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Abstract

The Unified Medical Language System (UMLS), a large repository of biomedical vocabularies, has been used for
supporting various biomedical applications. Ensuring the quality of the UMLS is critical to maintain both the accuracy
of its content and the reliability of downstream applications. In this work, we present a Graph Convolutional Network
(GCN)-based approach to identify misaligned synonymous terms organized under different UMLS concepts. We used
synonymous terms grouped under the same concept as positive samples and top lexically similar terms as negative
samples to train the GCN model. We applied the model to a test set and suggested those negative samples predicted
to be synonymous as potentially misaligned synonymous terms. A total of 147,625 suggestions were made. A human
expert evaluated 100 randomly selected suggestions and agreed with 60 of them. The results indicate that our GCN-
based approach shows promise to help improve the synonymy grouping in the UMLS.

1 Introduction

The Unified Medical Language System (UMLS), developed and maintained by the US National Library of Medicine,
integrates more than 16 million terms from over 180 biomedical vocabularies and coding systems including SNOMED
CT, LOINC, RxNorm, MeSH, and ICD-10-CM1. Synonymous terms from these source vocabularies are mapped and
grouped into concepts in the UMLS Metathesaurus to facilitate interoperability and data sharing across computer
systems. The UMLS has been used in a wide variety of biomedical applications, including entity recognition and
relation extraction from biomedical text2, 3, data integration from different electronic health record (EHR) systems4,
clinical decision support5, information retrieval6, and various biomedical research7–9.

As can be imagined, mapping and integrating terms from over 180 source vocabularies is a challenging task10. The
current construction and maintenance process of the UMLS Metathesaurus leverages lexical and semantic techniques
to suggest candidates for synonymous terms, and relies on human editors to review the suggestions and make final
decisions11, which is time-consuming and labor-intensive. It is inevitable that inconsistencies or errors may exist due
to the large size of terms involved and the constant addition of new terms in source vocabularies. Researchers have
developed automated methods for auditing or quality assurance of the UMLS Metathesaurus regarding different char-
acteristics of concepts including names, synonyms, semantic type assignments, and hierarchical (IS-A) relationships12.

In this paper, we focus on a particular aspect regarding misaligned (or missed) synonymous terms, that is, synonym
pairs grouped under different UMLS concepts. Most previous works on such synonym detection for auditing the
UMLS Metathesaurus are rule-based lexical or heuristics approaches13–17. In this work, we develop a learning-based
approach leveraging Graph Convolutional Network (GCN) to detect synonymous terms mapped to different UMLS
concepts. More specifically, we train a GCN-based model to predict whether a pair of terms from different source
vocabularies are synonymous. The positive samples include synonymous pairs grouped under the same concept, while
the negative samples are formed by selecting top lexically similar pairs of terms. The trained model is applied to a test
set, where the negative samples in the test set which are predicted as synonymous by the model are suggested to be
potentially misaligned synonymous terms. A randomly selected collection of such suggestions is manually evaluated
by a human expert. In addition, a newer version of the UMLS Metathesaurus is leveraged to validate the suggestions.
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2 Background
2.1 UMLS Metathesaurus

The UMLS Metathesaurus, which is an integration system of biomedical vocabularies created by the US National
Library of Medicine, groups synonymous terms into concepts to facilitate the integration and alignment of biomedical
terminologies11. The UMLS Metathesaurus integrates hundreds of biomedical terminologies such as SNOMED CT,
National Cancer Institute Thesaurus (NCIt) and Gene Ontology1. The most recent 2022AB release of the UMLS
Metathesaurus contains over 4 million concepts and 16 million names from 182 source vocabularies18. The key to the
UMLS Metathesaurus are the notions of atom and concept. An atom is a term from a specific source vocabulary while
a concept is a grouping of synonymous atoms19. In the UMLS Metathesaurus, a concept denotes a particular meaning
aggregating all the atoms from any vocabularies that convey this particular meaning in any form. Each concept is
designated with a unique identifier known as a Concept Unique Identifier (CUI) to distinguish that particular meaning.
Atoms are allocated a distinct Atom Unique Identifier (AUI). All of the atoms within a concept are synonymous
and every concept is linked to at least one atom20. Table 1 shows five examples of atoms from five different source
vocabularies and their corresponding AUIs. These five atoms are grouped under the UMLS concept representing
“Adrenal Gland Neoplasms” with a CUI of C0001624.

Table 1: Five atoms grouped under the UMLS concept “Adrenal Gland Neoplasms” with a CUI of C0001624.

Atom AUI Vocabulary
Neoplasm of adrenal gland A3577517 SNOMEDCT US
Neoplasm of the adrenal gland A24683942 HPO
Adrenal Gland Neoplasm A7568581 NCIt
neoplasm of adrenal gland A14015726 MEDCIN
Adrenal Gland Neoplasms A0020274 MSH

2.2 Related work

A number of approaches have been explored to audit various aspects of the UMLS including concepts, concept names,
and synonymy; semantic type assignments; hierarchical relationships; lateral relationships; ontology enrichment; and
ontology alignment12. Synonym detection serves as an important quality check since not identifying synonyms would
result in the creation of redundant UMLS concepts. In one of the earlier works, Cimino et al. have investigated 13, 14

synonymous (hence redundant) UMLS concepts using a lexical approach by looking for concepts containing same
words in a different order or that contains different punctuation. Hole et al. have introduced techniques such as lexical
tweaks like trimming space or punctuation, swapping synonymous words to enhance the identification of synonyms15.
Huang et al. have investigated piecewise synonym identification method where multi-word source terms are broken
down to their components words and these words are replaced by their synonyms to generate synonymous terms for the
original term. If a generated candidate already existed in the UMLS, then a synonym was considered to be found16.
Huang et al. have also further investigated a similar synonym replacement method but leveraging WordNet as the
synonym source. They have experimented with tuning the maximum number of allowed synonym substitutions per
term and maximum term length17.

3 Methods

In this work, we train a deep learning model to predict whether two atoms (or terms) are synonymous in the 2022AA
full version of the UMLS Metathesaurus. We leverage lexical features of atom names and hierarchical features ex-
tracted by Graph Convolutional Networks (GCNs) to train our model.

Our approach contains five major steps: (1) data preprocessing; (2) sample selection; (3) model training; (4) misaligned
synonymous terms identification; and (5) evaluation.
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3.1 Data pre-processing

We only consider a UMLS atom if it satisfies all the following conditions: (1) the atom is in English; (2) the atom is
not obsolete; and (3) the atom contains at least one letter or number.

The atoms are pre-processed by normalizing their lexical features in a similar manner to the approach in our prior work
for normalizing the lexical features of SNOMED CT concepts21. Our pre-processing steps include converting the atom
to lowercase; removing punctuations such as !, ”, #, $, %; eliminating unnecessary white spaces; and lemmatizing the
lexical feature using the WordNet lemmatizer in NLTK22.

3.2 Sample selection

We frame the problem of synonym prediction in the UMLS Metathesaurus as a binary classification task where we have
two classes: (1) positive class with synonymous atom-pairs, and (2) negative class with non-synonymous atom-pairs.
To train our classifier, we construct a dataset with positive and negative samples as follows.

3.2.1 Positive sample generation

Given two atoms A and B that are grouped under the same UMLS concept, if A and B belong to different source
vocabularies, they will form a positive sample (A,B). For example, in Table 1, “Adrenal Gland Neoplasm” from the
NCIt with an AUI of A7568581 and “Neoplasm of the adrenal gland” from Human Phenotype Ontology (HPO) with
an AUI of A24683942 will form a positive sample.

3.2.2 Negative sample generation

We use a positive sample corruption strategy to generate a negative sample for each positive sample. For a positive
sample (A,B), we replace B with A’s most lexically similar atom X that is not from A’s source vocabulary to form a
negative sample (A,X). The lexical similarity between two atoms is calculated using cosine similarity score based on
bag of words. Note that in some situations, multiple positive samples could contain the concept A. In such cases, we
will pick the next top lexically similar atoms to generate negative samples. For example, if there are positive samples
(A,B) and (A,C), we will generate corresponding two negative samples (A,X) and (A, Y ) where X is an atom that
is the most lexically similar to A and Y is the atom that is the second most lexically similar to A. Note that if there
does not exist an atom that is lexically similar to A (i.e., cosine similarity between A and all other atoms are 0), there
will be no negative sample generated for the positive sample. This will result in the positive to negative sample ratio
of our dataset to be approximately 1 to 1.

After generating all the positive and negative samples, we group the positive samples and the corresponding negative
samples based on which UMLS concepts the positive samples were generated from. Then we randomly split these
groups to training, validation, and testing sets based on the ratio of 8:1:1. This was done to ensure that two synonymous
atom-pairs do not spread across training/validation/testing sets. For instance, if atoms A,B,C,D are grouped under
the same UMLS concept, they may generate positive samples (A,B) and (C,D). A and C can be from the same
source terminology while B and D can also be from the same source terminology. In such a case, if (A,B) is in
the training set while (C,D) is in the validation set, this would be akin to a situation where we are predicting on the
training samples. Our sampling strategy avoids such scenarios.

3.3 Sample preparation

For each training sample consisting of an atom-pair, we prepare two types of inputs to the model: (1) atom name
embeddings for each atom, and (2) ancestor subgraphs of the two atoms.

3.3.1 Atom name embeddings

We represent each word in an atom’s name leveraging BioWordVec which contains biomedical word embeddings pre-
trained using PubMed and the clinical notes from MIMIC-III Clinical Database23. If a word can not be found in the
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pre-trained BioWordVec embeddings, we randomly generated a 200-dimension word vector by Gaussian distribution
using NumPy package24. Then, we average the BioWordVec embeddings of all words in an atom to obtain atom name
embeddings.

3.3.2 Ancestor subgraphs

For each atom in a sample, we generate an ancestor subgraph containing the atom itself, its parents, its grandparents,
and the hierarchical (is-a) relations among those concepts within their respective terminologies. Figure 1 shows the two
ancestor subgraphs obtained for the positive sample atoms “Adrenal Gland Neoplasm ” from NCIt and “Neoplasm of
the adrenal gland” from HPO. These subgraphs are generated to learn hierarchical relations with Graph Convolutional
Networks as discussed later.

Figure 1: Ancestor subgraphs obtained for two atoms: “Adrenal Gland Neoplasm” from NCIt (left) and “Neoplasm
of the adrenal gland” from HPO (right).

3.4 Model training

Figure 2 demonstrates the overall architecture of our model. In this study, we leveraged GCNs to automatically learn
the hierarchical features of each atom25. GCNs are a type of neural network that directly operates on graph data. GCNs
can encode information about the neighborhood of a node as a real-valued vector. The inputs of a GCN are feature
vectors of nodes and the structure of the graph. The output of a GCN is representations of nodes aggregated with
neighborhood information26. The input to the l-th layer of the GCN model is a vertex feature matrix, H(l) ∈ Rn×d(l)

,
where n is the number of vertices and d(l) is the number of features in the l-th layer. The output of the l-th layer is a
new feature matrix H(l+1) by the following convolutional computation:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1)

where σ is an activation function such as ReLU, Ã is the adjacency matrix that stores the hierarchical information
of the graph with added self-connections, D̃ is the diagonal node degree matrix of Ã, and W (l) is the layer-specific
trainable weight matrix25.

In our approach, we leverage two GCNs with each consisting of two layers that individually learns hierarchical features
of each atom in a sample. The GCN layers are provided with the ancestor subgraphs of each atom in a sample. Atom
name embeddings serve as the initial features of each node in the ancestor subgraph (A1 and B1 for the two atoms in
the sample as in Figure 2. The parents and grandparents will also be assigned with their own atom name embeddings).
After the graph convolutions, the feature vectors of the nodes corresponding to the two atoms in the sample (A2 and
B2 in Figure 2) would embed the hierarchical features based on their parents and grandparents.

Then the atom name embeddings of the two atoms are multiplied with each other (A1 ∗ B1 in Figure 2). Similarly,
the hierarchical feature embeddings of the two atoms are also multiplied with each other (A2 ∗ B2 in Figure 2). We
also obtain the difference between the atom name embeddings and hierarchical feature embeddings (A1 − B1 and
A2 − B2 in Figure 2). Then the resulting vectors of these multiplications and differences are concatenated together
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Figure 2: Overall architecture of the model.

and forwarded through two fully connected layers to perform the classification.

3.5 Misaligned synonymous atoms identification

The goal of this study is to identify the potentially misaligned synonymous atoms in the UMLS Metathesaurus. To
achieve this, after training of the model is complete, we apply the trained model on the testing set. If the model
predicts the atoms in a negative sample to be synonymous, we consider the two atoms in the negative sample as
potential misaligned synonymous atoms in the UMLS. This is because negative samples in the test set serve as our
candidate pairs where we look for misaligned synonymous atoms.

3.6 Performance evaluation

The performance of our model is evaluated in terms of precision, recall, and F1 score on the validation set. Further-
more, to evaluate our model’s performance in suggesting actual misaligned synonymous atoms, we conduct: (1) an
automated evaluation leveraging the newer version of the UMLS Metathesaurus, and (2) a manual evaluation by a
domain expert (author JS).

For the automated evaluation, we leverage the newer 2022AB full version of the UMLS Metathesaurus released on
November 7, 2022. If a pair of suggested misaligned synonymous atoms are grouped together under the same UMLS
concept in the newer version, then this suggestion is considered to be valid.

For the manual evaluation, we randomly select a small subset of the suggested potential misaligned synonymous atoms
for manual review by the domain expert who has experience in evaluating clinical terminologies to assess their validity.
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We report this performance in terms of precision only as there is no gold standard for computing the actual recall and
creating a gold standard could be very time-consuming and labor-intensive.

4 Results
4.1 Sample selection

After filtering the atoms that were not in English, were obsolete, and did not contain any letter or number, there existed
a total of 9,351,912 atoms grouped under 4,324,051 UMLS concepts from 123 source terminologies in the 2022AA
full version of the UMLS Metathesaurus. After applying our sample selection strategy, a total of 17,710,981 positive
samples and 17,162,449 negative samples were selected as our dataset. After splitting the dataset, there existed a total
of 27,962,212 samples in the training set, 3,414,455 samples in the validation set, and 3,496,793 in the testing set.

4.2 GCN-based model

We implemented our GCN-based classifier using TensorFlow 1.15.0. Table 2 summarizes the hyperparameters used
in our model. The model was trained with an NVIDIA A100-SXM4-80GB graphics card with CUDA version 11.6 on
a server running CentOS Linux (release 7.9.2009). It took 73 hours in total to train, validate, and test the model.

Table 2: Model hyperparameters.

Source Value
GCN layer size 200
Fully connected layer 1 (FC1) size 512
Fully connected layer 2 (FC2) size 2
Activation for GCN ReLU
Activation for FC1 ReLU
Activation for FC2 Softmax
Dropouts for FC1 0.5
Optimizer Adam optimizer
Learning rate 0.005
Loss function Softmax cross entropy with logits
Batch size 8192
Epochs 10

The model achieved a precision of 0.9152, a recall of 0.8338, and an F1 score of 0.8726 on the validation set. In the test
set, there were a total of 147,625 atom pairs that originally had a negative label but were predicted to be synonymous
by our model. These 147,625 pairs were considered as potential misaligned synonymous atoms for evaluation.

4.3 Evaluation

For the automated evaluation, we found that 239 of the misaligned synonymous atoms identified by our approach were
denoted as synonymous (under the same UMLS concept) in the newer release of the UMLS. Table 3 demonstrates ten
examples of misaligned synonymous atoms that were validated this way. For instance, atom “Spastic paraplegia 2, X-
linked” from MSH with an AUI of A18470932 and atom “X-linked spastic paraplegia type 2” from SNOMEDCT US
with an AUI of A28441616 were grouped under different CUIs C1839264 and C0751604 respectively in the 2022AA
version. However, in the newest 2022AB version, they are grouped under the same CUI C1839264 which validates
our identification that they were misaligned synonyms in the 2022AA version.

For the manual evaluation, we randomly selected 100 samples from the total 147,625 identified potential misaligned
synonymous atoms for the domain expert’s manual review. The domain expert confirmed that 60 out of 100 are valid
cases (a precision of 60%). Table 4 shows ten examples of misaligned synonymous atoms validated by the domain
expert. For example, the domain expert confirmed that the atom “Operation on heart” from SNOMEDCT US with an
AUI of A3600156 under CUI C0018821 and the atom “Heart surgery operation” from LNC with an AUI of A20077783
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Table 3: Ten misaligned synonymous atoms validated by the newer version of the UMLS Metathesaurus. The CUI of
the UMLS concept that they are grouped in the newer version of the UMLS is also given.

Atom name-1 AUI-1|Vocabulary-1 Atom name-2 AUI-2|Vocabulary-2 CUI
Otopalatodigital Spectrum
Disorder

A20982774|MSH OPD(otopalatodigital) spec-
trum disorder

A31050408|SNOMED
CT US

C2748918

Magnesium loss, isolated re-
nal

A18464844|MSH Isolated renal magnesium
wasting

A28434182|SNOMED
CT US

C1835171

Spastic paraplegia 2, X-
linked

A18470932|MSH X-linked spastic paraplegia
type 2

A28441616|SNOMED
CT US

C1839264

Gluconate, Copper A0063739|MSH copper (as gluconate) A13280242|MMSL C0009975
butyl alcohol A29797455|RXNORM Alcohol Butyl A9444964|MMSL C0089147
Peripheral Arterial Diseases A26621765|MSH Peripheral arterial disease

(disorder)
A32325946|SNOMED
CT US

C1704436

Miscarriage A0087002|ICPC2P Miscarriage of pregnancy A25702967|MDR C4552766
Juvenile polyposis syndrome A2970824|SNOMED

CT US
Juvenile GI polyposis A30926680|HPO C0345893

peripheral arterial disease
(diagnosis)

A16890157|MEDCIN Peripheral arterial disease A32317850|SNOMED
CT US

C1704436

Dissection of aorta, thoracic A20881316|ICD9CM dissection of thoracic aorta A18581774|CHV C0729233

under CUI C3261232 are synonymous atoms.

Table 4: Ten misaligned synonymous atoms validated by the domain expert.

Atom name-1 AUI-1|Vocabulary-1 Atom name-2 AUI-2|Vocabulary-2
Hypophosphatemia A12029715|OMIM Hypophosphataemia A24675387|HPO
Cor Pulmonale A26679742|MSH Right ventricular dysfunction (cor

pulmonale)
A29168389|NCI C
TCAE 3

Operation on heart A3600156|SNOMED
CT US

Heart surgery operation A20077783|LNC

Drug withdrawal syndrome in new-
born

A25692959|MDR drug; reaction, withdrawal, new-
born)

A4408758|ICPC2ICD
10ENG

Blood alcohol level measurement A150610|MTH Blood Alcohol Level A26662450|MSH
Eptacog alfa (substance) A30198910|SNOMED

CT US
eptacog alfa A20682663|HGNC

DHT A23909510|NCI NCI-
GLOSS

Dihydrotestosterone (DHT) A29929970|CPT

neuropathy optic A18667447|CHV Optic neuropathy A12021502|OMIM
Hospital Services, Emergency A0558085|MSH Emergency medical service A4367912|MTH
Area 20 of Brodmann of guenon A24156045|MTH Area 20 of Brodmann A15456400|FMA

5 Discussion

In this study, we developed a Graph Convolutional Neural Network-based approach to identify potentially misaligned
synonymous atoms in the UMLS Metathesaurus. We generated positive samples by synonymous atoms grouped under
the same UMLS concept. Negative samples were generated by non-synonymous but top lexically similar atom pairs.
We used BioWordVec embeddings to represent lexical features of atoms and generated hierarchical features by feeding
a Graph Convolutional Network with the ancestor subgraphs of samples. From the evaluation by a domain expert, it
can be seen that the performance of the model is promising and hence the misaligned synonymous terms identified
could be valuable in the quality improvement process of the UMLS.
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5.1 Comparison with related work

Recently, there have been a number of investigations leveraging deep learning techniques for vocabulary alignment in
the UMLS. For instance, Yip et al. have developed a deep learning approach leveraging a Siamese network with Long
Short Term Memory (LSTM) and Convolutional Neural Network models to identify synonymy and non-synonym
among atoms so that it could emulate the rule-based UMLS Metathesaurus building process27. Tran et. al further
improved upon this work by introducing semantic features extracted from knowledge graph28. Nguyen et al. has also
improved the original model by experimenting with adding an attention layer on top of the LSTM layer. In terms of
the model architecture, our approach differs with the above approaches as we have used GCNs to automatically obtain
hierarchical information from ancestors. The above approaches are more targeted towards UMLS construction with
vocabulary alignment while the aim of our approach is to audit the existing synonymy in the UMLS.

5.2 False positives

The review by the domain expert revealed that 40 out of 100 of our identified suggested misaligned synonymous
atoms are not valid synonyms. Table 5 demonstrates five such cases pointed out by the domain expert. For example,
our model suggested that atom “Malignant neuroleptic syndrome” from SNOMEDCT US with an AUI of A3041909
under CUI C0027849 is synonymous with atom “Neuroleptic-Malignant Syndrome, Neuroleptic Induced” from MSH
with an AUI of A26606809 under C0751376. However, the domain expert pointed out that these two atoms are not
synonymous since this syndrome can be both neuroleptic induced and antipsychotic induced.

Table 5: Five invalid misaligned synonymous atom predictions as pointed out by the domain expert.

Name AUI Vocabulary CUI Domain expert’s comment

tartaric acid
L-tartaric acid

A10337857
A10980428

RXNORM
MTH

C0075821
C1289966

“L-” is a specific type of enantiomer,
the other type of tartaric acid is “D-”

Malignant neuroleptic syndrome
Neuroleptic-Malignant Syndrome, Neuroleptic Induced

A3041909
A26606809

SNOMEDCT US
MSH

C0027849
C0751376

This syndrome can be both neuroleptic
induced and antipsychotic induced

Myeloproliferative Leukemia Protein
myeloproliferative leukemia K protein, human

A24387015
A3831963

NCI
MSH

C0218227
C0652198 k protein is specific type of protein

b complex deficiencies vitamin
Vitamin B complex deficiency symptom

A18669031
A25688112

CHV
MDR

C0042850
C0920232

the deficiency of the vitamin and the symptoms
of that deficiency are different concepts

Administration of prophylactic antimalarial
Administration of prophylactic treatment

A33687081
A33558496

SNOMEDCT US
ICNP

C0199244
C4039267

prophylactic means preventive, but preventive
malarial treatment is very specific to malaria

5.3 Limitations and future work

In this work, we selected a specific test set to apply the trained model and identify misaligned synonymous atoms.
However, to uncover misaligned synonymous atoms in the entire UMLS, in the future we will leverage a cross-
validation approach that we introduced in a previous work29. With this cross-validation approach, in different runs,
different splits will be used for training and identification of synonyms so that potential misaligned synonymous atoms
can be identified from the entire UMLS Metathesaurus.

Also, in the current work we only predicted misaligned synonymous atoms among the negative samples in the test
set. In the future, we will explore whether we could predict incorrectly aligned synonymous atoms among the positive
samples in the test set. In addition, the focus of the current work was detecting synonymy at UMLS atom level.
Another interesting future direction is to develop an approach that can identify synonymy at UMLS concept level.

In this work, we averaged the embeddings of each word in an atom to obtain atom name embeddings. However,
this means that we lose important positional information of the words in an atom. In the future, we plan to explore
approaches that take this important aspect into account.

Since our approach relies on ancestor subgraphs that only contain parents and grandparents, our model might lack
information regarding the broader categories that the atoms belong to in their respective source terminologies. In the
future, we would like to address this issue by investigating a mechanism where this information can be infused into
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the model. In addition, we only leveraged the concepts’ ancestor information when aggregating hierarchical features
with the GCNs. In the future, we plan to also incorporate the concepts’ descendants information to explore whether
the performance could be improved. Furthermore, we plan to train knowledge graph (KG) embeddings using KG
embedding techniques such as TransE and TransR to incorporate different relations between atoms in addition to is-a
relations30, 31. We will also explore whether incorporating additional information such as semantic groups of concepts
will improve the model performance32.

Importantly, in this work, we only predict whether two atoms currently deemed to be non-synonymous by the UMLS,
are actually synonyms. Since the predicted synonymous atoms are currently aggregated in different UMLS concepts,
we further need to investigate how these UMLS concepts could be merged. For example, in the 2022AA UMLS re-
lease, the atom “Amitriptyline-Chlordiazepoxide” with AUI A1529804 is grouped under the UMLS concept with CUI
C0717408 and the atom “amitriptyline / chlordiazepoxide” with AUI A31645297 is grouped under the UMLS concept
with CUI C2742631 (hence these were not synonyms in the 2022AA release). However, in the newer 2022AB release
of the UMLS, atom A1529804 has been regrouped under C2742631 (C0717408 has been merged into C2742631).
While our method is able to identify these two atoms as synonymous, it cannot determine how the atoms need to be
reassigned to UMLS concepts.

6 Conclusion

In this study, we developed a Graph Convolutional Neural Network based approach to identify potentially misaligned
synonymous atoms in the UMLS Metathesaurus. We trained our model with synonymous atom-pairs as recorded by
the UMLS as positive samples and top lexically similar non-synonymous atom-pairs as negative samples. The model
leveraged atom name embeddings as lexical features and hierarchical features generated from ancestor subgraphs.
Based on the validation set, the model achieved a precision, recall, and F-1 score of 0.9152, 0.8338, 0.8726 respec-
tively. Applying the trained model on the test set, we identified 147,625 potential misaligned synonymous atoms. Out
of these, 239 cases were found to be synonymous in the newer release of the UMLS. Evaluation by a domain expert on
a random sample of 100 cases revealed that 60 are valid. This indicates that the approach has the potential to identify
valid misaligned synonymous atoms contributing to the important quality improvement process of the UMLS.
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