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Abstract

Electronic medical records (EMRs) are stored in relational databases. It can be challenging to access the required
information if the user is unfamiliar with the database schema or general database fundamentals. Hence, researchers
have explored text-to-SQL generation methods that provide healthcare professionals direct access to EMR data without
needing a database expert. However, currently available datasets have been essentially “solved” with state-of-the-art
models achieving accuracy greater than or near 90%. In this paper, we show that there is still a long way to go before
solving text-to-SQL generation in the medical domain. To show this, we create new splits of the existing medical text-to-
SQL dataset MIMICSQL that better measure the generalizability of the resulting models. We evaluate state-of-the-art
language models on our new split showing substantial drops in performance with accuracy dropping from up to 92%
to 28%, thus showing substantial room for improvement. Moreover, we introduce a novel data augmentation approach
to improve the generalizability of the language models. Overall, this paper is the first step towards developing more
robust text-to-SQL models in the medical domain.1

Introduction

Electronic medical records (EMRs) are crucial for evaluating and treating patients. For instance, EMRs can be used
to predict mortality risk for patients [1–3] and is the basis of knowledge used for billing [4] (e.g., with ICD10 codes).
Hospitals generally store EMRs in relational databases. Structured query languages (e.g., SQL) are used to access
items within the database. Hence, to access the data, users must know the database structure (e.g., the tables and
columns) and the values stored in each column (e.g., understanding ICD10 codes). Suppose practitioners need to
extract relevant knowledge from EMR-related databases. In that case, they need to work with database experts because
it may be difficult for medical professionals to gather the information required efficiently, particularly as databases
change. Furthermore, it is challenging for database experts to keep track of everything as it ages and changes over
time (e.g., because of changes in diagnosis code standards), thus increasing the cost of maintenance. In this paper, we
explore the text-to-SQL task, which can help facilitate easy access to medical information in databases by users who
are not experts and make the information extraction easier for the database maintainers.

How can we reduce the expertise needed to query these databases? Recent research has focused on developing
a natural language interface for these databases that could significantly improve accessibility by allowing users to
retrieve and use the information without programming expertise. Researchers have made substantial advances in
recent years by releasing large-scale datasets and models for text-to-SQL generation [5, 6]. Developing a system that
can accept a practitioner’s question in a text-based format that automatically creates an accurate corresponding SQL
query to return accurate answers allows professionals to get much-needed answers quickly and easily.

Wang et al. [6] created the MIMICSQL text-to-SQL dataset in a two-stage manner. First, they developed templates
to create text—SQL tuples automatically (e.g., “How many patients have language [BLANK]”, where [BLANK] is
filled in with various languages mentioned in the database). Second, they paraphrased the text in the automatically
generated templates to add more variety (i.e., so the text was not always specified in the same manner). Wang et al. [6]
evaluated their models on the original template data and the paraphrased version, achieving a logic form and execution

1https://github.com/AnthonyMRios/mimic-sql-data
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accuracy of .912 and .940, respectively, on the template-based test set. In addition, they achieve a logic form and
execution accuracy of .556 and .654, respectively, on the paraphrased data. This result shows that the paraphrased data
provides a unique test bed beyond the template data to measure how well the models handle differences/variations in
the questions. Nevertheless, Pan et al. [7] further improved on the work of Wang et al. [6] by introducing a BERT-
based method to generate better SQL statements resulting in scores of .784 and .899 on the paraphrased test set in
terms of logic form and execution accuracy, respectively.

Current accuracy results on the MIMICSQL dataset are in the 90s for the template-based data and nearly .90
accuracy for their paraphrased dataset (i.e., a variation of the template-based question-SQL pairs where humans have
rewritten the questions). Does this mean that medical text-to-SQL is (nearly) solved? Unfortunately, the current
MIMICSQL train-test splits do not measure the model’s generalizability toward understanding the structure of the
database. Many of the training and test data questions are just variations, e.g., “how many patients whose language
is cape?” vs. “how many patients whose language is port?”. Hence, for a new question in the test set, the model
only needs to understand which part of the text represents the conditional value, given it sees slight variations in
the training data. What happens when new tables or columns are added? What if the values change for a specific
column (e.g., transferring to the next version of ICD codes)? How would the models perform at hospitals where the
database structure is likely substantially different? For other biomedical natural language processing (NLP) tasks,
prior research in medical-related machine learning applications has shown substantial differences in the cross-hospital
performance [8, 9]. Similarly, this research focuses on changing and reevaluating new splits of the MIMICSQL that
can help measure generalizability toward identifying better and more robust medical text-to-SQL models.

Another limitation of the MIMICSQL dataset is the lack of diversity in the input queries. While there have been
efforts for paraphrasing (i.e., human rewording) the automatically generated (template-based) input instances, the
diversity of the questions is limited by the imagination of the annotators. For instance, the query “how many patients
whose language is hait?” is generally transformed into a phrase like “find the number of patients who prefer haitian
language,” with the new version used often for similar questions (i.e., asking about different languages) in the dataset.
Hence, models trained on the paraphrased dataset still struggle to generalize to new question variations. Therefore, we
investigate the research question, can we generate models using the template data directly, ignoring the paraphrased
data during training? This evaluation setting can better measure how well the models can perform for new question
phrasings. Moreover, it is costly to paraphrase questions at scale for template-generated text-to-SQL datasets. If
similar performance can be achieved without the additional cost, then integration with new database formats and EHR
systems will be more feasible at scale. We explore two methods of improving generalizability. First, we investigate
training on additional non-medical text-to-SQL datasets. We hypothesize that adding more diverse training data, even
if it is not medical related, can improve the ability for the model to generalize over changes in database schemas.
Second, we explore generating new synthetic data using back-translation. The phrasings are limited, particularly for
the template-based MIMICSQL data. Back-translation-based synthetic data has generated useful synthetic data for
other NLP tasks (e.g., correcting translation errors) [10]. Thus, we explore its use for text-to-SQL generation in the
medical domain.

In this paper, we seek to answer the following research questions:

RQ 1. Are there issues with current medical text-to-SQL dataset train/dev/test partitions that limit the measure of
model generalizability? To answer this question, we evaluate state-of-the-art language models on the original
data splits. Moreover, we generate new train/dev/test splits for the MIMICSQL dataset called “MIMICSQL
2.0”. The dataset is a first step towards finding and developing more robust and generalizable medical text-to-
SQL models.

RQ 2. Can we improve the generalizability of state-of-the-art language models for medical text-to-SQL tasks using
data augmentation? If novel synthetic data sources or additional data can match the training performance on
manually paraphrased examples, this can reduce the cost of deploying these models to various EHR systems.
Moreover, as new data is integrated, new templates and synthetic data can be introduced to add new capabilities
to the model with minimal human annotation requirements.

Related Literature

Text-to-SQL Dataset Construction. There has been a recent surge toward better evaluation of text-to-SQL systems,
particularly in measuring their generalizability. However, little has been explored in the medical domain. Text-to-
SQL is a semantic parsing task, i.e., generating a machine-understandable representation of the text’s meaning. Many
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datasets have been created that take an input (text) and generate outputs in many formats (e.g., SQL and logic forms).
The present discourse provides a brief overview of various datasets, including the Airline Travel Information System
(ATIS)[11, 12], Geography[12, 13], Restaurants [14–16], WikiSQL [17], Spider [5], IMDB and Yelp [18]. The ATIS
dataset encompasses a collection of questions and their corresponding SQL queries about airline travel, encompassing
flight schedules, ticket prices, and seat availability. The Geography dataset, on the other hand, comprises questions
and SQL queries related to geographic locations, encompassing parameters such as population, area, and coordinates.
The Restaurants dataset entails text and SQL queries about restaurant information, such as menu items, prices, and
reviews. The Scholar dataset contains text and SQL queries related to academic research, including author names,
publication titles, and citations. Finally, the IMDB and Yelp datasets encompass questions and SQL queries related
to movie information, such as titles, release dates, ratings, and restaurant and business information, including ratings,
reviews, and opening hours [18].

The WikiSQL [17] dataset contains natural language questions and their corresponding SQL queries from the
domain of Wikipedia tables, such as population data and historical events. Interestingly, because of the size of the
Wikipedia dataset, databases/tables that appear in the training data never appear in the test or development datasets.
Thus, models developed on WikiSQL must be able to take a table schema and question as input, then return the
relevant query, thus measuring the generalizability of the models. This is important given the size of Wikipedia and
the rapid nature in which it changes. However, to generate many text-SQL tuples for training/evaluation, Zhong et al.
[17] made simplified assumptions about the SQL queries and databases. The WikiSQL dataset’s SQL components
only cover one SELECT column at a time and aggregation with WHERE conditions. Moreover, all the databases only
contain single tables, there is no JOIN, GROUP BY, and ORDER BY, or other complex operations. Yu et al. [5] expands
on the work by Zhong et al. [17] to create a new text-to-SQL dataset (Spider) that contains more complicated queries.
The SQL queries in the Spider dataset contain nested queries and clauses like GROUP BY and HAVING, which are far
more complicated than that in another well-studied cross-domain benchmark, WikiSQL [17]. This work explores the
Spider dataset as an additional training corpus.

The healthcare text-to-SQL dataset MIMICSQL [6] was created with the widely used Medical Information Mart
for Intensive Care III (MIMIC III) corpus [19]. The dataset was generated in a two-stage fashion. First, text-SQL pairs
were automatically generated using templates. Second, freelancers reworded 10,000 questions to create a simultaneous
dataset of Natural Language (NL) questions where they paraphrased the template-produced text.
Text-to-SQL Methods. Text-to-SQL is an increasingly popular research area in natural language processing that
focuses on automatically translating natural language queries into structured SQL queries. Recent advances in neural
network-based models have enabled Text-to-SQL systems to achieve ever higher levels of accuracy and performance.
Many researchers have introduced novel text-to-SQL models or evaluated the limits of existing models [17, 20–28].
Wang et al. [29] proposed a unified framework, based on relation-aware self-attention, to address schema encoding,
schema linking, and feature representation, and achieve state-of-the-art performance on the challenging Spider dataset,
with an exact match accuracy of 65.6% when augmented with BERT. Scholak et al. [24] introduced PICARD, a
method to constrain language models during fine-tuning on formal languages like SQL. It uses incremental parsing
to reject invalid tokens and find valid output sequences. PICARD improves T5 models’ performance on text-to-SQL
translation tasks, making them state-of-the-art solutions on the challenging Spider and CoSQL datasets. multi-task
knowledge grounding [25]. Wang et al. [26] proposed a novel framework for schema linking in text-to-SQL parsers
that utilizes a probing procedure based on Poincaré distance metric to elicit relational structures from pre-trained
language models. The results show that the framework outperforms rule-based methods for schema linking and sets
a new state-of-the-art performance on three benchmarks, indicating that the probing procedure can robustly capture
semantic correspondences. Rajkumar et al. [30] evaluated the Codex language model’s [27] text-to-SQL capabilities
on several benchmarks without any finetuning and finds that it performs competitively with an execution accuracy of up
to 67% on the Spider benchmark. The authors also demonstrated that providing a small number of in-domain examples
in the prompt can enable Codex to outperform state-of-the-art models that are finetuned on few-shot examples.

With respect to medical text-to-SQL models, Wang et al. [6] also introduced a novel method for medical text-to-
SQL called TREQS. They evaluated TREQS for both execution accuracy and logical accuracy. TREQS achieved an
accuracy greater than .91 for both logical and execution on their test split and .85 logical and .92 execution accuracies
on the development split. In this work, we revisit the MIMICSQL dataset to explore issues with generalization and
propose a new split to improve robust medical text-to-SQL model design and evaluation. Expanding on the work
by Wang et al. [6], [7] presented a novel approach to medical text-to-SQL generation. The proposed model, named
MedTS, uses a pretrained BERT model as the encoder and a LSTM-based decoder. MedTS benefits from the multi-
head attention mechanism of the pretrained encoder, enabling it to capture the semantic and dependency relationships
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Figure 1: Model overview.

between the textual question and the database schema. The grammar-based decoding strategy of MedTS reduces
the search space and generates a tree-structured intermediate representation by incorporating predefined grammatical
rules. Compared to TREQS, the proposed model outperforms in terms of logic form and execution accuracy, achieving
scores of .784 and .899, respectively, on the paraphrased MIMICSQL test set.

The most similar work to ours is by Zhao et al. [31]. They showed that existing (general domain) benchmarks, such
as Spider and WikiSQL cannot capture specific out-of-domain generalization issues that are important for practical
applications. This is like our study in which we argue that existing medical dataset splits cannot understand the
schema of the medical databases and genuinely understand how to map the text back to the schema. Hence, our study
aims to take similar ideas from [31] to study gaps in measuring the generalizability of text-to-SQL models in the
medical domain. Likewise, our approach to improve generalization follows similar ideas from Wolfson et al. [32].
Wolfson et al. [32] proposed a weak supervision approach to train text-to-SQL parsers without relying on annotated
natural language and SQL pairs. Instead, the approach uses question-meaning representation called QDMR, and
experimental results show that the weakly supervised models perform competitively with those trained on annotated
text-SQL paired data. In our work, we explore the generation of automatic paraphrasing (synthetic data) via the use of
back-translation [33].

Datasets and Methods

This section summarizes the datasets and methods used in this paper. We provide an overview of our multifaceted
method in Figure 1, which comprises three main components. First, the main component of our system is the T5
language model, which takes a database schema and question as input and generates a SQL statement. Second, we
introduce a data augmentation method using back-translation to add more diversity to the text questions. Third, we
train both on the MIMICSQL and Spider datasets.

Datasets

We evaluate using the original MIMICSQL dataset and our new partition MIMICSQL 2.0. We also describe the
additional training data, Spider, we used to complement the MIMICSQL 2.0 dataset to improve model performance.

Type Stats

Patients 46,520
Tables 5
Columns in tables 23/5/5/7/9
Question-SQL Pairs 10,000
Avg. Template Question Length (in words) 18.39
Avg. Rephrased Question Length (in words) 16.45
Avg. SQL Query Length 21.14
Avg. Aggregation Columns 1.10
Avg. conditions 1.76

Table 1: MIMICSQL Database Statistics.

MIMICSQL. MIMICSQL is based on the MIMIC-III (Med-
ical Information Mart for Intensive Care) dataset, a collection
of electronic medical records from over 40,000 patients col-
lected between 2001 and 2012 from the critical care units of
the Beth Israel Deaconess Medical Center. The data includes
information on patient demographics, vital signs, lab results,
medications, clinical notes, and ICD-9 diagnostic and proce-
dure codes. This dataset has been widely used in research on
various critical care topics such as ICD-9 coding [4], mortality
risk prediction [1–3], acute respiratory distress syndrome, and
patient outcomes prediction. Due to its large size and breadth
of information, MIMIC-III is considered a valuable resource
for researchers studying critical care and health informatics. MIMIC-SQL is a version of the MIMIC-III dataset (i.e.,
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containing a subset of MIMIC-III) that is structured in a relational database format. The database statistics for the
entire dataset from MIMICSQL are shown in Table 1. The size of the training, development, and test splits in the
original dataset are shown in Table 2.
New MIMICSQL 2.0. Our goal is two-fold. First, we want to generate new splits that better measure the generaliz-
ability of the medical text-to-SQL models. More importantly, the goal is to create a more challenging split that is not
as easily solvable—the idea for our new split forces the model to reason about tables. Second, we want the training
splits to be roughly the same size as the original data to ensure enough data for training and evaluation. Based on
ideas from the WikiSQL dataset [17], we look to partition the dataset based on the tables to measure generalizability.
However, our rule differs in one important way. The WikiSQL dataset contains 24241 tables, whereas MIMICSQL
only contains five tables. Hence, ensuring that a table only appears in one split is impossible, particularly if we want
to ensure the new dataset splits stay close to the original split sizes. Therefore, we choose three tables for the basis of
our dataset modifications: PROCEDURES, PRESCRIPTIONS, and LAB.

Original New Split

Train Dev Test Train Dev Test

# of Examples 8,000 1,000 1,000 8,346 796 1,000

Table 2: Number of examples in each data split into the
original data vs. the new splits.

We remove each table from the training split in one
of two ways. We remove it such that it does not appear
as the main table in the query (i.e., as the argument to the
FROM field), or we remove it such that it does not appear
as part of an INNER JOIN, which makes up a large per-
centage of the queries in MIMICSQL. Specifically, if a
query in the training data has the table “PROCEDURES”
in the following position within the query “INNER JOIN
PROCEDURES” then our test/development sets do not have PROCEDURES following INNER JOIN, but only include
following the FROM statement. Similarly, we moved all the statements with “FROM LAB” and “FROM PRESCRIP-
TIONS” into the test/development sets while leaving all the “INNER JOIN LAB” and “INNER JOIN PRESCRIP-
TIONS” in the training set. Intuitively, if a model learns to understand the schema of the database and learns to map
questions to the schema, then having a table appear in a FROM statement in the training set should provide the model
with enough information to infer how to use it with INNER JOIN (and vise-versa in the other direction). Removing
tables in both cases resulted in unbalanced training/development/test splits (e.g., with very few or too many examples
in the test/development splits). Hence, this strategy balances, creating a split that measures generalizability with train-
ing/development/test set sizes. The size of the training, development, and test splits in the new dataset are shown in
Table 2.
SPIDER. The Spider text-to-SQL dataset is a collection of natural language questions and their corresponding SQL
queries. It was created to facilitate research in text-to-SQL, which involves developing natural language interfaces
to databases. The dataset consists of over 10,000 questions based on 200 complex databases from various domains,
including geography, music, and film. Each question is annotated with its corresponding SQL query, which extracts
information from the corresponding database. The dataset includes simple and complex queries and various types of
SQL clauses and operators. The Spider dataset is widely used in developing and evaluating natural language interfaces
to databases and is considered one of the benchmark datasets in the field. Hence, we use this as an auxiliary training
dataset to explore generalization to the medical domain. We use the entire Spider dataset for training.

Methods

T5 for Text-to-SQL. The T5 (Text-to-Text Transfer Transformer) model is a large-scale pre-trained language model
developed by Google, based on the Transformer architecture. With up to 11 billion parameters 2, T5 is one of the
largest language models currently available that runs on commodity hardware with publicly available weights. Unlike
previous models trained for specific tasks, T5 is a text-to-text model that can be fine-tuned for various NLP tasks,
including text classification, machine translation, question-answering, and summarization. To train T5, Google used a
diverse corpus of text data from sources such as Wikipedia, Common Crawl, and the web pages crawled by Google.

We apply the T5 model to the medical text-to-SQL task. The input to the model includes the database schema
and the question. The schema contains information about the tables and the columns within each table. Formally, let
ti represent a table i, and let ci, j represent a column j in table i. Each column has an attribute ai, j representing the
j-th column’s datatype in table i. For instance, in MIMICSQL, we have the table “DEMOGRAPHIC”, which stores
information about patients (e.g., name, age, gender, language). Two columns within “DEMOGRAPHIC” include

2In our experiments, we use flan-t5-base from the HuggingFace package [34].
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T→ T P→ P

Dev Test Dev Test

ACCLF ACCEX ACCLF ACCEX ACCLF ACCEX ACCLF ACCEX

Coarse2Fine [6] .298 .321 .518 .526 .217 .309 .378 .496
M-SQLNET [6] .258 .588 .382 .603 .086 .225 .142 .260
Seq2Seq [6] .098 .372 .160 .323 .076 .112 .091 .131
Seq2Seq + recover [6] .138 .429 .231 .397 .092 .195 .103 .173
PtrGen [6] .312 .536 .372 .506 .126 .174 .160 .222
PtrGen + recover [6] .442 .645 .426 .554 .181 .325 .180 .292
TREQS [6] .711 .803 .802 .802 .451 .511 .486 .556
TREQS + recover [6] .853 .924 .912 .940 .562 .675 .556 .654
MedTS [7] — — — — .681 .880 .784 .899

T5 .932 .937 .916 .923 .866 .916 .899 .936

Table 3: Logical form (ACCLF) and execution accuracy (ACCEX) on the MIMICSQL data splits.

“NAME” and “AGE”. The attribute assigned to the NAME column is “text” since it contains strings like “John Doe”.
The attribute assigned to “AGE” is “number”. Given all of the tables, columns, and attributes in a database, we
generate the schema represents in the form of s = [∗, t1, c1,1, a1,1, c1,2, a1,2, t2, c2,1, a2,1, c2,2, a2,2, . . .]. ∗ is used as a
special symbol to represent the “all columns”. In practice, this would look like “* DEMOGRAPHIC NAME text AGE
number DIAGNOSIS ICD_CODE text”, where DIAGNOSIS is another MIMIC table and ICD_CODE is a column
within the DIAGNOSIS table. Given the schema s, we append the question q as [s, [S EP], q], where q is a sequence
of tokens forming the question (e.g., “What is the age of John Doe?”) and [S EP] is a special token that separates the
schema from the query.

At inference time, we use execution-guided decoding, which has been shown to outperform standard beam-search-
based decoding [22]. Intuitively, the decoder generates SQL queries by taking into account the execution of the query
on a database. In our implementation, we use beam search with a beam size of ten to generate the ten queries with the
highest joint probabilities. Next, we execute each of the queries best on the most probable to least probable and return
the first query that executes correctly on the database. If all queries fail to execute, we return the first query, which
will be counted as incorrect in our evaluation metrics.
Back-Translation for Data Augmentation Back-translation is a technique used in NLP for machine translation [33].
It involves translating a text from one language into a second language, then translating the second language translation
back into the original language. But, it can generalize to any task that involves translating from some source X to
target Y , then back to X [35]. In this work, we translate every question in the MIMICSQL corpus to French and
German, then back to English. The back-translated English text is used as synthetic paraphrases for training, similar
to the manually curated paraphrases used in the original MIMICSQL dataset manually. However, the paraphrases are
automatically generated to add more diversity to the questions. For translation, we use the state-of-the-art models from
Facebook [36].
Out-of-Domain Training Data Multi-domain learning is a machine learning technique that involves training a single
model to perform well across multiple related domains. In traditional machine learning approaches, a separate model
would need to be trained for each domain, which can be time-consuming and resource-intensive and may miss out on
common characteristics shared between the two domains. Specifically, training on multiple domains can potentially
improve performance on other domains if the target domains (i.e., MIMICSQL) are limited with regard to the number
of training examples. Hence, we jointly explore training on the Spider and MIMICSQL datasets to understand if
out-of-domain data can improve medical text-to-SQL model performance.

Experiments

In this section, we describe the evaluation metrics used in our study and the results/findings of our experiments.

Evaluation Metrics

Following the work of Wang et al. [6], we use two major evaluation metrics: Logic Form Accuracy [17] (ACCLF)
and Execution Accuracy (ACCEX). ACCLF is calculated by comparing the generated SQL queries with the true SQL
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queries token-by-token. However, this is a strict way of measuring performance, e.g., if the order of boolean expres-
sions is different, but the logic is the same, then ACCLF may overly penalize a model.

ACCEX is calculated based on the rows returned by both the generated and true queries, row-by-row. “Execution
accuracy” measures the percentage of generated SQL queries that can retrieve the correct results from a database when
executed. To evaluate the execution accuracy of a text-to-SQL generation model, a test dataset consisting of natural
language text and corresponding SQL queries is used. The model is then used to generate SQL queries from the natural
language text. These generated queries are executed against a database and compared to the expected results from the
corresponding SQL queries. The execution accuracy is calculated as the percentage of generated queries that return
the same results as the corresponding queries. For example, if a model generates 100 SQL queries, 96 of them return
the same results as the corresponding queries, then the execution accuracy would be 96%.

Execution accuracy is a good metric to evaluate the quality of the generated SQL statements, and it’s also important
to consider other metrics, such as the syntax and semantics of the generated SQL statements and the ability of the
model to generalize to new test cases. This is a more lenient way of measuring the model performance since the model
can generate incorrect SQL queries but still get the correct answer by luck. Hence, combining both is important for
general text-to-SQL model evaluation.

Baseline Models

TREQS. [6] TREQS is a deep learning approach that utilizes the popular sequence-to-sequence model to translate
natural language questions into SQL queries directly. The model incorporates an attentive-copying mechanism and
task-specific look-up tables to modify the generated query.
TREQS+ recovery. [6] The technique employs the use of the ROUGE-L string matching metric [37], which calculates
both word-level and character-level similarities between two sequences. The ROUGE-L metric is used to identify the
most similar condition value from a look-up table for each predicted condition value. The predicted condition value
is then replaced with the most similar value from the look-up table to obtain the exact condition value, thus enhancing
the accuracy and executability of the generated SQL query.
Other Baselines. For the original dataset, the results of the additional models reported by Wang et al. [6] (e.g.,
Coarse2Fine and Seq2Seq) for a comprehensive listing. Moreover, we compare to MedTS introduced by Pan et al. [7].
Our Baselines. We experiment with training only on the MIMICSQL datasets (T5), training using back-translation
(T5-back-translation), training on both MIMICSQL and Spider (T5 + Spider), and a combination combining all ap-
proaches (T5 + Spider + back-translation).

Results

RQ 1. Are there issues with the current medical text-to-SQL dataset’s train/dev/test partitions that limit model
generalizability? In Table 3, we report the results of the prior state-of-the-art on the original MIMICSQL data split for
the template-based (Models trained and tested on template-generated data) and paraphrased-based data (i.e., models
trained and tested on paraphrased data). First, for the Template-to-Template (T → T) data, we find that both the
previous work (TREQS) and base T5 model can achieve logical and execution accuracies over .9. The results are high
for both the development and test datasets. This result indicates that both modern models (T5) and older methods
generally “solve” the datasets. The model can extract the conditional values from the text and generate the relevant
SQL statement with the extracted value based on what was seen in the training dataset.

We also report the training and evaluation results on paraphrased data in Table 3 (P → P). Many of the prior
results were much lower than the template dataset. For example, TREQS + recover received an ACCEX of .940 on
the template-based test set. Yet, it received an F1 of only .654 on the paraphrased dataset. This result indicates the
paraphrased data, which is much more diverse than the templates, is more difficult for the models. However, recent
work by MedTS improves on TREQS + recover substantially, achieving an ACCLF of .784 and an ACCEX of .899.
Moreover, our model T5 improves on the results even further with a test result of .899 ACCLF and .936 ACCEX . This
indicates, again, that the original dataset. Yet, even though there are more diverse questions in the paraphrased dataset,
there are examples where the underlying meaning of the questions (with very similar SQL statements) appears within
both the text and training datasets. Hence, models can learn these patterns to “solve” the dataset.
RQ 2. Using data augmentation, can we improve the generalizability of state-of-the-art language models for
medical text-to-SQL? In Table 4, we report the overall results for our new data split, MIMICSQL 2.0. Moreover, we
report of training and evaluating on the template data (T→ T), training and evaluating on the paraphrased data (P→ P),
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T→ T P→ P T→ P

ACCLF ACCEX ACCLF ACCEX ACCLF ACCEX

TREQS .063 .166 .068 .173 .052 .154
TREQS + recover .086 .164 .071 .184 .061 .159

T5 .149 .278 .130 .503 .085 .259
T5 + back-translation .131 .511 .144 .519 .208 .487
T5 + Spider .777 .839 .134 .489 .187 .399
T5 + Spider + back-translation .196 .482 .233 .528 .139 .501

Table 4: Logical form (ACCLF) and execution accuracy (ACCEX) on the new MIMICSQL 2.0 data splits

and training on the template data and evaluating on the paraphrased data (T→ P). First, for the template-to-template
results (T → T), we find that the overall results are much lower when compared to the original data split. Using the
base T5 model, we only achieve an ACCLF of .149 and an ACCEX of .278 for the test dataset. Interestingly, we obtain
high performance for the T5 + Spider model, achieving an ACCLF of .777 and an ACCEX of .839. We hypothesize that
some of the templates are phrased in such a way that is similar enough you Spider-specific phrasing that the model is
able to perform very well. Also, note that ACCLF and ACCEX are not entirely correlated. This is because the logical
form accuracy ACCLF will mark instances as incorrect when columns, tables, or joins are in a different order, even if
the logic is correct (e.g., “SELECT A,B from TABLE” and “SELECT B,A from TABLE” would result in an incorrect
prediction using logical accuracy). Likewise, ACCEX may mark a query as correct if the returned results match the
ground-truth, even if the underlying logic of the query is not correct. Yet, we can still see general patterns in the data.
Using back-translation and the additional Spider dataset improves the results.

We find similar patterns for the P → P results. Again, performance is much worse than when we trained and
evaluated the models using the original training splits. Moreover, we make two major findings. First, the Spider
dataset does not have accuracies as high as the T → T results. Again, we hypothesize that there are random charac-
teristics of the question in the template dataset that the Spider training approach picked up on. Second, the general
performance measures are relatively similar across the board. We obtained slight improvements with back-translation
and back-translation+Spider, but the original model performs okay for the paraphrased data, while it underperformed
substantially for the template data. One reason is that training on the template data alone results in overfitting issues
at test time. Upon analyzing many of the errors, we found that the template model would make joins between tables
that were incorrect by matching only joins that appear within the training data.

Finally, for the T→ P results, we find that the base T5 model performs poorly on the paraphrased data (.503 vs.
.259 ACCEX) when trained on the template data alone. However, when integrating data augmentation methods, we
obtain accuracies that nearly match the results found when training on the paraphrased dataset directly (e.g., .519 vs.
.487 ACCEX for T5 + back-translation). This finding indicates that if we need to generalize to new tables or database
schemas, we can potentially generate data automatically using templates, add additional auxiliary training datasets
and use back-translation to achieve adequate performance. This has the potential to reduce training costs and make
integrating into various EHR systems more feasible.

Limitations

Overall, there are two major limitations to this study. First, while our new split better evaluates the generalization of
the text-to-SQL models, it does not accurately represent real-world EHRs. Real-world EHRs may have hundreds of
tables with complex columns and naming conventions. Hence, future work should focus on evaluating text-to-SQL
models in real-world settings. Second, there has been recent advances in language model capabilities (e.g., ChatGPT)
which require future investigation. While we cannot pass this data to OpenAI-related APIs because of MIMIC data
restrictions, other open source models (e.g., LAMA2) can provide strong future baselines.

Conclusion

This paper created a new training/development/test split of the MIMICSQL dataset. In the new split, all methods
perform worse than the original split, thus providing a strong test-bed for future innovation. Furthermore, we evalu-
ated data augmentation methods by integrating external datasets (Spider) and via back-translation, improving model
performance in general. We also want to point to two major avenues of future work. First, more work is needed to
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create a dataset with more complex queries. While the MIMICSQL dataset contains JOINS, it does not contain nested
queries or highly complex queries as defined in the Spider dataset [5]. Second, more work is needed to measure cross-
hospital performance, particularly on real-world hospital databases. While MIMICSQL provides an excellent test bed
because of its public availability, it does not match databases seen in practice [8]. Hence, measuring and understanding
cross-hospital performance is essential for broad applicability in the medical domain.
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