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Abstract 

Enhancing diversity and inclusion in clinical trial recruitment, especially for historically marginalized populations 

including Black, Indigenous, and People of Color individuals, is essential. This practice ensures that generalizable trial 

results are achieved to deliver safe, effective, and equitable health and healthcare. However, recruitment is limited by 

two inextricably linked barriers – the inability to recruit and retain enough trial participants, and the lack of diversity 

amongst trial populations whereby racial and ethnic groups are underrepresented when compared to national 

composition. To overcome these barriers, this study describes and evaluates a framework that combines 1) probabilistic 

and machine learning models to accurately impute missing race and ethnicity fields in real-world data including medical 

and pharmacy claims for the identification of eligible trial participants, 2) randomized controlled trial experimentation 

to deliver an optimal patient outreach strategy, and 3) stratified sampling techniques to effectively balance cohorts to 

continuously improve engagement and recruitment metrics.    
 

Introduction 

Clinical trial recruitment is limited by two inextricably linked barriers – the inability to recruit and retain enough trial 

participants, and the lack of diversity amongst trial populations whereby racial and ethnic groups are underrepresented 

when compared to national composition. Approximately 80% of clinical trials miss their enrollment timelines[1] and 55% 

of trials are terminated due to low accrual [2]. Moreover, despite Black, Indigenous, and People of Color (BIPOC) groups 

representing 42% of the United States (US) population [3], racial and ethnic diversity is limited. Of trials reporting 

ethnicity only 11% of participants were reported as Hispanic or Latino [4]. Further, of those reporting race, less than 1% 

were Native American, 6% were Asian, and 11% were Black [4]. The need for trial diversity extends beyond race and 

ethnicity (R/E), as many vulnerable groups including pregnant people and those with chronic conditions are often 

excluded in study designs and individuals outside of urban settings are grossly underrepresented. Inclusive trial design 

may increase heterogeneity of trial population and the generalizability of its results. 
 

Inclusion practices to bolster trial diversity have been longstanding, but those efforts have done little to make substantial 

change. As far back as 1994, the National Institutes of Health (NIH) mandated the inclusion of women and other 

underrepresented populations in all NIH-sponsored clinical trials [5]. Over the subsequent decades, and continuing today, 

various stakeholders including the US Food and Drug Administration (FDA), sponsors, providers, academic centers, and 

patient advocacy groups have individually, and collaboratively, sought to address this disparity [6, 7]; however, review 

of clinical trial enrollment data has indicated little improvement in increasing diversity amongst clinical trial participants. 

A 2022 consensus study report by the National Academy of Sciences and the NIH found that, despite the priority of 

increasing diversity in clinical trials, the majority of participants continue to be White men [8].   
 

Numerous initiatives have attempted to create infrastructures to enhance clinical trial diversity and the COVID-19 

pandemic accelerated the digital transformation of clinical trial operations. Notably, the steadily decreasing prevalence of 

low accrual rates for trial termination is the result of informatics-enabled solutions to improve patient recruitment by 

contract research organizations [9]. While the expansion of decentralized trials has potential to begin to address access 

and recruitment, inclusive trial populations remain a significant barrier in their execution. 
 

In addition to depriving historically marginalized participants of access to potentially lifesaving clinical research 

opportunities, the disparity of trial access also limits the generalizability of new drugs to the diverse and broad 

communities to which they will ultimately be prescribed. This disparity is particularly relevant in diseases which 

disproportionally impact BIPOC populations [10]. For example, cardiovascular disease disproportionally impacts Black 

adults, yet they remain under-represented in clinical trials designed to improve its prevention, diagnosis, and treatment. 

Systematic reviews demonstrated the proportion of non-White participants in cardiovascular-related clinical trials has not 

changed over several decades [11].  
 

Recently, real-world data (RWD) and advanced analytics have shown great promise to inform clinical trial strategy, 

design, and execution [12, 13]. The COVID-19 pandemic accelerated the digital transformation of clinical research 

including the use of RWD sources such as electronic health data, patient-generated data, and claims databases. 

Additionally, RWD collaboration expanded more broadly to include insurers, retail, and pharmacies. The application of 
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RWD can deliver innovative trial designs to address obstacles in clinical evaluations, including enrolling sufficient, and 

diverse, populations to improve trial inclusion [14]. Moreover, concomitant disruption and innovation associated with the 

application of advanced analytics including machine learning (ML) has been unprecedented, particularly in clinical 

research and trials, bringing more data-informed decision-making to its stakeholders.  
 

Ensuring diversity, including racial and ethnic, representation is met in clinical trials is essential to advance science while 

concomitantly reducing bias, promoting social justice, and improving health equity. However, it’s estimated that only 

43% of US trials reported R/E data [15]. This disparity of under enrolling racial and ethnic groups exacerbates their health 

inequities and creates bias in trial results. Moreover, structured health care data are plagued with missing, unreliable, or 

incomplete information including demographic fields such as individual designations for R/E. Despite temporal initiatives 

to expand the inclusion of BIPOC in trial enrollment and positive trends reporting R/E trial data following numerous 

mandates [16], their gaps in diversity and data remain.  
 

Typically, people who do not volunteer identification data are historically marginalized, including BIPOC groups, and 

underrepresented in clinical trials [17]. Precedents and numerous negative experiences with the healthcare delivery system 

are correlated with mistrust, systemic racism, and stigma among these communities. Identity, including the consideration 

of one’s R/E, is a large ethical consideration and any attempt to mathematically impute, or infer, these fields to complete 

patient health information should be done with great scrutiny. 
 

Imputing fields is long standing practice in clinical trials to correct for bias associated with missing data [18], but despite 

its limitations [19], it offers health equity many opportunities. With substantial evidence demonstrating health and 

healthcare disparities [20] are highly prevalent in BIPOC communities, the lack of R/E in trial data exacerbate those long-

standing differences and promote further inequities. To overcome cyclical BIPOC health disparities, R/E data imputation 

can improve the trial design including patient outreach and enrollment strategies. Downstream impacts of these imputation 

provide the potential to investigate and address disparities in access to, utilization of, and outcomes of care.  
 

This purpose of this study is to describe a framework and evaluate informatics techniques that aim to enhance equity in 

trial populations using enrollment and claims data to 1) operationalize Bayesian predictive and ML methods to impute 

missing R/E data and 2) dynamically adjust the outreach strategy based on patient engagement. The recruitment 

optimization framework utilizes a R/E imputation pipeline along with RCT experimentation and its associated patient 

cohort balancing techniques using stratified sampling. The real-world application and impact of this recruitment 

optimization framework and its model performance will be evaluated.  
 

Methods 

Framework Description of Techniques to Enhance Clinical Trial Equity 

To overcome race-blindness within the data and the trial target population, the utilization of various probabilistic models, 

including Bayesian Improved Surname and Geocoding (BISG) [21] and Bayesian Improved First Name and Surname 

Geocoding (BIFSG) [22] methodologies (Figure 1) were applied to impute missing R/E within medical and pharmacy 

claims data. Both BISG and BIFSG are well-validated [21, 23-26] and widely used [27] R/E estimation methods to make 

inferences regarding missing demographic information, including R/E groups, based on proxy variables, such as their first 

name, surname, and address. First/surname analysis using US census data provides common names for racial and ethnic 

groups. When this information is combined with geocoding at the block group level using Bayesian estimation, R/E 

membership can be categorically classified. The BIFSG model is a direct expansion of BISG model that simultaneously 

includes first names to improve model robustness.  
 

Race and Ethnicity Imputation Pipeline. When R/E data are unavailable, BISG/BIFSG imputation of the missing fields 

have demonstrated to reliably predict categories of explicit racial and ethnic membership including White, Black, 

Hispanic, and Asian individuals among medical health plan data [28]. However, identification of American 

Indian/Alaskan Native and multi-racial individuals was reported to be poor using this methodology [28]. Meanwhile, 

since BISG/BIFSG simultaneously requires surname (and first name for BIFSG) and geographical location to do the 

prediction, the algorithm will not work on members with missing name or geographical information.  
 

In view of this, additional probabilistic models relying on only one of these fields (i.e., first name, surname, or geography 

only) were also used. To adequately capture a sample reflective of the target population, further post-processing occurred 

for the naïve algorithm to finalize race prediction and distinguish ethnicity from race using simple majority voting on the 

predictions of all the probabilistic models. Additionally, to address limitations of current model and boost predictive 

performance, two proprietary machine learning models were also employed to impute Black and Native American 

populations more accurately. Finally, to operationalize (Figure 1) Bayesian predictive and machine learning models to 

impute missing R/E from claims data, validation, including the use of self-reported and third-party data, were applied.  
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Figure 1. Race and ethnicity (R/E) imputation 

pipeline. This decision tree illustrates the pathway 

by which three R/E data assets were utilized in this 

study: 1) self-reported R/E served as the ground 

truth for machine learning (ML) model 

development; 2) third-party R/E were used for 

model validation; and 3) any missing R/E data from 

medical and  pharmacy retail data were imputed 

using a combination of BISG modified modeling 

(e.g., first name, surname, geocode, BIFSG 

derivations) that yielded a distribution of 

probabilities for R/E classification. Naïve model 

output was further post-processed using majority voting to select the primary R/E imputation. Additional post-

processing was performed when White (W), Black (B), or Native American (NA) race were predicted. These 

classifications were further processed using race-specific ML models to improve the accuracy of the R/E 

imputation. No post-processing was performed on Hispanic (H) and Asian/Pacific Islander (API) classifications. 

Key: red arrows indicate R/E imputation and grey arrows indicate ground truth or validated R/E pathways. 

Abbreviations: BISG, Bayesian Improved Surname and Geocoding; BIFSG, Bayesian Improved First Name and 

Surname Geocoding  
 

Randomized Controlled Trial (RCT) Experimentation. Data gaps and poor patient recruitment can potentially put clinical 

trials at risk; however, informatics approaches can be coupled with further experimentation to improve recruitment 

planning and its execution. Experimental design plays a critical role in recruitment enhancement; more specifically, 

campaign design, which includes the methods to identify, recruit, and retain eligible participants, is tailored to fit trial 

needs. Patient recruitment approaches can include campaigns to identify patients from imputation-adjusted medical or 

pharmacy claims data, retail visits, patient databases, community events, or existing partnerships.  
 

To overcome recruitment challenges, a modularized and scalable randomized controlled experimentation design can 

enable clinical trial recruitment at scale. The methodology can be used to support experimental design, establish causality 

with high level of evidence, and conduct analysis to make data-informed decisions. Moreover, applying this methodology 

to recruitment interventions can enhance outreach strategies.  
 

The goal of experimentation was to evaluate the impact of key campaign dimensions to operationalize outreach 

enhancements for recruitment improvement. The experimentation framework (Figure 2) included four components: 1) 

hypothesis generation and creation of driver variations as well as methodologies for patient eligibility and allocation, 

recruitment goal metrics, and statistical significance boundaries were established to plan and conduct experiment; 2) 

monitor and collect data; 3) analyze outreach drivers, whereby the intervention group was compared to control to test the 

key metrics (e.g., open rates, referrals, pre-screening, consents, randomization] of the outreach campaign for a specific 

period of time to achieve statistical significance; 4) implementation of levers demonstrating success into the production 

system and use data-informed decision-making to optimize outreach strategy for current and future states. 

 

Figure 2. Modularized and scalable RCT experimentation. 

This cyclical experimentation serves to inform current and 

future outreach strategy because of a priori hypothesis 

generation to execute quality improvement RCTs to evaluate 

the effectiveness of outreach strategies that serve to inform 

future decision-making.   
 

 

 
 

Patient Cohort Balancing Module Within RCT Experimentation. The opportunity to provide population-level estimates 

of clinical trial results can positively impact trial design when additional cohort balancing techniques were also applied. 

To consider the sample population representative to the target population, stratified sampling [29] was applied to improve 

the inclusion of trial recruitment design by balancing the patient cohort demographic (e.g., R/E) composition (Figure 3). 

To fill these needs, imputed R/E into claims data were leveraged to identify eligible trial participants. The population 

identified from trial enrollment data were divided into homogeneous strata according to multiple demographic factors 

(e.g., R/E, age, and gender), and a specific number of participants were chosen at random from each stratum. Upon 

applying stratified sampling to balance the outreach distribution of under-engaged patients, the strategy for enrollment 
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outreach was dynamically adjusted. This process undergoes a feedback loop of iteration, measurement, and refinement 

until the trial engagement, enrollment distribution targets, and endpoints were satisfactorily met.    

 

Figure 3. An iterative loop to balance a 

patient cohort within experimentation. 

This feedback loop using stratified 

sampling, whereby enrollment data was 

split into homogeneous strata according to 

multiple demographic factors (e.g., 

race/ethnicity (R/E), age, and gender). A 

specific number of participants were chosen at random from each stratum and codified to generate a participant 

list. Next, enrollment data were collected to examine cohort performance, and if necessary, outreach was 

continued to meet desired R/E allocation. 
 

To overcome the limitations of clinical trials recruitment regarding R/E data gaps and race-related inequities, 

these modules (Figure 4), the R/E imputation pipeline along with RCT experimentation and its associated patient cohort 

balancing techniques using stratified sampling, were utilized. 

 
Figure 4. Schematic diagram of 

recruitment optimization framework. 

The R/E imputation module was applied 

to enhance cohort balancing techniques 

that utilized RCT experimentation for 

outreach strategy optimization with 

stratified sampling. Self-reported, third-
party, or imputed race/ethnicity data  

were compared with trial-specific desired 

racial/demographic composition and 

incorporated into experimental design. 

Once enrollment data were collected, the 

composition was adjusted based on 

participant engagement. 
 

Machine Learning Models to Improve Predictions of Black and Native American Groups 

Model Features. Collected data were used for pre-modeling Exploratory Data Analysis to generate aggregate summary 

statistics and derive predictive model features (i.e., feature engineering). Features included binary, categorical, and 

continuous types, some of which were constructed to capture the dimension of time. Name embeddings, census data on 

zip code level including social determinants of health inferences, prescription fill/outreach patterns from pharmacy 

claims, previously imputed R/E with probabilistic models, and additional R/E information from third-party vendor were 

used as potential variables. As an example, total number of successful outreaches for retail pharmacy programs can be a 

variable to indicate member habit/patterns on effectiveness of previous outreach. Recursive feature elimination with 5-

fold cross validation were used to select the most relevant features and reduce overfitting. 
 

Model Training and Validation. After EDA, feature engineering, and feature selection, collected data were used to fit a 

binary classification extreme gradient boost (XGBoost) model. In view of the high misclassification rates using the 

BISG/BIFSG probabilistic models obtained from preliminary results, the two racial classes were Black or Native 

American versus (vs.) White. Two models were trained, one for Black vs. White and the other for Native American vs. 

White. The training and validation data for the first model were constructed using a 35% random sample of Blacks 

correctly classified with probabilistic model, a 25% sample of Black race misclassified to White previously, and a 10% 

sample of total White population to make the final Black:White = 1:2. The data were randomly partitioned into training 

and hold-out test sets with a ratio of 9:1, preserving the Black to White ratio. Similarly, a 5% sample of White race plus 

50% of available Native American race were used to construct the training and validation set for the second model. Ten-

fold cross validation on the training set were employed for hyperparameter tuning and to optimize algorithm 

performance.  
 

To incorporate the first name and surname information into the ML modeling and overcome the issue of high 

cardinality, a Name2Vec algorithm was employed to obtain distributed representations of first name and surname of an 

individual [30]. Name2Vec is a special implementation of Doc2Vec algorithm onto personal names, which effectively 

converts a document into vector embeddings by considering the internal structure and how topics are formed within the 

document [31]. Here, each name was considered a document while each letter in a name was equivalent to one word. 

Two separate Name2Vec models for first names and surnames were pretrained, using all first names and surnames 
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within a proprietary database plus 730k first names and 983k surnames found publicly online [32], which contributed to 

the dataset containing ~5.2M first names and ~6.4M surnames in total. Both Doc2Vec models were pretrained with 

vector size = 30 and window = 3 for 50 epochs. After pretraining, 30-dimensional embeddings for all names were 

extracted in the database and stored for use in ML models as features. 
 

Model Evaluation. Various algorithm performance metrics were considered (e.g., Precision, Recall, AUC/ROC, etc.) 

and examined on the hold-out test set. 
 

Real-World Evaluation using the Recruitment Optimization Framework Study Design and its Data Analyses 

Member month-level retrospective medical (e.g., commercial fully-insured, Medicare, and Medicaid) claims 

(N=6,348,500), pharmacy claims (N=127,407,048), personal (e.g., first name, surname), and demographic data (e.g., 

R/E, zip code) were used in this study. Member names and/or geographical location data were used as inputs to five 

probabilistic/Bayesian statistical models to obtain probabilities of an individual member falling into one of the six racial 

categories: White, Black, Asian American and Pacific Islander, Native American, Hispanic, or Multiracial. Next, all 

predicted probabilities were passed into the postprocessing module, which performed soft or hard majority voting to 

assign the most probable race to the member. At this step, necessary data normalizations and wrangling were performed 

to ensure the R/E imputed and its format were consistent with those in the dataset. This probabilistic pipeline was 

deployed to score every member in the database.  
 

In view of the limitations of the probabilistic models, additional proprietary/in-house machine ML models were trained 

specifically to better identify Black and Native American populations with enhanced accuracy. The trained models were 

applied on members previously imputed as Black, Native American, or White receive a refined prediction/secondary 

confirmation upon final R/E assignment.  
 

The two-step R/E prediction pipeline (probabilistic, and then ML) was validated using self-reported demographic data 

as the ground truth; inferential statistics were applied to larger claims set for testing and the model was validated using a 

subset of third-party claims data with self-reported R/E. In addition, to validate the predictions in real-world setting, 

A/B test/measurements were performed on collected participant response data between treatment (i.e., predicted R/E 

group) and control (i.e., self-reported R/E group) using the RCT experimentation framework. No difference observed 

between intervention and control groups indicated the success of using imputed R/E in actual recruitments. 
 

To evaluate the performance of the model, the imputed R/E were incorporated to identify and outreach eligible patients 

in a clinical trial assessing the prevalence of valvular heart disease in older Americans. This study includes patients ≥ 65 

years old and excludes patients with history of congenital heart disease. RCT experimentation was conducted to perform 

the stratified sampling method to meet the recruitment goal. Participants were divided into homogeneous strata based on 

R/E, age, and gender. Each stratum was randomly sampled and assigned to one unique vanity URL and one unique code 

that identified the demographic information of the group. After the recruitment campaign launch, the performance of 

each R/E subgroup engagement was examined by vanity URL clickthrough rate. These clickthrough rates across each 

R/E subgroup were compared to understand if stratified sampling improved engagement for cohorts with racial 

underrepresentation. Average R/E composition (i.e., percent improvement in coverage of cohorts) between stratified and 

simple random sampling was examined.  
 

Results 

Ensemble Probabilistic Imputation Module Accurately Fills in Missing R/E Information for Diversity Recruitment  

To examine whether an ensemble of five proxy-based probabilistic models accurately fills in the missing R/E information, 

the model predictions were validated on internal self-reported R/E data from pharmacy claims data. Table 1 presents the 

performance of the predictive approach with an overall accuracy of 0.852. Predictions of White, Asian/Pacific Islander, 

and Hispanic race yielded an overall F1 score > 0.8. However, Black, Native American, and Multiracial race predictions 

had a wide range of lower F1 scores (0.002 - 0.533). Both Black and Native American race predictions had higher 

precision (0.739 and 0.545, respectively), but both had low recall (0.417 and 0.013, respectively). Multiracial predictions 

showed unsatisfactory performance for both precision and recall (0.066 and 0.001, respectively).  
 

Table 1. Performance of ensemble method on imputing race/ethnicity for all pharmacy members with self-

reported race/ethnicity data   
 

R/E Classification Accuracy Precision Recall F1-score 

Overall  0.852   0.936   0.695 0.798 

White  - 0.814 0.966 0.884 

Black   - 0.739 0.417 0.533 

Asian and Pacific 

Islander  

- 0.884 0.714 0.790 
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Native American  - 0.545 0.013 0.025 

Hispanic  - 0.886 0.786 0.833 

Multiracial  - 0.066 0.001 0.002 

 

The predictive approach was further benchmarked using third-party R/E data for members with pharmacy claims, using 

the overlap population where both imputed values and third-party/external data were available. Table 2 shows a 

comparison of precision, recall, and F1 score by race. Since the Multiracial group was not available in the third-party 

data, it was excluded from the benchmark analysis to focus on the other five major racial categories. Overall, the R/E 

imputation approach achieves highly comparable, if not occasionally better, performance with RWD benchmarking.  
 

Table 2. Benchmark with third-party race/ethnicity data using overlap of pharmacy members  
 

R/E 

Classification 

Precision 

imputed 

Precision 

benchmarked 

Recall 

imputed 

Recall 

benchmarked 

F1 

imputed 

F1  

benchmarked 

White  0.816 0.871 0.967 0.915 0.885 0.892 

Black  0.746 0.628 0.423 0.629 0.540 0.629 

Asian and 

Pacific Islander 

0.886 0.842 0.724 0.839 0.796 0.840 

Native 

American  

0.553 0.134 0.013 0.022 0.026 0.037 

Hispanic  0.893 0.859 0.790 0.843 0.838 0.851 
 

To validate the performance of this predictive approach in a real-world setting, a RCT was conducted to collect member 

response data in a live email campaign. The control group was derived from the self-reported R/E population while the 

intervention group was composed entirely from an imputed R/E population. The ratio of intervention:control was roughly 

1:1. Table 3 shows recruitment engagement metrics observed during an email outreach campaign between the randomized 

intervention and control groups. There are no statistically significant differences between the groups for both the email 

open rate and clickthrough rate (Chi-squared, P=0.5575 and P=0.2408, respectively). This shows the overall success of 

leveraging imputed R/E information in real-world participant outreach when ground truth self-reported data is absent.  
 

Table 3. Email campaign statistics during a randomized controlled trial to validate the quality of imputed 

race/ethnicity (R/E) 
 

Metric Control 

(Self-reported R/E) 

Intervention 

(Imputed R/E) 

P-value 

Number emailed 22,795 20,303 - 

Number emails opened (%) 8,680 (38.08%) 7,816 (38.5%) 0.5575 

Number of clickthroughs (%) 119 (1.37%) 90 (1.15%) 0.2408 
 

Machine Learning Models Successfully Predict Minority Assignment for Targeted Races 

Upon further analysis, out of the total false negatives, 95.3% African Americans and 84.3% Native Americans were 

misclassified as Caucasians, which corresponded to the low precision of Caucasian prediction (0.814) relative to recall 

(0.966) (Table 1). In view of the relatively low predictive performance for Black and Native American racial 

identification, and that majority (>90%) of the misclassifications happen between when distinguishing those races from 

White, two additional XGBoost [33] models were built. These models, that differentiate Black and Native American races 

from White, were developed to further refine the identification of additional races from the initially predicted  population. 

Both models show improved performance compared to the probabilistic approach when validated on the 10% hold-out 

test set (Table 4, Figure 5). In particular, the Black race predictive model displays superior performance with all metrics 

above 0.8 and an AUC score of 0.95, highlighting the success of ML-based approach to capture the multidimensional 

pattern difference and complex feature interactions that successfully classify these two racial groups. In contrast, the 

performance of predicting Native American race is still moderately low. 
 

 

Table 4. Benchmark with third-party race/ethnicity data using overlap of pharmacy members 
 

Model Accuracy Negative 

predictive 

value 

Precision Recall F1-score AUC AUPR 
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Black vs. White 0.903 0.913 0.878 0.802 0.838 0.953 0.921 

Native American 

vs. White 

0.889 0.934 0.390 0.353 0.371 0.726 0.351 

Abbreviations: AUC, area under the curve; AUPR, area under the precision-recall curve. 
 

 

Figure 5. Receiver operating characteristic (ROC) 

curves for (A) Black and (B) Native American  versus 

(vs) White race prediction models  

 

 

 

 

 

When integrating the ML models into the ensemble probabilistic R/E imputation module, two new models were employed 

as an additional layer on top of the original predictions for Black, Native American, and White members. Essentially, the 

old race predictions were overwritten by the new ones primarily for White classifications as an attempt to identify additional 

minority members and boost the recall rate. An overall improvement of accuracy from 0.852 to 0.870 and F1-score from 

0.798 to 0.828 was observed. Notably, the recall for Black race prediction was improved by an absolute 20.6% (or 

equivalently ~1.5x of the original recall rate) with even slightly increased precision rate; however, significant change was 

not observed for Native American race predication, indicating limited generalizability of the specific-Native American 

prediction model (Table 5). 

 

Table 5. Performance of ensemble method plus ML models on imputing race/ethnicity for all pharmacy members 

with self-reported race/ethnicity data 
 

R/E Categories Accuracy Precision Recall F1-score 

Overall  0.870   0.932   0.745 0.828 

White - 0.839 0.961 0.896 

Black  - 0.750 0.623 0.681 

Asian and  

Pacific Islanders  

- 0.884 0.714 0.790 

Native American  - 0.537 0.013 0.026 

Hispanic  - 0.886 0.786 0.833 

Multiracial  - 0.066 0.001 0.002 

 

Race/Ethnicity Imputation Pipeline is Essential to Achieve Diversity in Recruitment Goals 

After validating model performance, R/E imputation in a real-world clinical trial recruitment setting was examined, when 

the coverage of ground truth R/E data did not meet the targeting requirement. In the RCT utilized for the email campaign 

mentioned above, all potential participants meeting the eligibility criteria in self-reported R/E population only met 62.6% 

of the recruitment goal. Upon introducing the R/E imputation pipeline approach, an additional 193K potential and R/E 

diverse participants were identified and enriched the sample, which was equivalent to 48.4% of the targeting goal (Table 

6). 

Table 6. Number of available participants that met eligibility criteria with and without R/E imputation pipeline 

and impact on percent target recruitment goal achieved 
 

R/E imputation impact Number of total eligible diversity 

participants outreached (N) 

Participant target goal 

achieved (% of 400K) 

Self-reported race only 

(Ground Truth) 

250,471 62.6% 

Self-reported race plus imputation 

pipeline (Experimentation) 

443,901 111.0% 

Difference 193,430 48.4% 
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Recruitment Outreach to Minority Populations is Significantly Improved with Patient Cohort Balancing 

After validation that R/E imputation techniques were effective, R/E imputations were combined with patient cohort 

balancing techniques to improve recruitment diversity in a real-world clinical trial. Since the goal of patient cohort 

balancing module is to represent the diversity of the target population and to promote clinical trial accessibility to 

underrepresented participants, random sampling methods were assessed to identify if stratification improved participant 

engagement when compared to simple traditional methods. Patient eligibility was defined based on the study protocol, 

and a subset of patients were selected from the participant pool based on eligibility criteria.  
 

In this use case, Black and Hispanic R/E were two desired groups in this study, which was informed by imputed R/E 

methods. To demonstrate the effectiveness of these equity-based recruitment techniques, patient engagement data were 

collected via vanity URL clickthrough rates. Each clickthrough indicates a successful incidence of connecting/redirecting 

patients to the clinical trial who otherwise would typically not have access. For the baseline, the assumption was that 

clickthrough rates by race would remain the same regardless of intervention; however, to determine the expected response 

distribution those rates were multiplied by the outreach distribution without cohort balancing and normalized a sum of 

one. Then, this expected distribution of participant response (i.e., given access/connected to the trial) without cohort 

balancing was benchmarked with observed participant distribution collected with cohort balancing. Table 7 shows cohort 

balancing improves trial access/response distribution that for Black and Hispanic populations (513% and 312%, 

respectively). This equity-based enrichment, using that R/E imputation when combined with cohort balancing techniques, 

successfully connected 5-fold more Black and 3-fold more Hispanic participants to this particular trial.  
 

Table 7. Number of eligible Black and Hispanic participants connected to trial before and after equity-based 

enrichment utilizing race and ethnicity imputation combined with cohort balancing techniques. 

 

Targeted race and 

ethnicity recruitment 

demographic 

Expected number of 

eligible and responded 

participants  

Actual number of 

eligible and responded 

participants  

% Improvement  

Black 338 2079 513% 

Hispanic 593 2444 312% 

 

Discussion 

This study sought to characterize the development, implementation, and outcomes of an informatics-enabled framework 

designed to enhance equity in clinical trial populations. The framework, when applied in a real-world trial setting, 

demonstratively enriched the target Hispanic and Black composition 3- to 5-fold. This enrichment was achieved with the 

utilization of existing probabilistic and novel ML models that accurately imputed missing R/E fields in RWD from 

pharmacy claims to identify eligible target trial participants and effective RCT experimentation with stratified sampling 

techniques that delivered 48% improvement in participant availability. Imputed R/E techniques are essential to ensure 

recruitment of sufficient diverse population into clinical studies. The advantage of stratified sampling over simple random 

sampling is that with this proportionate sampling, participants were selected from each stratum in proportions observed 

in the general population, which allowed increased representation by members of R/E groups who are typically 

underrepresented in trial design. These results demonstrate the effectiveness of our equity-centered approach to improve 

access to trials and are directly aligned with research-sustaining goals set forth by the NIH Minority Health and Health 

Disparities Strategic Plan to “increase the overall proportion of participants from diverse populations included in NIH-

funded clinical research to 40% by 2030 and within specific major disease categories” [34]. As the composition of the 

population continues to become more racially and ethnically diverse, combinatorial informatics-enabled techniques such 

as those described herein will become increasingly vital for ensuring that clinical trials are representative of the population 

for which their evidence base directly informs clinical practice and population health at large.    
 

The application of informatics to advance clinical trial operations, including recruitment, have great potential mixed with 

inherent limitations. For example, to overcome missing values in big data (e.g., medical and pharmacy claims), 

BISG/BIFSG  algorithms are widely used to supplement data sources with reported R/E. Most health plans lack R/E data 

on most of their enrollees, so these indirect estimations at the group level is a valuable methodology to leverage. However, 

despite its accuracy to predict membership for the four largest R/E groups at the population-level, BISG/BIFSG estimates 

have low concordance with reported values for BIPOC and Multiracial populations.  
 

The ensemble Bayesian models employed in this analysis missed ~60% of true Black and >90% of true Native American 

members due to low precision (0.814) of White prediction compared to its recall (0.966). This insufficiency illustrates the 

limits of using census-level name and geographical probabilities to infer race for Black and Native American members. 

To address this, two novel XGBoost algorithms were built to overcome the limited predictability of Black, White, and 

Native American races and demonstrated superior performance compared to the Bayesian-only algorithm approach. 

However, the model improving the predictability of Black from White race was superior to the model attempting to impute 
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Native American race. The Native American-specific imputation model still had very low recall despite its moderate 

precision. This could indicate that Native Americans within the trial recruitment data asset were like Whites with respect 

to features including demographic- and behavior-level components that fail to distinguish between the two of them. 

Further, upon validation with third-party R/E data, poor performance was similarly observed to predict Native American 

race. Alternative explanations for this poor performance for Native American race imputation may include inconsistent 

definitions and/or low quality associated with self-reported race data for Native American members. There is a critical 

need for accurate data collection in the measurement of small populations including American Indian/Alaska Native 

communities. Undercounts of this population may be attributed to weighting issues in the sampling approach for national 

surveys and pervasive and long-standing social injustices.   
 

In an increasingly diverse multiracial and multiethnic world, representation is critical and there is a moral imperative to 

ensure the widespread use of algorithms and their datasets are inclusive. A limitation of this study is that Multiracial 

imputation improvement was not addressed and remains a significant gap to be fulfilled, as the self-reported Multiracial 

classification increased 276% since the last US Census report [3]. Multiracial identification is intrinsically difficult for 

algorithmic modeling, as each racial and/or ethnic component may have low performance due to data inequality and data 

distribution mismatches between each group. Predictive modeling is dependent upon high-quality data, so further 

challenges to predict identity attributed to multiple groups stem from inconsistent data definitions, limited data collection 

processes, and socioracial considerations. For example, the term “multiracial” is seldomly used as opposed to “other race” 

categories when acquiring demographic information. Further, socioracial asymmetries persist, whereby individuals of 

mixed races and/or ethnicities do not self-report due to experienced social justice issues including racism.  
 

Despite these R/E imputation limitations for Native Americans and Multiracial members, there is promise in its 

implementation to deliver high-impact, equity-centered clinical trial recruitment at scale. Trials are limited by 

participation and data gaps; however, the use of imputed R/E data derived from RWD sources can seemingly fulfill those 

of these gaps. Diverse and inclusive trial recruitment has been extremely limited to deliver information and decision-

making related to R/E. In other words, in the absence of having complete and accurate data, it’s impossible to know the 
extent of the inequities and how to address them. The implementation of these ensemble BIFSG/BISG models with novel 

post-processing models  augment participant recruitment and subsequently support the identification of R/E-related 

disparities within the trial participants, and more broadly, at the population level. Moreover, these novel ML methods that 

refine R/E classification of missing data fields in RWD will likely reveal the magnitude of disparities inherent in research 

today and necessitate a multitude of follow up trials to replicate, reproduce, and advance health equity over time.  
  
Logical next steps to advance the utility of this equity-centered framework include the development and execution of 

structured qualitative studies to better understand research participant experiences and perspectives. Outcomes of 

particular interest include research participant preferences, motivation, perception, value proposition, and perceived 

benefit for various sub-groups and clinical populations of interest. Research participant archetypes and personas can be 

used to test and learn tailored campaigns and person-centered messaging tactics that aim to optimize recruitment 

identification, retention, and outcomes whereby durability of engagement persists across R/E groups. 
 

Conclusion 

Informatics-driven solutions are a promising transformational tool for stakeholders to enhance equity in clinical trial 

populations. Large-scale datasets with robust RWD and probabilistic modeling and methodologies to impute R/E directly 

enable the experimentation framework required for data-informed decision-making and clinical trial recruitment strategy 

implementation. Ongoing studies aim to further refine the technical performance of the model, optimize participant 

engagement, and highlight practical applications of this framework. 
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