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Abstract

Mental health disorders remain a significant challenge in modern healthcare, with diagnosis and
treatment often relying on subjective patient descriptions and past medical history. To address
this issue, we propose a personalized mental health tracking and mood prediction system that
utilizes patient physiological data collected through personal health devices. Our system leverages a
decentralized learning mechanism that combines transfer and federated machine learning concepts
using smart contracts, allowing data to remain on users’ devices and enabling effective tracking
of mental health conditions for psychiatric treatment and management in a privacy-aware and
accountable manner. We evaluated our model using a popular mental health dataset, which yielded
promising results. By utilizing connected health systems and machine learning models, our approach
offers a novel solution to the challenge of providing psychiatrists with further insight into their
patients’ mental health outside of traditional office visits.

Introduction

Mental health conditions such as depression and anxiety are some of the most challenging medical
problems to diagnose and treat. Current treatment guidelines for these disorders primarily utilize
subjective assessments, relying on patient self-report or clinician evaluation to inform clinical
decisions. As such, the lack of objective markers for clinical outcomes presents a significant
bottleneck in psychiatry. Furthermore, a patient’s mood or emotions may change over time, but
clinicians only have access to a patient’s data at the time of the visit, leading to a potentially biased
sampling of the patient’s mental state. To address this, collecting data from the patient over a long
period would be ideal for effective diagnosis and treatment. However, collecting such data is also
challenging due to privacy concerns. Connected health applications enable data to be generated
and stored in a decentralized manner, where the data may reside cross-device. A common challenge
in health informatics in federated and decentralized settings is that training and test data are not
independently and identically distributed (non-IID), which is especially true in scenarios that apply
to predict the mental health of individuals using a combination of medical and environmental signals.
Because health data is typically not identically distributed, the generalization performance tends
to be worse, and lower accuracy can result from overlooking the distribution shift in the training
and testing data19. More importantly, since non-IID data in healthcare applications comes from
different clients, protecting data privacy is crucial in decentralized learning settings14.

Furthermore, applying connected health technologies in a mental health population poses multiple
problems8. First is the concern about data security and privacy. Studies have shown that mental
health populations typically consider their data sensitive and vary in sharing this information
due to perceived mental health stigmas. Surveys have shown that 65% of patients with mental
health disorders are unlikely to share patient data with their psychiatrists7. If the psychiatrists
aim to rely on patients’ history, studies15 have shown patient histories only to be 62% accurate,
leading to psychiatric misdiagnoses as high as 65.9% for major depressive disorders and 85.8%
for panic disorders. Therefore, a technological solution is necessary to provide psychiatrists with
health insights without collecting raw data from the patient’s smart health devices. Second, current
models do not account for the granularity of mental health disorders. As explained in the American
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Psychiatric Association’s Clinical Practice Guidelines1, patient emotions are subject to rapid changes
within a day or a week, and elements such as sleep or diet can lead to quick changes in mood.
While many have utilized information from Electronic Health Records (EHR) to predict mental
health crises6, these models overlook granular patient changes. Therefore, they cannot generate a
patient baseline (in fact, getting data through facial expressions or EHR systems can lead to biased
results). Understanding the immediate effects of medication, such as antidepressants, is crucial for
psychiatrists and requires granular patient data that cannot be retrieved otherwise. Currently, the
most feasible way to collect this granular patient data is through a smartphone and a patient’s
health devices. This method, however, has the issue of unequal data streams. Different patients have
different personal health devices. For example, while one patient may have five devices, another
may only have one. While training a model on the patient with five devices may lead to better
results, the input from a patient population to this model will decrease (as only a few patients
would have so many personal health devices). Therefore, there is a need to obtain insights even with
the feature types being unequal from patient to patient. To alleviate these challenges, we present
a decentralized federated learning algorithm called MentalHealthAI. First, MentalHealthAI uses
on-device machine learning to prevent data from leaving the patient’s smartphone. However, smart
contracts are utilized in this framework to elect an aggregator, thereby creating a decentralized
aggregator instead of a traditional centralized server. A self-executing piece of code, called a smart
contract, can encode rules that will be executed in a decentralized manner on a blockchain20. The
data remains on the patient’s device in each epoch, and the model parameters are transferred from
that device to the aggregator. Second, as each smartphone may collect a different set of patient
features, MentalHealthAI utilizes a decision tree based methodology to derive model insights even
when features and labels are not necessarily uniform.

System Design and Implementation

Figure 1. System Architecture

At its core, the current system is
a decentralized-learning infrastructure
that utilizes physiological data to
predict patient moods and therefore
provides mental insights to a patient’s
psychiatrist without requiring a uniform
set of features (as is necessary for
typical machine learning algorithms).
The overall architecture can be found
in Figure 1, and its specific features
are described below. Clients X, Y,
and Z each represent different patients.
Each patient owns several IoT devices,
indicated by the different data streams
A, B, and C. Each data stream has the
same dimensions but different content
(A may be heart rate data, B may be blood pressure, and C may be skin temperature). The final
model is created by adding the union of models trained from different combinations of data streams
to the random forest decision tree classification system. During the evaluation, we use the features
in the POPANE dataset2 as individual data streams to simulate this concept.

Personal health data do not contain uniform features from patient to patient. The common problem
is that the devices used by different individuals are different. Traditional machine learning is limited
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in cases where one patient has data collected from many disparate data streams, such as heart rate,
blood pressure, electroencephalogram (EEG), and electrocardiogram (ECG), while another patient
has only one (for example, just the heart rate). This limitation exists because only the intersection
of feature types is considered rather than every feature type present. For each patient, we assume a
smartphone acts as the gateway between the patient’s IoT devices, as depicted in Algorithm 1.

Algorithm 1 Smartphone (Client) Federation of IoT Devices
1: DeviceAddresses = [DevAddr1, DevAddr2...] ▷ IoT device addresses
2: MentalHealthAIdf = dataframe()
3: for addr ∈ {1, . . . , DeviceAddresses} do ▷ Collect data from each IoT device within private

mobile environment
4: data← GetData(addr)
5: MentalHealthAIdf.AddColumn(data)
6: end for

We utilized the POPANE dataset2 for the simulation, where we divided the patient population
based on the type and number of data streams each patient has. For example, we place patients
with six of the same data streams (set A) in a different cohort than patients with only three data
streams (set B). Here, data streams can refer to heart rate and blood pressure data. However, if set
B is a subset of set A, A∩B can be added to cohort B’s training set (as the data streams used in B
and A ∩B are the same). Now, consider a patient population where the number of data streams a
patient has varies from 1 to 6; for patients with >1 data stream, a power set excluding the empty
set is generated as shown in Algorithm 2. For example, given a patient with data streams d = {A,
B, C}, P(d) = [{}, {A}, {B}, {A, B}, {C}, {A, C}, {B, C}, {A, B, C}], excluding {}, we divert each
element in this power set (representing a set of data streams) into separate cohorts. This process
maximizes the utility of patients with multiple data streams, as it maximizes the amount of data
found in each cohort (in comparison to simply dividing the patient population based on the number
of data streams present). We then train multiple machine learning models on these cohorts, where
one model is trained from data from one cohort. Note that the labels are unaltered, regardless of
the feature subset. When combined with MentalHealthAI ’s decentralized AI architecture, it is also
important to note that multiple smartphones will be selected as aggregators but will be training
different models with different training subsets.

Algorithm 2 Smartphone (Client) Generation of Data Stream Combinations
1: n = MentalHealthAIdf.headers.length()
2: subsets = []
3: n = 0
4: while n ̸= 1 do ▷ Generate all subsets of MentalHealthAI features with sizes {n− 1, . . . , 1}
5: SubsetList = GenerateSubsets(MentalHealthAIdf, SubsetSize = n)
6: subsets.append(SubsetList)
7: subsets.flatten()
8: n = n− 1 ▷ “subsets” is now a one-dimensional list with every possible subset from size
{1, . . . , n}

9: end while

Based on the patient population and available data streams at a given time, certain models will be
more accurate than others, and this relationship can change frequently. Furthermore, every patient’s
mood with different baseline emotion levels may differ. While models can predict a large portion of
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the population successfully, they may need to be more accurate for a specific patient. Algorithm 3
shows the model generation process for each client based on the available datasets.

Algorithm 3 Smartphone (Client) Model Generation
1: models = [] ▷ For models trained on each subset in subsets
2: for subset ∈ {subsets} do
3: model = GenerateModel(subset) ▷ Generate a model with the subset as the features and

the original labels as the label. See Figure 5. Note: Model Generation/Training can happen in
parallel.

4: models.append(model)
5: end for

Using a smart contract deployed on a blockchain as the “secure model aggregator,” the client
interacts with it by emitting events to indicate that learning has finished. The corresponding smart
contract code is depicted in Algorithm 4. The smart contract employs a voting process to elect the
next “leader” to perform model aggregation. As each model has been trained on different feature
subsets, decentralized aggregation occurs independently for each model. For example, if we have
three models trained on features [A], [A,B], and [A,B,C], each of these models will be aggregated
with other models trained on the same set of features from a different patient on a different client.
If the patient’s smartphone is not elected as an aggregator, the smart contract will send the model
parameters from the patient’s smartphone to the smartphone elected as the model aggregator.

Algorithm 4 Smart Contract Leader/Aggregator Election
1: AggregatorStorage = {}
2: AggreagatorStorage = InitializeAggregatorStorage(models, DataStreams)
3: for (model, DataStream) ∈ {AggregatorStorage} do
4: V otingResultAddress = SelectAggregator(DataStream)
5: EmitEvent(V otingResultAddress, DataStream)
6: end for
7: TransactData(AggregatorStorage, SmartphoneAddress)

The clients will interact with the smart contract as shown in Algorithm 5. Once the clients have
finished training, they will notify the smart contract and be considered for the next “leader” election.
The client will also monitor events emitted from the smart contract to see if it is elected as an
aggregator. If it is, then it will receive models from other smartphones.

Algorithm 5 Smartphone (Client) Interaction with the Smart Contract for Model Aggregation
1: Transact(SetLearningF inished(True), SmartContractAddress) ▷ Indicate learning finished.
2: Transact(GetModelParams(models, subsets), SmartContractAddress) ▷ Transmit Model

Parameters.
3: AssignedDataStreams = []
4: if MonitorAggregatorEvent(SmartContractAddress, SmartphoneAddress) then
5: AssignedDataStreams = Transact(GetAssignedDatastream, SmartContractAddress)
6: models = CollectNodeModels()
7: end if

Once the model parameters have been received, utilizing a decision tree, the “leader” client select
the best prediction model for the patient as shown in Algorithm 6. This model type is used due
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to its explainability- being able to explain when a certain prediction model should be used over
others can lead to significant development in psychiatry research and clinical studies. It collects a
mapping from the smart contract with data stream as key and aggregator smart contract address
as value. For example, assume a patient has three devices/data streams. This patient’s models
include every model trained on the following data stream combinations: [{A}, {B}, {A, B}, {C},
{A, C}, {B, C}, {A, B, C}]. Then, a calibration period is set for a certain period to collect new
patient emotional features/labels (in Algorithm 6, it is set to 7 days). Each set of features in our
simulation contributes to the models generated daily. The random forest decision tree (such as
the one shown in Figure 2) will then use these models to predict the patient’s emotional labels.
The decision tree is run on the patient’s smartphone after data stream based models have been
generated and distributed back to the individual nodes from the aggregator.

Algorithm 6 Smartphone (Client) Local Model Aggregation Using Decision Tree
1: ModelStorage = {}
2: AggregatorStorage = GetAggregatorStorage(SmartContractAddress)
3: for subset ∈ {subsets} do
4: model = GetModel(subset, AggregatorStorage[subset])
5: ModelStorage[subset] = model
6: end for
7: CurrentData = dataframe()
8: for 7DaysT ime... do:
9: CurrentData.AddRow(PhysiologicalData, EmotionalState)

10: end for
11: DecisionTreeData = dataframe()
12: for Feature ∈ {PhysiologicalData} do
13: DecisionTreeData.AddCol(features)
14: end for
15: DecisionTreeData.AddCol(”EmotionalLabel”)
16: for model ∈ {ModelStorage} do
17: DecisionTreeData.AddCol(model.ModelName)
18: for PhysiologicalData ∈ {CurrentData} do
19: DecisionTreeData.AddRow(PhysiologicalData, EmotionalLabel, ModelPrediction)
20: end for
21: end for
22: DecisionTreeModel = TrainDecisionTree(DecisionTreeData)

Evaluation and Results

Figure 3. Learning Results After Leader Election
and Model Aggregation. Nodes refer to the other
smartphones contributing to the combined model.

We evaluated our system using a mental health
dataset named POPANE2. The POPANE
dataset contains a set of 142 patients whose
ECG, Electrodermal Activity (EDA), Skin
Temperature (ST), Respiration (Resp), Systolic
Blood Pressure (SBP), and Diastolic Blood
Pressure (DBP) have been measured (for a total
of 725 hours) and labeled with positive and
negative affect, which is rated from a scale of
0-10, with 0 indicating negative affect, and 10
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Figure 2. An Example Decision Tree. Each branch title is in the following format: data streams
utilized in curly braces, the local model accuracy, and the criteria to split the branch. Below, the
multi-colored branches represent the label distribution in the model, and the number in parentheses
represents the total feature/labels utilized. Please see Figure 5 to cross-reference the acronyms used
in this diagram.

indicating positive affect. We chose this dataset primarily because it closely matches our use case
and provides a significant improvement over datasets containing information collected purely at the
doctor’s office.

A personal health device can measure each of the physiological parameters given above, and training
on such a dataset can provide insight into the utility of such a system in a much larger population.
Secondly, the data provided is collected on a second-to-second basis, similar to the collection rates
found in many current IoT devices, such as smartwatches that measure heart rate or ECGs on the
patient’s skin. Compared to data that would typically be collected in a physician’s office, IoT data
is much more subject to noise. Finally, a major advantage of utilizing the POPANE dataset is its
non-IID distributed data, as seen in Figure 4. The figure clearly shows that the affect is not equally
distributed throughout the dataset (and is not likely to represent the standard population), which is
more akin to what may be present in real-world situations, where random samples proportionate to
the overall population are unlikely. Thus, through this dataset, we aim to investigate the resilience
of MentalHealthAI in non-IID settings.

Figure 4. Frequency of Various Affects in the
POPANE Dataset2

First, we assessed the training results from a
model run on a centralized server. The model
was a simple Artificial Neural Network (ANN)
with three dense layers with softmax activation,
as shown in Figure 5. We decided upon the
activation function based on favorable learning
results. As mentioned, we used six physiological
features to assess the patient’s affect, ranked
from 0-10 to serve as the output. Each
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physiological feature is considered a separate
data stream for this evaluation, containing data from different IoT devices. We set the data into a
train-test split of 70-30% and used a sparse categorical cross-entropy loss function due to the nature
of the output categorical labels. Multiple checkpoints were implemented, such as early stopping
(which will stop training if accuracy does not improve after multiple epochs in a row) and learning
adjustment (which will lower the learning rate by a factor of ten if the accuracy does not improve).
We ran the model for 107 epochs and stopped the learning process because there was no change
in training accuracy. After multiple trials, this epoch value led to the best learning result in our
model. The overall accuracy was approximately 86%.

Figure 5. A Simplified View of the Neural Network Model Architecture

Based on these
results, we
can conclude
that there is
a link between
physiological
parameters and
a patient’s
emotional
state. We
chose accuracy
as our primary
evaluation metric
to ensure the
model is clinically
viable. We then
evaluated the
decentralized learning aspects of this system. Since we could not acquire physical devices to test
the model’s performance in the real world, we evaluated the decentralized learning components
through simulation. In this simulation, we assume a consortium of 142 patients modeled using the
POPANE dataset, each with data collected through IoT devices. A global model updates itself
based on data from each patient to form the final trained model. We trained the models in the same
fashion as the ANN discussed above. Figure 3 shows the test-set accuracy after training on each
node. As shown in Figure 3, successful learning can happen in a discontinuous situation. While the
nodes had an initial training accuracy of 51%, this increased immediately to 86% after training
from two additional nodes, confirming that MentalHealthAI can obtain high accuracy even in
distributed settings. However, note that such results may not be obtainable in real-world conditions.
Primarily, data collected in the POPANE dataset has been obtained in a controlled environment
rather than during regular day-to-day activities. Therefore, if truly deployed in a community, there
is a greater chance of false positives, false negatives, and inaccurate readings from IoT devices.
However, given accurate input data, we assert that MentalHealthAI can be deployed in such a
community setting. We then evaluated the decision tree aspect of the system to determine the
model accuracy in non-ideal settings. We divided the 142 patients in the POPANE dataset into four
patient cohorts. Each cohort represented patients with a certain number of IoT devices. Similar to
what we explained in the methods section, we extracted data streams from each cohort based on
the power set of their features. For example, in the cohort with 2 data streams (A and B), three
sets of data were created: A, B, (A, B), each with the same label. We repeated this process for each
patient cohort. Models were trained on the following data streams: ST, ECG, ST, ECG, EDA, ST,

647



Table 1. Comparison of Mental Health Prediction Systems
Legend: Diastolic Blood Pressure (DBP), Electrocardiogram (ECG), Electrodermal Activity
(EDA) Electroencephalogram (EEG), Environmental Temperature (ET), Fingertip Blood Oxygen
Saturation (OXY), Galvanic Skin Response (GSR), Heart Rate (HR), Heart Rate Variability (HRV),
Respirations (Resp), Skin Conductivity (SC), Skin Temperature (ST), Systolic Blood Pressure (SBP),

Algorithm/Model Data Used Accuracy
Lan Z. et al9 EEG 49.63%
Cheng et. al3 ECG, HRV 79.51%
Peter et. al12 ST, SC, ET, HR 75%
Wen et. al17 GSR, OXY, HR 74%
MentalHealthAI-Baseline ECG, EDA, ST, Resp, SBP, DBP 86%
MentalHealthAI-Fed ECG, EDA, ST, Resp, SBP, DBP 80%

EDA, ECG, EDA, ST, ECG, EDA, Resp, ST, Resp, ECG, Resp, ST, ECG, Resp, EDA, Resp, ST,
EDA, Resp, ECG, EDA, Resp, ST, ECG, EDA, Resp. Next, we simulated the “calibration” period,
where each model generated emotion predictions based on new data to which the models were not
exposed. This data then served as the input to the random forest model, which then provided the
emotional predictions based on the predictions of the previously trained models. Figure 2 depicts
the decision tree for a single client (i.e., a smartphone belonging to a patient).

We simulated a standard baseline solution, MentalHealthAI-Baseline, to the above problem as a
means of comparison. As a typical machine learning model cannot utilize different feature sets, the
most optimized results will likely only come from the cohort with 4 data streams (35 patients). We
trained standard ANN with the same hyperparameters as above on this data set, with an overall
accuracy of 86%. In comparison, MentalHealthAI-Fed had an overall accuracy of 80%. By utilizing
unequal feature sets through multiple model combinations and a random forest model, one can
improve learning results compared to a model that requires uniform features. While this accuracy
level is lower than the original baseline model, it is important to acknowledge the differences in the
data fed into either model. The baseline ANN model simulated an ideal world with aggregated data
points from 142 patients with access to six separate IoT devices, and the federated model simulated
these patient data in a non-aggregated decentralized manner. We also note that finding 142 patients
with more than three personal health devices in the real world is intuitively infeasible for many
reasons, such as cost, access, and availability.

Through this unique MentalHealthAI framework, we demonstrate that high accuracy is achievable
even in less-than-realistic settings. We believe that this occurs due to multiple reasons. First,
MentalHealthAI utilizes models without noise and irrelevant features, making them less susceptible
to their effects. Second, models trained on fewer features can succeed by having access to a larger
number of patients. Third, a random forest model can select the best model for the patient, a
choice that can change over time. Finally, MentalHealthAI was compared to current state-of-the-art
emotion prediction systems and machine learning methods in adjacent domains. As shown in
Table 1, it is clear that compared to other past AI models, MentalHealthAI can produce greater
accuracy with both the baseline ANN model and the decentralized decision tree architecture. Note
that due to the novelty of the POPANE dataset at the time we developed our model, we could not
compare our results to similar models that may have been trained on the same data.
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Related Work

A variant of federated learning11 in blockchain settings is swarm learning16, where a smart contract
would elect a node to perform model updates at each epoch instead of a central aggregator.
This selected node aggregates and broadcasts the model parameters to all other nodes. However,
swarm learning nodes are large and powerful hospital servers in applications such as leukemia and
tuberculosis prediction16. Our work involves learning in a much more decentralized setting that
leverages IoT devices and smartphones with much smaller memory and performance. At the same
time, input features are all uniform in the original swarm learning implementation16, which we
believe is an assumption that may not hold in other decentralized settings. We have embraced the
non-IID assumption in our implementation.

Pfitzner et al.13 conducted a systematic literature review on the concept of and research into
federated learning and its applicability for confidential healthcare datasets. In particular, Lee and
Shin10 conducted an experiment using the Modified National Institute of Standards and Technology
(MNIST), Medical Information Mart for Intensive Care-III (MIMIC-III), and ECG datasets to
evaluate the performance of a federated learning system compared to the state-of-the-art method
for in-hospital mortality using imbalanced data. Additionally, a small but growing number of works
have focused on the application of federated learning in mental health applications. FedMood18

uses mobile phone and IoT data in a “multi-view” federated learning setting to detect the emotions
of individuals. However, a central aggregator is still necessary for federated learning to be possible,
which is risky, especially for patients in vulnerable populations. Chhikara et al.4 describe a federated
learning framework that uses images to detect human emotion. While they achieved successful
learning results, such a model is infeasible for granular changes in emotion/mood. While physiological
data can provide hour-by-hour changes in a patient’s emotion (such as changes after taking an
antidepressant), obtaining patient pictures every hour is infeasible. Garriga et al.6’s work is similar
to the previously described work but utilizes EHR to predict mental health crises. While this is
a valuable model for predicting specific mental health events, the model cannot assess granular
emotional changes. Instead, crises are only extrapolated based on patient visits to the clinic or
the hospital (which often occurs when the patient is sick). Through our work, we aim to see
both granular and longitudinal changes in emotions, i.e., how mood changes throughout the day
(especially with medication interventions) and how moods change over a week.

A novel variant of federated learning is personalized federated learning5. The generated model
is adapted to better fit a local dataset (for example, data belonging to a single patient). Such a
model adaptation can lead to a more personalized model for the specific patient. In other words,
each client’s model does not need to be the same. While this strategy can prove useful for this
application, we have not yet employed it due to problems with categorical overfitting (where the
model chooses one category with any given input). Such overfitting will likely occur in this setting
as emotion/mood may remain the same for many hours. Subjecting this to a model may lead the
model to assume that the patient’s emotions always remain the same. A more generalized model
can expose a greater variation of training data.

Architecturally, MentalHealthAI provides many learning advantages that other AI strategies in this
domain do not provide. Compared to traditional machine learning, it introduces privacy-sensitive
strategies to address a previously stigmatized population. We specifically allow learning on
decentralized edge nodes, i.e., smartphones, and only require transferring model parameters to
make it less susceptible to noise and irrelevant features and introduce decentralized aggregators,
preventing attacks on a centralized aggregator. The unique contribution of MentalHealthAI lies in
its ability to utilize the available data, regardless of variations in the feature set.

649



Conclusion and Future Work

Advances in AI techniques and IoT devices have transformed how chronic illnesses are treated
today, such as asthma, hypertension, and diabetes. However, an area of medicine where connected
health has remained relatively untapped has been mental health. In most situations, patient history,
which is inaccurate and imperfect, has predominantly been used to treat this disorder. At the same
time, psychiatry poses many unique challenges to connected health adoption. First, a sensitive
patient population may not support releasing personal data, i.e., information potentially harmful
if leaked. Secondly, significant variations exist in the number of data streams a patient has, thus
potentially limiting learning. Finally, qualitative elements such as mood or emotions can change
rapidly throughout the day and the week. For example, simple changes in diet, medications, or even
sleep can lead to different emotions. Therefore, monitoring granular emotional changes is key to
successfully monitoring mental health. While many have focused on using facial expressions or EHR
records to predict crises, these models overlook the small changes that can lead to mental health
issues. Therefore, to solve these problems, we utilized a unique combination of AI and blockchain
techniques to enhance data privacy and ownership in a system called MentalHealthAI. It is an
innovative combination of smart contracts and decentralized learning to create models useful for
psychiatrists but in a way that protects the patient’s privacy. IoT devices provide a second-by-second
change in the patient’s outward physiological signs, allowing for a granular understanding of the
patient’s health. It allows for successful learning even when data is stored in a patient’s smartphone.
As part of the evaluation, we used a novel mental health dataset and divided the patient population
into cohorts based on the data streams available for each patient. We demonstrated that we could
predict emotions/moods from physiological data in a decentralized and privacy-preserving manner.

Our methodology for predicting mental health disorders has several benefits. First, it increases
accessibility. For example, if 20% of the patient population has only one IoT device, a traditional
machine learning algorithm would be trained on only this limited population. In comparison,
MentalHealthAI can utilize the entire patient population for model training in a decentralized and
privacy-preserving manner, which can provide greater model utility for patients who do not have
access to physiological data generators (i.e., IoT Devices). Secondly, it can increase model accuracy,
especially in fields that have yet to be studied extensively due to non (or limited) data availability.
Therefore, certain data streams may contribute to the model’s accuracy, and different combinations
of data stream features enable the better establishment of links between features and labels. Finally,
this method can better adapt to non-IID settings. Intuitively, patient populations are unique, as
most patients are more likely to have between 1-3 IoT devices. Therefore, a model trained on more
patients but with fewer features can have greater accuracy than one trained on more features but
with a smaller patient cohort. This relationship can change from community to community and
region to region. We address this issue by having different population cohorts to provide accurate
results while being resilient to changes in the patient population composition.

An initial user study with a larger sample size is necessary to determine the effectiveness and
impact of the prediction accuracy in real-world settings. Understanding physiological changes during
emotions such as surprise, fear, or agitation would be valuable in addition to detecting moods and
emotions in patients as a baseline. Therefore, the current model may need to be retrained on a
separate dataset and hyperparameters tuned appropriately to recognize these emotions. Another
important challenge is model approximation and optimization, i.e., is there a model that performs
well on all clients? And how to find such a model? By continuing to work on these limitations,
we can deploy such infrastructure in the mental health patient population and provide utility to
psychiatrists needing an objective metric to assess their patients.
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