 

Time

Observation Window Waiting window Prediction window

Observation Window Waiting window Prediction window

Observation Window Waiting window Prediction window

Patient 𝐻𝑅1 𝑉𝑇1 𝑆𝑝𝑂2
2 𝑉𝑇2 𝐷𝑟𝑢𝑔3 𝑉𝑇3 AKI 𝑉𝑇𝑠𝑡𝑎𝑟𝑡 𝑉𝑇𝑒𝑛𝑑

Daisy High 9 Low 11 Aspirin 13 333 17 20

Daisy Low 2 High 4 Aspirin 6 322 9 12

Daisy Low 2 High 4 Aspirin 6 221 13 16

Luke Medium 7 High 8 Ibuprofen 12 222 14 17

Luke Medium 7 High 8
Ibuprofen

12 221 18 21

Luke Low 9 High 13 Sulindac 14 211 22 25

Stevie High 1 Low 13 Aspirin 5 111 14 17

Time

KSE Target expression

KSPE
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Once we have constructed these expressions, which allow us to associate ordered state values with a final target 
attribute value for a given patient, representing the event we wish to predict according to the specified temporal 
windows, we can then introduce the concept of Approximate Predictive Functional Dependency (APFDs).  
In this framework, the consequent corresponds to the target attribute, while the antecedent is composed of a (sub)set 
of attributes that represent the various evolving states of a patient.  
 
Given a KSPE 𝑅-.6#2𝑍𝑈=	/𝑈=	0. . 𝑈=	1𝐵 ∪ 6𝑉𝑇@@@@	/, 𝑉𝑇@@@@ 	0, . . , 𝑉𝑇@@@@ 	1 , 𝑉𝑇%&'(&,𝑉𝑇*+,9:, we can extract the APFDs expressed 
as:  

𝑋@7𝑆̅2 . .𝑊= 8 9
→𝐵	𝑤𝑖𝑡ℎ	0 ≤ ℎ < 𝑖. . < 𝑗 ≤ 𝑘	 

 
𝑤ℎ𝑒𝑟𝑒	𝜀 =< 𝜀:, 𝜀7, 𝜀8 > 𝑎𝑛𝑑	𝑋@7 ⊆ 𝑈=7, 𝑆̅2 ⊆ 𝑈=2 ,𝑊= 8 ⊆ 𝑈=8 	 

 
𝜀 considers different kinds of approximation, i.e., different kinds of error thresholds: (i) 𝜀: represents a threshold for 
the number of tuples we have to delete for having the dependency satisfied; (ii) 𝜀7 specifies the maximum number of 
patients we admit, having the complete deletion of their data, to satisfy the dependency; and (iii) 𝜀8 control the 
maximum number of tuples we accept to delete per patient.  
We compute all the APFDs, considering the three approximations, using an extended version of TANE algorithm 
(12). Our approach is mainly focused on the following steps: (i) Derive a set of tuples that satisfy the given APFD, 
according to error threshold 𝜀: (ii) From this set, we check whether the threshold 𝜀7 is satisfied (iii) If 𝜀7 is satisfied, 
we check 𝜀8. 
As a result, our method allows us to investigate patterns in the past that involve specific temporally ordered stages, 
subsequently linking them to a specific pattern of pathological states occurring in the future. 
 
It is worth observing that our approach deals with discovering Approximate Temporal Functional Dependencies from 
data, allowing some kind of errors. Thus, it can be considered complementary to Machine Learning (ML) techniques, 
which learn from data and try to predict pathological states from them. Indeed, while ML techniques propose 
predictive, often black-box, techniques, our proposal deals with the discovery of temporal features hidden in the data, 
with an explainable approach, which could be associated with the previously ML-mentioned techniques. Thus, we 
will see that our experimental results will be given in terms of error thresholds, while confusion matrices and the 
related rates and scores are not suitable for APFDs. 
 
Results 
 
From the initial court of 73729 patients admitted to the ICU, we select the “stable” patients considering the first two 
creatinine measures. Specifically, we exclude patients when the difference between the two values was greater than 
0.3, according to the KDIGO guidelines. Following this preliminary phase, we end up with a cohort of 30,915 subjects. 
In Table 1, we provide a detailed report of all the specific features that were used during the pre-processing part.  
 
For our analysis, we consider five different KSPEs using two different 3-window frameworks. Each framework 
consists of an observation window of 72 hours, during which we collect all the measures related to each patient, 
followed by a waiting window of either 6 or 12 hours where we do not consider any events. Finally, we have a 
prediction window of 24 hours. We build pathological state patterns of length 3.  
The five KSPEs are composed as follows: 

1. For the first KSPE, we use sepsis, nephrotoxicity, and diuretics to obtain 386 patients with this history in the 
database from the first framework (KSPE 1.a) and 371 from the second one (KSPE 1.b); 

2. The second KSPE consists of central venous pressure, contrast medium, and another central venous pressure, 
which resulted in 4 patients within both frameworks (KSPE 2.a) and (KSPE 2.b); 

3.  The third KSPE uses sepsis, surgical operation, central venous pressure, diuretics, and nephrotoxicity to 
obtain 277 patients from the first framework (KSPE 3.a) and 254 from the second one (KSPE 3.b); 

4. For the fourth KSPE, we use sepsis, surgical operation, and central venous pressure, resulting in 1705 patients 
from the first framework (KSPE 4.a) and 1669 from the second one (KSPE 4.b); 

5. In the last one, we include systolic pressure, antihypertensives, and another systolic pressure obtaining 941 
patients from the first framework (KSPE 5.a), and 548 from the second one (KSPE 5.b). 
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Table 1. Detailed features used during the pre-processing part. 
Features  

Nephrotoxic 
drugs 

Gentamicin, Vancomycin, Tobramycin, Amikacin, Penicillamine, Auranofin, 
Sulfamethoxazole, Trimethoprim, Sulfametrole, Sulfamazone, Streptomycin, Netilmicin, 
Zoledronate, Colistin, Acyclovir, Foscavir, Ganciclovir, Adefovir, Tenofovir, Indinavir, 
Cidofovir, Cyclosporine, Tacrolimus, Carmustine, Mutamycin, Prevacid, Pamidronate 

Diuretic drugs 
Furosemide, Triamterene, Hydrochlorothiazide, Indapamide Spironolactone, Tolvaptan, 
Chlorothiazide, Bumetanide, Amiloride, Metolazone, Eplerenone, Chlorthalidone, 
Torsemide, Aldactone, Ethacrynic acid, Acetazolamide 

Antihypertensive 
drugs 

Nebivolol, Moexipril, Sotalol, Lisinopril, Carvedilol, Methyldopa, Propranolol, Benazepril, 
Aliskiren, Ambrisentan, Clonidine, Pindolol, Bosentan, Minoxidil, Irbesartan, Prazosin, 
Quinapril, Doxazosin, Atenolol, Diazoxide, Metoprolol, Esmolol, Candesartan, Nadolol, 
Losartan, Captopril, Valsartan, Trandolapril, Acebutolol, Ramipril, Macitentan, Guanfacine 

Sepsis 
(ICD code) 

67020, 67022, 67024, 99592, A021, A227, A267, A327, A40, A408, A409, A41, A4150, 
A4159, A418, A4189, A427, A5486, B377, O85, R652, R6520, R6521 

Contrast medium 
(ICD code) 

8702, 8811, 8840, 8860, 8861, 8862, 8863, 8864, 8865, 8866, 8867 

 
Table 2. Discretization of Systolic pressure and Central venous pressure. 

 Low Medium High 
Systolic pressure < 90 90 -120 >120 

Central venous pressure <0 0-12 >12 

 
In Tables 3 and 4 we report all the mined APFDs with the related epsilon values and the related 3-window framework. 
We select some APFDs to show which are the values under the dependencies. For example, from KSPE 3.a, we 
analyse SEPSIS!!!!!!!!!!1

,DIURETICS!!!!!!!!!!!!!!!!4
,NEPHROTOXIC!!!!!!!!!!!!!!!!!!!!!5⟶AKI, reporting in Table 5 the most common value combinations. 

Another remarkable example is given by the dependency 

SEPSIS!!!!!!!!!!1
,OPERATION!!!!!!!!!!!!!!!!!2

,CVP!!!!!!3
,DIURETICS!!!!!!!!!!!!!!!!4

,NEPHROTOXIC!!!!!!!!!!!!!!!!!!!!!
5
⟶AKI from the KSPE 3.b. In Table 6, we report all the 

combinations which characterize only one pathological state, the ‘333’ pattern.  
 
Table 3. APFDs mined using the 3-window framework OW 72 - WW 6 - PW 24 (continued) 

 3-window framework 72-6-24 𝜀: 𝜀7 𝜀8 
KSPE 
1.a 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@0, 𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 36.2% 0% 50% 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 

36.5% 
 

0% 50% 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼  36.6% 0% 50% 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼 
𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 

37% 
 

0% 50% 

KSPE 
2.a 
 

𝐶𝑉𝑃@@@@@@/ ⟶𝐴𝐾𝐼 
𝐶𝑂𝑁𝑇𝑅𝐴𝑆𝑇@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐶𝑉𝑃@@@@@@; ⟶𝐴𝐾𝐼 

18.5% 0% 0% 

KSPE 
3.a 
 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝐶𝑉𝑃@@@@@@;, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@=, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 

32.8% 0% 50% 

𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
𝐶𝑉𝑃@@@@@@;, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 

33% 
 

0% 50% 

KSPE 
4.a 
 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼 33.24% 0% 50% 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼 
𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐶𝑉𝑃@@@@@@; ⟶𝐴𝐾𝐼 

34% 
 

0% 50% 

𝑆𝑌𝑆𝑇𝑂𝐿𝐼𝐶@@@@@@@@@@@@@@/, 𝐴𝑁𝑇𝐼𝐻𝑌𝑃𝐸𝑅𝑇𝐸𝑁𝑆𝐼𝑉𝐸@@@@@@@@@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 47% 0% 50% 
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KSPE 
5.a 

𝑆𝑌𝑆𝑇𝑂𝐿𝐼𝐶@@@@@@@@@@@@@@/ ⟶𝐴𝐾𝐼 
𝐴𝑁𝑇𝐼𝐻𝑌𝑃𝐸𝑅𝑇𝐸𝑁𝑆𝐼𝑉𝐸@@@@@@@@@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝑆𝑌𝑆𝑇𝑂𝐿𝐼𝐶@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 

50% 
 

0% 50% 

 
Table 4. APFDs mined using the 3-window framework OW 72 - WW 12 - PW 24  

 3-window framework 72-12-24 𝜀: 𝜀7 𝜀8 
KSPE 
1.b 
 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 

36.5% 
 

0% 50% 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼 
𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 

 37 % 0% 50% 

KSPE 
2.b 
 

𝐶𝑂𝑁𝑇𝑅𝐴𝑆𝑇@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 11% 0% 0% 
𝐶𝑉𝑃@@@@@@/ ⟶𝐴𝐾𝐼 
𝐶𝑂𝑁𝑇𝑅𝐴𝑆𝑇@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐶𝑉𝑃@@@@@@; ⟶𝐴𝐾𝐼 

13% 0 % 0% 

KSPE 
3.b 
 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0, 𝐶𝑉𝑃@@@@@@;, 𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆@@@@@@@@@@@@@@@@=, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾I 33% 0% 50% 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝐶𝑉𝑃@@@@@@;, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 

33.2% 0% 50% 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 33.5% 0% 50% 
𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
𝐶𝑉𝑃@@@@@@;, 𝑁𝐸𝑃𝐻𝑅𝑂𝑇𝑂𝑋𝐼𝐶@@@@@@@@@@@@@@@@@@@@@< ⟶𝐴𝐾𝐼 
SEPSIS@@@@@@@@@1,NEPHROTOXIC@@@@@@@@@@@@@@@@@@@@5⟶AKI 

34% 
 

0% 50% 

KSPE 
4.b 
 

𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼 33% 0% 50% 
𝑆𝐸𝑃𝑆𝐼𝑆@@@@@@@@@@/ ⟶𝐴𝐾𝐼  
𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝐶𝑉𝑃@@@@@@; ⟶𝐴𝐾𝐼 

33.24% 0% 50% 

KSPE 
5.b 
 

𝑆𝑌𝑆𝑇𝑂𝐿𝐼𝐶@@@@@@@@@@@@@@/ ⟶𝐴𝐾𝐼 
𝐴𝑁𝑇𝐼𝐻𝑌𝑃𝐸𝑅𝑇𝐸𝑁𝑆𝐼𝑉𝐸@@@@@@@@@@@@@@@@@@@@@@@@@@@@@0 ⟶𝐴𝐾𝐼 
𝑆𝑌𝑆𝑇𝑂𝐿𝐼𝐶@@@@@@@@@@@@@@; ⟶𝐴𝐾𝐼 

50% 
 

0% 50% 

 
 
It is easy to see how the pattern ‘333’ is the most popular one, and hence, the algorithm selects it. However, our 
proposal uncovers diverse diagnostic patterns within the data. In Table 7, we reported some value combinations under 
the APFD 𝑆𝐸𝑃𝑆𝐼𝑆!!!!!!!!!!!, 𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆!!!!!!!!!!!!!!!!" ⟶𝐴𝐾𝐼, which highlight pathological states patterns leading to deterioration of health 
conditions. 
 
Table 5. Value combinations of SEPSIS!!!!!!!!!!1

,DIURETICS!!!!!!!!!!!!!!!!4
,NEPHROTOXIC!!!!!!!!!!!!!!!!!!!!!5⟶AKI 

Sepsis ICD code Diuretic Nephrotoxic AKI pattern 
99592  Bumetanide Vancomycin 300 
99592  Chlorothiazide vancomycin 333 
A4189  Furosemide Cidofovir 333 
A4189  Furosemide Vancomycin 033 
R6521  Bumetanide Vancomycin 333 
R6521  Metolazone Vancomycin 003 

 

Table 6. Value combinations of SEPSIS!!!!!!!!!!1
,OPERATION!!!!!!!!!!!!!!!!!2

,CVP!!!!!!3
,DIURETICS!!!!!!!!!!!!!!!!4

,NEPHROTOXIC!!!!!!!!!!!!!!!!!!!!!
5
⟶AKI  (continued) 

Sepsis ICD 
code 

Operation CVP Diuretics Nephrotoxic AKI pattern 

99592 Yes high Chlorothiazide Vancomycin 333 
99592 Yes high Furosemide Acyclovir 333 
99592 Yes high Furosemide Sulfamethoxazole-trimethoprim 333 
R6521 Yes high Furosemide Sulfamethoxazole-trimethoprim 333 
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R6521 Yes normal Furosemide Acyclovir 333 
 
Table 7. Value combinations of 𝑆𝐸𝑃𝑆𝐼𝑆!!!!!!!!!!!, 𝐷𝐼𝑈𝑅𝐸𝑇𝐼𝐶𝑆!!!!!!!!!!!!!!!!" ⟶𝐴𝐾𝐼 

Sepsis ICD code Diuretics AKI pattern 
99592  furosemide 203 
A408  furosemide 303 
B377  furosemide 030 
R6521  bumetanide 302 
R6521  furosemide 031 
R6521  metolazone 303 

 
Discussion and Conclusion 
 
In this study, we proposed the application of a new temporal data mining technique to support the discovery of 
temporal properties of data in clinical practice, to support the prediction of the evolution of pathological states of 
Acute Kidney Injury during hospitalizations in the Intensive Care Unit. We considered different temporal frameworks. 
Analyzing the results, it is easy to see there is no significant difference between the mined APFDs from the two 
different frameworks. Temporal windows were selected based on the clinical practice, and waiting windows of 6 and 
12 hours, respectively, are not showing differences, concerning the APFDs obtained. Indeed, the dependencies were 
similar.  
Based on the data we analyzed, we discovered that the most prevalent pattern of pathological states within MIMIC-
IV is designated as 333, corresponding to three consequent states of AKI stage 3. As a result of this pattern prevalence, 
our technique highlights the predictive attribute value combinations associated with this pattern, even though it allows 
the discovery of the presence of many other patterns in the database.  
A limitation of this technique is given by the user-dependent selection of the 3-window framework. The choice of 
length is not automatically set according to the data or to the problem at hand. but is always related to a choice made 
through clinical practice. To address this limitation, future research will focus on leveraging the waiting window 
nature to generate a model that is always tailored to the specific clinical problem to prevent future events.  
A significant strength of our approach is the absence of learning. We do not use any learning methods, to 
predict/classify patient data. Indeed, we allow the discovery of temporal data dependencies hidden inside the data. 
This feature enables us to overcome the "black box problem," which often generates a layer between the user and the 
selected model.  
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