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Abstract 

Amyotrophic lateral sclerosis (ALS) is a rare and devastating neurodegenerative disorder that is highly 

heterogeneous and invariably fatal. Due to the unpredictable nature of its progression, accurate tools and 

algorithms are needed to predict disease progression and improve patient care. To address this need, we 

developed and compared an extensive set of screener-learner machine learning models to accurately predict the 

ALS Function-Rating-Scale (ALSFRS) score reduction between 3 and 12 months, by paring 5 state-of-arts feature 

selection algorithms with 17 predictive models and 4 ensemble models using the publicly available Pooled Open 

Access Clinical Trials Database (PRO-ACT). Our experiment showed promising results with the blender-type 

ensemble model achieving the best prediction accuracy and highest prognostic potential.  

 

Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurological disorder that is uncommon and results in a gradual 

weakening of motor neurons1. The root causes of the disease are not yet clearly understood, and currently, there 

have been only three authorized medications (Riluzole11, Endaravone12, AMX003513) that have been shown to 

extend survival and mildly slowing down the disease progression over the passing decade11. In current practice, 

the most widely used instrument for evaluating the progression of ALS is the ALS Function-Rating-Scale 

(ALSFRS) or its revised version, ALSFRS-R. The ALSFRS is a widely adopted questionnaire that comprises 12 

questions to assess ALS disease progression in clinics, with a focus on bulbar, motor and respiratory functions 

such as breathing, dressing, stair-climbing, walking, swallowing, and speaking. Each question is scored between 

1 to 4 with 4 being at the highest function level. ALS progression is determined by calculating the slope between 

the first and last ALSFRS total score for a specific period of time. It is often believed that ALS progression is 

linear and heterogeneous. However, an effective prognostic model is still lacking to best predict the disease 

trajectory, as well as distinguish between the “fast progressor” and the “slow progressor”.  

 

To better advance the understanding of ALS, The Pooled Resource Open-Access ALS Clinical Trials (PRO-

ACT)3 database was proposed and released. This database contains anonymized, individualized data from more 

than from 29 Phase II/III clinical trials for over 11,000 ALS patients, representing the largest aggregation of ALS 

clinical trial data available. It is maintained by Prize for Life Foundation9 for research purpose only. In 2015, the 

DREAM-Phil Bowen ALS Prediction Prize4Life Challenge was conducted using the PRO-ACT data, with the 

single goal of developing machine learning models to better predict disease progression, defined as the slope of 

the ALSFRS score between 3 and 12 months based on the patient's initial 3 months of data. Since then, various 

teams have proposed multiple statistical and machine learning algorithms to improve the progression prediction 

(including but not limited to: regression models, including Random Forest, Bayesian trees, Nonparametric 

regression, support vector regression, multivariate regression, and linear regression), in combination with various 

approaches of feature selection (FS) and feature extraction (FE). The winning model in the competition was based 

on Gradient Boosted Regression Trees (GBRT) model, which was achieved by the UglyDuckling team14. 

 

In this study, we developed and compared an extensive set of screener-learner machine learning models by pairing 

5 state-of-the-arts feature selection algorithms with 17 predictive models, with the goal of further enhancing the 

prognostic potential using machine learning approaches. A screener-learner model combined FS algorithm with 

a prediction model, which have shown to often outperform the prediction model alone, as FS could effectively 

reduce data sparsity and noise15,16. We also explored 2 ensemble model approaches (blender and stack ensembles), 

which showed great promises in achieving further improvement in predicting the disease progression and survival. 

We finally provided explanations of the best predictive model (a blender ensemble) using the SHapley Additive 

exPlanations (SHAP) values to extrapolate both the marginal and interactive effects of all selected features [17].  
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Method 

Dataset 

The dataset used in this study was 

obtained from the Pooled Resource Open-

Access ALS Clinical Trials (PRO-ACT) 

repository, which we downloaded from 

the PRO-ACT website on November 1, 

2022.10 This dataset includes data for 

more than 11,600 patients involved in 29 

separate clinical trials, and it comprises 

13 distinct tables containing a variety of 

information, including but not limited to 

ALSFRS questionnaire responses, 

laboratory data, demographics, details 

regarding the onset of the disease, and 

treatment data. Due to high data sparsity 

in 6 tables and to be comparable with 

published work, we pre-selected the 

remaining 7 tables for this analysis. 

Figure 1 provides an overview of the raw 

features from each of the 7 selected 

tables. For features with repeated 

measurements, we extracted 7 summary 

features (minimum, maximum, median, 

standard deviation, first and last observations, as well as the slope between the first and last observations) within 

the baseline time period (i.e., first 3 months). In total, we extracted 321 features. By following a “complete-set” 

approach, we excluded patients who had insufficient features due to missing.  

 

Outcome 

The primary outcome of interest is disease progression, more specifically, defined as the pre-month-decline in 

the overall ALSFRS score (also known as the ALSFRS slope) from the 3rd to the 12th months since the 

observation window started, entailed in the following equation: 

 
𝐴𝐿𝑆𝐹𝑅𝑆𝑆𝑙𝑜𝑝𝑒 =  

𝐴𝐿𝑆𝐹𝑅𝑆(𝑡2) − 𝐴𝐿𝑆𝐹𝑅𝑆(𝑡1)

𝑡2 − 𝑡1

 
                              (1)             

where 𝑡1 and 𝑡2 present the times (in months) of the first visit after 3 and 12 months, respectively. 

 

Experimental Design 

The experimental design is presented in Figure 1, which can be broken down into five steps: pre-processing, 

feature extraction and selection (“screener”), model development (“learner”), performance evaluation, and 

model interpretation.  

 

Step 1 (Pre-processing): The preprocessing was first conducted by eliminating duplicate records and correcting 

inconsistencies in units of 

measurement. Next, we 

addressed missing data by 

discarding features with over 

30% of missing values and 

replacing missing values in the 

remaining features using the 

single-value imputation method. 

Lastly, we normalized the data 

using the Min-Max 

normalization method. We then 

split the dataset into 80% 

training (2,119 patients) and 

20% testing sets (530 patients).  

Step 2 (Feature extraction and 

selection, “screener”): For 

features with repeated 

Figure 1. Raw clinical features and biomarkers in PRO-ACT 

Figure 2. Experimental Design.  
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measurements, we extracted 7 summary features (minimum, maximum, median, standard deviation, first and last 

observations, as well as the slope between the first and last observations) within the baseline time period (i.e., first 

3 months). This resulted in a total of 321 initial features per patient. We then utilized five different FS algorithms 

to screen for the most relevant and stable features for predicting the ASLFRS slope, and they are: a) three model-

specific embedded feature selection algorithms (Lasso [18], Extra Tree Regressor  or ETR [19], and XGboost 

[20]); b) Boruta [21]; c) Ensemble [22]. In addition, we repeated each algorithm 5 times and assessed their stability 

using the Relative Weighted Consistency1 metric. 

 

 Step 3 (Develop predictive models and ensembles, 

“learner”): we explored 17 different predictive models 

(listed in Table 1), which can be generally categorized into: 

a) naïve-regression models (1); b) regularized regression 

models (8); c) tree-based bagging/boosting models (6); d) 

similarity-based models (1); e) Bayesian models (1). For 

models that required additional hyperparameter tuning, it was 

accomplished using 10-fold cross-validation within the 

training stage. We also utilized two model ensemble 

approaches: blended (i.e., voting) and stacking. We first 

combined the top 5 models to evaluate their performance on 

both the training and testing datasets, and then repeated this 

process with the top 10 models. Ensemble models are 

constructed based on the previous 17 predictive models with 

the best performance. 

 

Step 4 (Performance Evaluation): we evaluated and 

compared model performance using two testing metrics: a) 

Root Mean Square Error (RMSE) comparing the predicted 

slope and actual slope; and b) discriminative power of the 

predicted slope corresponding to true survival rate based on 

log-rank test: using a threshold at top 32 percentile (calibrated 

with true fast progressor rate), we divided the patient cohort 

into two distinct groups separately based on predicted slope, 

i.e., the “predicted fast progressor” and the “predicted slow progressor”, and compare if their survival rates are 

significantly different.  

 

Step 5 (Model Explanation):  

We employed SHAP (SHapley Additive exPlanations) value in the paper, which has been widely used in 

extrapolating marginal effects of features for machine learning models, which is model-agnostic [23]. The SHAP 

values evaluated how the predicted values changed by including a particular feature at certain value for each 

individual patient. It not only captured the global patterns of effects of each factor but can also be used to 

demonstrate the patient-level variations of the effects. 

 

Results 

Cohort Characteristics 

The final eligible cohort contained 2,649 patients with 321 features, and Table 2 describes the basic characteristics 

of the ALS cohort. The average age of onset is 55 years, with a standard deviation of 11.3 years. The majority of 

the samples in this dataset were from patients who were identified as White/Caucasian with a percentage of 

96.11% . There is a higher representation of males than females, with males accounting for 62.89% of the patients. 

77.5% of patients experienced limb onset and 22.1% bulbar onset. 69% if the patients reported Riluzole use.  

  

Table 2: A brief descriptive statistic of the main cohort. 
Characteristic Count (observed rate) Characteristic Mean (Std.) 

Gender, male 1666, (62.89 %) Total ALSFRS (First) 29.5 (6.14) 

Race, White/Caucasian 2543, (96.11%) Total ALSFRS (Last) 27.9 (6.64) 

Riluzole use, yes 1830, (69.08 %) Age (onset)  55 (11.03) year 

Race, Black African American 41 (1.54%) Weight (first) 72 (9.72) kg 

Race, Asian 16 (0.60) FVC (Trial #1) (First) 3.16 (1.05) liters 

Onset, Limb 2055, (77.50%) Hight 169.80 (5.514) cm 

Onset, Limb and Bulbar 11 (0.415) Onset Delta 536.16 (148) days 

Onset, Bulbar 583 (22.085) FCV (Trial #1) (Last) FCV (Trial #1) (Last) 

 

Table 1. Predictive Models and Ensembles leaners. 

Abbreviation Model name 
Naïve regression model 

lr Linear Regression 

Regularized regression models 

ridge Ridge Regression 

lasso Lasso Regression 

en Elastic Net 
huber Huber Regressor 
llar Lasso Least Angle Regression 

lar Least Angle Regression 
omp Orthogonal Matching Pursuit 

par Passive Aggressive Regressor 

Tree-based bagging/boosting models 

dt Decision Tree Model 

rf Random Forest 

et Extra Trees Model 
ada AdaBoost Model 
gbr Gradient Boosting Model 
xgboost Extreme Gradient Boosting 

Similarity-based model 

knn K Neighbors Regressor 

Bayesian model 

br Bayesian Ridge 

Ensemble models 

blend Blended Ensemble Model 

stack Stacking Ensemble Model 
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Figure 3 presents the marginal distribution of the primary 

outcome, i.e., ALSFRS slope between the 3rd and 12th  

month since trial enrollment. Using -1.1 as the threshold, 

we observed 1,804 (68.1%) medium-to-low progressor 

and 845 (31.9%) fast progressor, with a significantly 

wider range of slope variations among the fast 

progressors.  

 

Feature Selection 

Figure 4 presents the selected features. For example, lasso 

algorithm selected only 7 features and eliminating 98% of 

the features, while the rest of the algorithms selected only 

10 features. Four features were shared by all algorithms 

except XGboost, which were Onset Delta, ALSFRS 

Slope, Q1 Speech, and Vital Signs Delta. The stability of 

each algorithm was assessed using the Relative Weighted 

Consistency1 metric. Table 3 presents the stability, variance and number of selected features for each algorithm. 

Based on the reported results, the Lasso 

method has the highest stability score of 

0.9246 and the lowest variance score of 

0.00047, indicating that it is the most 

reliable algorithm with fewest number of 

selected features (6 ± 1). The Boruta and 

ETR methods have similar stability and 

variance scores, and both selected 10 ± 3 

features. The Ensemble method has a lower 

stability score and a higher variance score 

compared to the other methods, indicating 

that its results may be less reliable. While, 

XGboost algorithm has the lowest stability 

score (0.3078) and the highest variance 

score (0.01390), which is less reliable 

compared to the other methods. 

Finally, Lasso algorithm seems to be the 

most reliable algorithm in terms of selecting 

a small number of stable features, while the 

other algorithms may be more suitable if a 

larger number of features are desired or if 

there is a need for more flexibility in the 

selected features. 

 

 

 

 

 

 

 

 

 

Single-Learner Models  
Incorporating selected features from each one of the FS algorithms as well as using all features (without feature 

selection), the prediction performances of the 17 models are reported in Table 4.  For all regression models (Naïve 

regression model, Regularized regression models, Tree-based bagging/boosting models, Similarity-based model, 

and Bayesian model), using Boruta algorithm as a “screener” outperforms all the others. The execution time for 

training each model with selected features comes from Boruta algorithm is between [0.05-0.473] seconds. The 

best single model was gbr model with Boruta “screener” had the best performance with an RMSE of 0.5601. On 

average, all “learners” achieved better performance under the “screener-learner” framework, compared to using 

all features. The Boruta “screener” performs better than most the other FS methods for almost all predictive 

models, while features selected by XGboost “screener” often resulted in worse-off predictions across almost all 

predictive models.   

Table 3. Summary of feature selection algorithm ranked by stability 

Feature selection algorithm Stability  Variance  Number of selected features 

Lasso 0.9246 0.00047 6 ± 1 

Boruta 0.9173 0.00046 10 ± 3 

ETR 0.9173 0.00001 10 ± 3 

Ensemble 0.7210 0.00210 10 ± 6 

XGboost 0.3078 0.01390 10 ± 1 

Figure 4. Selected features from each algorithm. 

Figure 3. ALSFRS slope distribution 
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Table 4. Performance summary of predictive models. 
  “Screener” 

 
"Learner” Lasso 

(k=6) 
ETR  

(k=10) 

XGboost  

(k=10) 
Boruta  

(k=10) 

Ensemble  

(k=10) 

All Features 

(k=321) 
Naïve regression model lr 0.5699 0.5696 0.6392 0.5683 0.5692 5.5081E+11 
 

 

 

Regularized regression 

models 

ridge 0.5699 0.5696 0.6387 0.5681 0.5692 0.6506 
lasso 0.6405 0.6401 0.6388 0.6413 0.6405 0.6408 
en 0.6405 0.6401 0.6398 0.6413 0.6405 0.6408 
huber 0.5767 0.5759 0.6477 0.5778 0.5756 0.6261 
llar 0.6405 0.6401 0.6398 0.6413 0.6405 0.6408 
lar 0.5699 0.5696 0.6838 0.5684 0.5692 2.6394E+19 
omp 0.601 0.5996 0.6385 0.604 0.5987 0.5759 
par 1.0473 1.1913 1.9888 0.7431 1.2963 0.8826 

Tree-based 

bagging/boosting 

models 

dt 0.8712 0.8329 0.6398 0.8385 0.8292 0.8101 
rf 0.6332 0.5893 0.6586 0.579 0.6138 0.5745 
et 0.6574 0.6014 0.6398 0.5965 0.6394 0.576 
ada 0.5932 0.601 0.6398 0.5789 0.5885 0.5977 
gbr 0.5885 0.5779 0.6636 0.5601 0.5871 0.5692 
xgboost 0.654 0.629 0.6639 0.6232 0.6695 0.5939 

Similarity-based model knn 0.6085 0.6324 0.6515 0.6322 0.6218 0.6522 
Bayesian model br 0.5704 0.5712 0.6492 0.5688 0.57 0.5726 

 

Ensemble-Learning Models 

Table 5 displays the ensemble model results we obtained. Using the blended (voting) ensemble method (blend) 

with the top 5 models (small blend), it outperformed all single-learner models with an RMSE of 0.5438. Blend 

ensemble performed better than the Stacking ensemble model (stack) with an RMSE of 0.5486. Additionally, 

increasing the number of ensemble members in the blend ensemble model from 5 to 10 did not result in a 

significant increase in testing RMSE. Additionally, increasing the number of ensemble members in the blend 

ensemble model from 5 to 10 did not result in 

a significant improvement either. In contrast, 

increasing the number of ensemble members  

in the stack ensemble showed more evident 

improvement in performance, with an RMSE 

of 0.6030 for the small stack (5 models) and an 

RMSE of 0.5776 for the large stack (10 

models). 

 

Association with Survival 

We also investigated the correlation between the predicted ALS slope and actual survival in the testing dataset. 

By matching the ratio between fast and medium-slow progressors at 68:32 (true rate), we classified patients with 

predicted ALS slope below 32-percentile as predicted fast progressors with the rest being predicted medium-slow 

progressors. The Kaplan-Meier curves for the predicted fast and medium-slow progressors are presented in Figure 

6 for the best-performant single-learner model (i.e., gbr) and Figure 7 for best performant model overall (i.e., 

small blend ensemble). Where the x-axis representing time in months and the y-axis representing the probability 

of survival.  

 
 

a) Kaplan-Meier curves for the first 12 months (286 patients) b) Kaplan-Meier curves for the first 15 months (400 patients) 

Figure 6. Kaplan-Meier curves for predicted fast and slow progressor based individual gbr model. 

 

Patients predicted to be a fast progressor have a significantly lower probability of survival between 6 and 12 

months compared to patients with medium-slow progression as shown in Figure 6 (a). After the 12-month mark, 

all patients with ALS experience a similarly significant decline in their chances of survival, which eventually 

Table 5. ensemble-learning models 
 

Type of ensemble Number of ensemble 

models 

Testing dataset 

RMSE 

Blended Regressor 

(blend) 

5 (small blend) 0.5438 

10 (large blend) 0.5486 

Stacking Regressor 

(Stack) 

5 (small stack) 0.6030 

10 (large stack) 0.5776 
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becomes zero as shown in Figure 6 (b). The log-rank p-values for the comparison between fast and medium-slow 

progression for the first 12 and 15 months based on gbr model are: 0.00751, and 0.50019, respectively.  

 

SHAP Extrapolation 

Finally, we used SHAP value to extrapolate the feature associations and identify the most important prognostic 

factors based on the best predictive models. Figure 8a and Figure 8b show SHAP values for the top-performant 

single-model (gbr) and ensemble-model (smaller blender), respectively. For both models, baseline ALSFRS slope 

and Onset Delta (i.e., the time between disease onset and the first time the patient was tested in a trial) have higher 

impact on the grb model, and both models identified a positive association between initial ALSFRS slope and 

ALSFRS slope after 3mth, although the blend ensemble model showed less variations. The blender ensemble 

model ranked Last_Q1_Speech (i.e., last ALSFRS speech score) and various summaries of Vital_Signs_Delta 

(i.e., time lapse between vital signs measures) as the top-most import features, while the gbr model identifies 

Onset_Delta showed a higher impact on the ensemble model with a negative association. 

 

 
 

Discussion 

All the five FS algorithms or “screeners” (LASSO, ETR, XGboost, Boruta, Ensemble) we included in the 

experiment not only can be used to rank feature importance but are capable of aggressively reduce feature 

dimension (from 321 to ≤ 10), a property sometimes referred to as “sparsity-induced”. Among them, Boruta FS 

algorithms demonstrated the best performance with the highest prediction accuracy while maintaining high 

stability, regardless of the final prediction models. The LASSO-based FS method showed the highest feature 

reduction rate and best stability, while the XGboost-based FS method showed the worst stability. Even if there 

are machine learning models that are able to perform feature selection and making predictions simultaneously 

(i.e., embedded models), there may still be additional gain. For example, the gbr “learner” model was able to 

achieve the best prediction performance when combined with Boruta “screener”.    

 

In terms of achieving the best prediction accuracy, ensemble-learner models have shown to outperform single-

learner models. The capability to accurately predict the ALS progression and stratifying between “fast 

progressors” and “medium-slow progressors” could potentially help neurologists to design better follow-up 

schedule and treatment plan tailoring to individuals predicted progression rates. Despite different rankings, we 

observed the following features to be persistently identified across all five “screeners” with consensus 

directionality which are mostly linear: a) baseline ALSFRS_slope has shown to be positively correlated with 

disease progression (i.e., the initial functional decline strongly predicts the future decline); b) bulbar functionality 

(First_Q1_Speech and Last_Q1_Speech) is more predictive of disease progression compared to other motor 

functions; c) observation intensity (Vital_Signs_Delta) was shown to be negatively associated with disease 

progression (i.e., the more frequent the vital signs got checked, the slower the progression would be, which might 

potentially be a reverse association); d) drastic weight change (STD_weight) was persistently shown to be 

positively associated with steeper ALSFRS drop; e) respiratory functional change (STD_Subject Liters) were 

shown to positively predict disease progression and while its reserve (MIN_Subject_Liters) were shown to 

negatively predict disease progression.   

 

We recognized several limitations of the study. First, the PRO-ACT cohort might not be a suitable representation 

of the general population, as it may only consist of a particular group of patients or exclude specific subgroups. 

Hence, it is necessary to be careful when extrapolating conclusions from this dataset to the wider population. 

Figure 8a. SHAP value for gbr model with 

selected features from Boruta algorithm. 
Figure 8b. SHAP Value analysis for the small blend 

ensemble model. 
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Second, the feature space was restricted to those that were pre-selected based on expert knowledge and trial scope, 

which not only introduced unobserved and unmeasurable confounders and also limited the total amount of 

information that can be interrogated by machine learning models. Third, a significantly number of features were 

not useful for modeling due to high missing rates, which could be potentially due to inconsistencies in data 

collection approaches across different trials.   

 

Conclusions 

Our experiment has successfully demonstrated that the screener-learner machine learning model can be used to 

predict ALSFRS slope change using a parsimonious set of features. The predicted slope can be used to stratify 

between fast progressor and slow progressor, who had significantly different survival rates. This work showed 

great potential for building a more predictive and robust prognostic model for predicting ALS disease progression 

without loss of model transparency. 
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