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The ability to concisely describe the dynamical behavior of soft materials through
closed-form constitutive relations holds the key to accelerated and informed design
of materials and processes. The conventional approach is to construct constitutive
relations through simplifying assumptions and approximating the time- and rate-
dependent stress response of a complex fluid to an imposed deformation. While
traditional frameworks have been foundational to our current understanding of soft
materials, they often face a twofold existential limitation: i) Constructed on ideal
and generalized assumptions, precise recovery of material-specific details is usually
serendipitous, if possible, and ii) inherent biases that are involved by making those
assumptions commonly come at the cost of new physical insight. This work introduces
an approach by leveraging recent advances in scientific machine learning methodologies
to discover the governing constitutive equation from experimental data for complex
fluids. Our rheology-informed neural network framework is found capable of learning
the hidden rheology of a complex fluid through a limited number of experiments. This
is followed by construction of an unbiased material-specific constitutive relation that
accurately describes a wide range of bulk dynamical behavior of the material. While
extremely efficient in closed-form model discovery for a real-world complex system,
the model also provides insight into the underpinning physics of the material.
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Soft materials in general, and more specifically complex and structured fluids, commonly
exhibit a rich and diverse set of responses to applied deformations. These responses can
include the emergence of a yield stress, below which the material shows solid-like behavior
(1), and above which the system exhibits viscoplastic flow with complex dynamics (2, 3).
Additionally, soft systems can show strong thermokinematic memory of the history of
flow, a phenomenon commonly referred to as thixotropy (4–6). Whether the goal is
to understand biological flows (7–10), to design advanced manufacturing processes for
complex fluids with targeted properties (11), or to describe natural geophysical flows
(12, 13), the first essential step is to describe the complex stress responses to different
flowing conditions through closed-form mathematical expressions. The quest to discover
the constitutive relations made from kinematic variables for different classes of complex
fluids is as old as the science of rheology itself. Conventionally, these governing equations
are derived from knowledge-based phenomenological models that describe the stress
response of a complex fluid to an applied deformation. In its crude form, different
combinations of mechanical analogues, such as springs, dashpots, and sliding blocks
can be combined in different arrangements to represent the elastic, viscous, and plastic
characteristics of the fluid. Ultimately, a set of coupled ordinary differential equations
(ODEs) are used to represent the rheological constitutive equations for such complex
fluids. As the fluid’s response to a specific flow becomes more complex, so too must
the model that can describe the behavior. For instance, while the steady-state rate-
dependent viscosity of a fluid can be described through a simple empirical relation with a
few parameters, accurately accounting for the time-dependent response of a thixotropic
elasto-visco-plastic (TEVP) materials to an applied deformation dramatically increases
the number of parameters involved (5, 6, 14, 15). While it is extremely important and
central to our understanding of complex fluids, this conventional phenomenological
approach to constitutive modeling has three main limitations: i) As the complexity of
the phenomenon under question increases, the number of model parameters required
to describe it becomes difficult to ascertain, and commonly one has to resort to ad hoc
parameters with minimal physical relevance; ii) since these models are built in a bottom-
up manner using different elements, they commonly represent so-called ideal behavior
and do not accurately describe the behavior of the real fluids under investigation; and
iii) these models are inherently biased to their fundamental construction. For example,

Significance

Development of
phenomenological constitutive
relations that describe the stress
response of soft materials to
an imposed deformation is
commonly associated with
generalizations and idealized
assumptions (biases). Thus,
science-based data-driven
methods capable of describing
the physical dynamical behavior
of soft materials from limited
experiments can create a new
paradigm in how constitutive
models are constructed in
general, and in new fundamental
physics discovery. In this work,
through a concerted theoretical,
experimental, and data-driven
approach, rheology-informed
neural networks are developed
for unbiased construction of
rheologically relevant constitutive
models, without compromising
rigor or foundational sciences.
The platform developed here is
general enough that it can be
extended to areas well beyond
complex fluids or soft matter
physics and across other
disciplines as well.

Author contributions: S.A.R. and S.J. designed research;
M.M., K.M.K., and S.J. performed research; M.M., K.M.K.,
and S.J. analyzed data; and M.M., K.M.K., S.A.R., and S.J.
wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
s.jamali@northeastern.edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2313658121/-/DCSupplemental.

Published January 3, 2024.

PNAS 2024 Vol. 121 No. 2 e2313658121 https://doi.org/10.1073/pnas.2313658121 1 of 8

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2313658121&domain=pdf&date_stamp=2023-12-29
https://orcid.org/0000-0002-1546-1593
https://orcid.org/0000-0003-3897-5420
https://orcid.org/0000-0002-3432-5044
https://orcid.org/0000-0001-6031-3779
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:s.jamali@northeastern.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2313658121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2313658121/-/DCSupplemental


a viscoelastic constitutive relation, and a thixotropic one can be
virtually identical with respect to their stress responses (4, 16),
but the choice of model strongly biases the implied physics. Thus,
model construction frameworks that are unbiased, versatile, and
compact in their form can be potentially transformative in our
understanding of soft materials by mitigating virtually all of the
limitations listed above.

Using data to identify the underlying governing constitutive
relation can greatly enhance and alter our modeling, simulation,
and comprehension of complex physical systems in a variety
of scientific and engineering applications. Recent improvements
in processing power, data availability, and machine learning
theories have stoked significant interest in data-driven discovery
of physical principles and governing equations (17–22). For
example, a sparsity-promoting method called sparse identifi-
cation of nonlinear dynamics (SINDy) (23) can be used to
pick dominant candidate functions from a high-dimensional
nonlinear function space based on sparse regression to identify
parsimonious governing equations. The sequential threshold
ridge regression (STRidge) approach can obtain the sparsity,
which iteratively calculates the sparse solution subjected to
hard thresholds to produce a simple governing equation by
balancing the accuracy and complexity of identified models (18).
For the past few years, SINDy has received a lot of interest
and different techniques have been developed with various
applications to find projected low-dimensional surrogate models
in the form of ODEs and PDEs (24–31). Nonetheless, the
numerical differentiation in SINDy is highly dependent on the
quality as well as the quantity of the data at hand, making it a less-
than-ideal framework for problems with limited or noisy datasets.
Nonetheless, these limitations can be alleviated by employing
automatic differentiation (AD) (32).

Data-driven models and machine learning (ML) algorithms
have become inextricably linked tools for analyzing and predict-
ing various phenomena (33–38). Nonetheless, traditional ML
frameworks have a strictly statistical foundation and rely on
exhaustively large amounts of data to produce accurate predic-
tions. Additionally, ML algorithms in general are agnostic to the
physical underpinnings of the system. Such ML frameworks are
also constrained to predictions in the range of the training data
and are generally incapable of making out-of-range predictions.
Therefore, there has been an increasing effort to develop methods
that function well on small datasets, as well as embedding the
essential physics of a given problem into the ML algorithms
(39–42). Physics-based ML frameworks provide a platform for
the inclusion of the physical underpinnings of a system into the
algorithm either implicitly or explicitly (43).

Recently, a series of different rheology-informed neural
networks have been developed by embedding the appropriate
rheological understanding of the system within the ML platform
(44–49). Here, we extend the RhINNs framework with conspic-
uous features of interpretability and generalizability, to construct
governing ODEs of complex fluids from a limited sparse experi-
mental data. The goal is to automatically detect and construct
rheologically relevant, unbiased, and robust constitutive models
from the experimental data that can be later used to predict the
complex response and behavior of the material to flow protocols
that differ from the ones used to construct the model.

Materials and Methods
Experiments. We study the stress response of a soft polymer microgel, an
aqueous suspension of Carbopol 980, to a series of rheological tests. The choice
of this system allows for rigorous benchmarking against other experimental

reports and models, as it has been shown to be a simple yield stress fluid
with no dependence on shear history (50). The 1 wt % Carbopol formulation
used in this study was prepared as described in a prior study (51). Rheological
measurements were made with a Modular Compact Rheometer (MCR) 702
from Anton Paar, using 50 mm parallel plate geometry with a gap of 1 mm.
To avoid wall slip, 240-grit waterproof sandpaper was attached to the geometry
using double-sided tape. The amplitude sweep data was collected at angular
frequencies of 1, 0.562, and 0.316 rad/s. The strain amplitude was varied from
0.00562 to 10 strain units for all the angular frequencies tested. The steady
shear startup data were collected at rates over the range 0.01 to 31.6 1/s until
steady state was reached.

Data-Driven Model Construction Framework. We consider the constitutive
equation governing the Carbopol system to be given by Eq. 1, in which � is
the latent solution of the system and  is the applied strain. G(.) is a general
nonlinear form of the constitutive equation consisting of the stress response
of the material as well as the applied strain with their temporal derivatives
parameterized by �.

G[�,  , �̇, ..., ̇ , ̈ , ..., � , �̇ , �̇ , ...;�] = 0. [1]

We assume that the physical law can be approximated by sparse regression
using a small number of key terms that can be chosen from a vast library of
candidate functions. This library can include any functional form or the variables
that are believed to be of any significance. To make sure that our approach
is unbiased to our previous understanding of the system, we include many
variations of the shear stress, shear strain, and their first and second derivatives
in the candidate function library. Subsequently, Eq. 1 can be reformulated
in the form of Eq. 2, in which � is given as a row vector defined as � =
[1, �,  , ̇ , ̈ , ..., � , �̇ , �̇ , ...] and � is a sparse coefficient vector with the
same size as �.

�̇ = ��. [2]
This formulation re-structures the problem to be that of discovery, in which

the goal is to find the sparse � given the temporal measurement data of �.

Rheology-Informed Neural Network. We model the system response and
identify the parsimonious closed form of the governing ODE at the same time.
Fig. 1 shows a schematic description of our framework.

The neural network is used to approximate the latent solution based on
the experimental data by adjusting its trainable hyperparameters, namely the
weights and biases. With recent developments in automatic differentiation (AD),
we can calculate the temporal derivative of the latent solution to generate the
candidate functions in �. Thus, the sparse representation of the reconstructed
ODE can be written in a residual form as LossR = �̇ − ��. This residual is
valuated on a large number of collocation points that are synthetically generated
throughout the temporal domain. The fundamental idea is to modify both the
ODE coefficients and the neural network trainable parameters in a way that the
neural network can adapt to the measured experimental data while adhering to
the constraints established by the underlying ODE. The total loss that is used to
train both the neural network hyperparameters as well as the ODE coefficients
is shown in Eq. 3.

Losst = LossD + LossR + �||�||0. [3]

This equation is composed of three parts: LossD which is defined as the
discrepancies between the neural network predictions and the experimental
data; LossR that is the physical residual loss modified by the relative weight
value of  ; and a regularization term for the constructed ODE coefficients based
on the L0 norm and relative weight value of �. By minimizing the total loss
shown in Eq. 3, the neural network can provide a data-driven full-field system
response as well as uncovering the parsimonious closed-form ODE. To properly
optimize such high-dimensional problems, an alternating direction optimization
(ADO) algorithm is employed to learn the trainable parameters by breaking the
overall optimization process into a number of digestible sub-problems, as shown
in Eq. 4.{

�∗k+1 := arg min[||�̇(�∗k )−�(�∗k )�||
2
2 + �||�||0]

�∗k+1 := arg min[LossD(�∗k ) + LossR(�∗k )]
. [4]
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Fig. 1. Schematic view of the model construction framework. A neural network with trainable parameters � with two inputs of time and deformation (strain),
and one output of shear stress. Assembling the candidate function vector using automatic differentiation (AD) for the sparse regression. Calculating the total
loss value based on three components of data, equation residual, and regularization term. Implementing alternating direction optimization (ADO) to optimize
the neural network trainable parameters as well as the model parameter to achieve a close-form ODE. In the ADO process, the significantly contributing
candidate functions are selected based on the Ridge regression method. The hyperparameters of the neural network are also tuned using a combination of
Adam and L-BFGS methods. The process is iterated until an acceptable accuracy is obtained.

In each step of the ADO algorithm, the neural network is first trained on the
experimental data to find the best latent solution as well as its derivatives
to calculate the candidate functions. Afterward, sequential threshold ridge
regression (52) is used on the collocation points to eliminate non-significant
terms in the candidate function library and create the close-form ODE. This
process is iterated until an acceptable accuracy is achieved. A combined use of
neural networks and sparse regression leads to two results: 1) a neural network
framework that can accurately model the latent solution and its derivatives to
form the candidate functions; and 2) a sparse regression that can constrain the
candidate function with respect to the experimental data leading to a closed-form
ODE to describe the system.

The architecture of the neural network, in particular the number of layers
as well as the number of neurons per layer, has a substantial impact on the
accuracy of the predictions as well as the algorithm’s performance. In this
study, the relative absolute error (RAE) is chosen as the measure of accuracy
to investigate and optimize the role of network hyperparameters and settings.
The depths of the NNs were changed from 1 to 10 layers, and the widths from
10 to 100 neurons per layer. Widths ranging between 25 and 50, and depths
ranging between 4 and 8 were found to yield the best levels of accuracy while
avoiding overfitting. The loss function is optimized using a combination of Adam
optimizer with a learning rate of 1e-3 and L-BFGS method together with Xavier’s
initialization method, while the hyperbolic tangent function is employed as the
activation function.

Results and Discussion
The ultimate goal is to develop reliable machine learning frame-
works to provide robust and accurate closed-form constitutive
relations for complex fluids. The experimental behavior of the sys-

tem (shown in Figs. 2, 3, and 4) clearly indicate a complex elasto-
visco-plastic response that can be described through separation
of the deformation into recoverable and unrecoverable strains
(53). Here, we use the experimental data from two oscillatory
flow protocols in the large and small amplitude oscillatory shear
(LAOS and SAOS) regimes to recover the closed-form ODE
governing the system. The number of recovered candidate func-
tions can change depending on the complexity of the observed
data. Here, when applied to data strictly in the SAOS regime,
or alternatively in the LAOS regime, only a limited number of
candidate functions are identified to be the contributing factors
for each condition, which is not a representative of the entire
behavior of the system. All the dominant modes are correctly
identified only when a combination of both SAOS and LAOS
experimental data (regardless of amplitude or frequency) is used
during the training. This is somewhat expected, as the shear stress
response in different regimes is dominated by different physical
characteristics of the fluid. For instance, small perturbations
about the equilibrium position in the SAOS regime naturally
cannot probe the plastic nature of the fluid.

The dynamical behavior of elasto-visco-plastic (EVP) materials
is typically modeled at the continuum level in terms of a critical
stress, below which it is assumed that no plastic flow occurs. Early
efforts to develop models for the rheology of yield stress fluids,
including those of Bingham, Herschel and Bulkley, and Casson,
concentrated on establishing descriptions of the state of steady
flow that matched experimental data (54–57). These models
contained no information regarding the yielding process, and
assumed the pre-yielding behavior was that of an infinitely rigid
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solid. They therefore only captured the viscoplastic behavior.
Data recorded from transient experiments indicated that there
was a measurable elastic modulus below the yield stress that
was not accounted for by the viscoplastic-only models. Oldroyd
extended the early attempts by explicitly accounting for both
the viscoplastic flow regime above the yield stress (58), as well
as the viscoelastic solid behavior below the yield stress. This
two-regime behavior is currently referred to as the Oldroyd–
Prager formalism (58, 59). Despite capturing the viscoelastic
solid and viscoplastic flow behaviors, models that follow the
Oldroyd–Prager formalism predict instantaneous yielding that
manifests as abrupt changes in the rheology that are not observed
experimentally. Recently, a couple of models have been proposed
that go beyond the Oldroyd–Prager formalism and account for
yielding as a continuous process (53, 60). Efforts to improve
upon these models continue, as advanced applications require all
aspects of material behavior to be accurately captured.

Alternatively, a library of candidate functions consisting of
twenty (20) terms such as ̇ , ̈ , �, and their products and
variations is evaluated to construct the ODE describing the shear
stress responses. It should be noted that the list of candidate
functions can be arbitrarily extensive. In this work, we performed
a series of preliminary tests and found that consideration of
the main variables (deformation rate, and shear stress) and their
products and variations will suffice, including common candidate
functions observed in phenomenologically derived rheological
constitutive models will suffice inefficient construction of a new
model. The training efforts are performed in eight iterations of
ADO including 5,000 iterations of Adam optimizer and 100
iterations of STRidge optimizer, followed by a final L-BFGS
optimizer. Two sets of oscillatory experimental data, one from
SAOS and another from the LAOS region, at an angular
frequency of 1 rad/s are used simultaneously to recover the model.
The discovered ODE for our material is shown in Eqs. 5 and 6
with the coefficients shown in Table 1.

�̇ =
C1|̇|� + C2̇ + C3̈ + C4̇|̇|+ C5̈|̇|

1 + C6|̇|
. [5]

�̇ (1 + C6|̇|)− � (C1|̇|) = ̇ (C2 + C4|̇|)
+ ̈ (C3 + C5|̇|) . [6]

The discovered model, as expressed in these equations, con-
tains terms proportional to the stress and stress rate, and the strain
rate and its derivative, with each term having a prefactor that is
dependent on the magnitude of the shear rate. C1 is unitless, C2
has stress units of [Pa], C3 and C4 have viscosity units of [Pa s],
and C5 has units of [Pa s2]. Parameters like C5 are usually not
observed in similar constitutive equations. However, the product
of the first and second derivatives of the shear strain was found
to be an important candidate function. The second derivative of
the strain by itself is a parameter that features in many common
constitutive relations for complex fluids such as the Oldroyd-B
and Giesekus models and relates to retardation effects that limit
how quickly a system is able to acquire strain upon application
of stress. The product of the first and second derivatives is not

Table 1. Numerical values of the constructed model
coefficients (Eq. 5)
C1 C2 C3 C4 C5 C6

−3.576 444.0 −1.0 17.2 19.0 0.481

in common use and may point toward new physics. Last, C6 has
time units of [s], which commonly corresponds to an intrinsic
timescale within the material’s stress response such as a relaxation
or retardation time. For any constitutive model to be further used
in describing a fluid’s rheological behavior, it must first be shown
consistent with respect to the second law of thermodynamic (61).
The new constructed model shown in Eq. 5 does not violate
Planck’s statement of entropy production during a flow reversal
experiment, and hence is thermodynamically consistent.

The case of steady-state shearing helps us discern physical
meaning from many of the parameters. At steady state, �̇ =
̈ = 0, and the model simplifies to

� =
−C2

C1
sign(̇)−

C4

C1
̇ , [7]

which is equivalent to the Bingham model for yield stress fluids
with a yield stress of −C2

C1
and a Bingham plastic viscosity of −C4

C1
.

Further, the model accurately represents the physics by requiring
the sign of the shear rate as a multiplier of the yield stress. This
ensures that application of a negative shear rate will give the
right stress, a statement that is often left out of the Bingham
model when only uni-directional shearing is expected. Of the
two viscosities contained in the model, only C4 affects the steady-
state behavior, which means that C3 must therefore represent a
viscoelastic solid viscosity that more strongly influences the pre-
yielded state, and gives rise to retardation behaviors.

Immediately after a step-strain is applied to the model, ̇ =
̈ = 0 and we see that �̇ = 0, meaning that the model represents
a yield stress fluid that does not relax stress when flow is ceased.
The presence, however, of C6 shows that the model has a rate-
dependent relaxation time that allows it to relax stress while
being sheared, a physical phenomenon only recently observed
and predicted (53, 62).

A closer inspection of Eqs. 5 and 6 reveals that the LAOS
flow protocol is an ideal experimental protocol for recovering
all the candidate functions. Other protocols that elicit nonlinear
behaviors could also be used, but LAOS has particular strengths
that make its use more efficient at discovery. Large step strain
experiments could be used, but in such experiments, the strain
remains constant for the interval where the stress is recorded,
immediately after the initial application. The strain rate and
its derivative also remain at zero for the interval where stress
is measured. Candidate functions involving those terms could
not be found with step strain training data. If training is based
instead on steady shear startup data, the strain changes at a
constant rate and the strain rate functions would be discoverable.
However, the functions with the second derivative of strain
cannot be recovered. Similarly, if training only uses creep data
where the applied stress is constant, functions with stress rate
terms cannot be recovered. Large amplitude oscillatory shear
experiments are therefore ideally suited to gathering information
for the construction of accurate constitutive relations because they
provide access to information from the stress and strain rates, as
well as their derivatives. The widest possible set of candidate
functions can therefore be identified. It is perhaps not surprising
that recent studies that have advanced our understanding of
transient nonlinear rheology have used LAOS protocols (53, 63).

Having the closed-form equation as well as the material
constants, we can now evaluate its predictions of the stress
response of the gel under a series of different flow protocols
and deformation rates. To this end, start-up of flow at various
deformation rates and oscillatory shear experiments at other
frequencies are performed and benchmarked against the model’s
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Fig. 2. (Top) SAOS to LAOS stress response, and (Bottom) Storage, G′, and loss, G”, moduli of Carbopol measured experimentally, and benchmarked against
the predictions of discovered constitutive model at the frequencies of 1.0 rad/s for the applied shear strains of 0.0056 to 10.0 [-].

predictions. We show in Fig. 2, Top the comparison between
the experimentally measured stress response and the predictions
made by the closed-form ODE recovered from the two initial
oscillatory experiments at a frequency of 1 rad/s. Results for two
other frequencies, entirely unseen by the neural network, are also
provided in SI Appendix, Fig. S1. From the amplitude sweep
results in Fig. 2, Bottom it is evident that the discovered model
describes the storage and loss moduli of the Carbopol system
accurately over a wide range of deformations. It should be noted
that the new model’s predictions are significantly more accurate
compared to classical phenomenological models’ best description
of the same material. For instance, our newly constructed model
predictions are compared against elasto-visco-plastic model of
Saramito (64) in SI Appendix, Fig. S2.

While the intricate details of the stress response at differ-
ent frequencies unseen by the neural network become more
complicated, the data-driven discovered model of Eqs. 5 and
6 consistently tracks the observed experimental measurements.
This suggests that the model includes the essential physics
required to describe the system. While this is promising, the
applicability of the constructed model to other flow protocols
should also be tested to assess the versatility of the candidate
functions realized. In other words, any model constructed or
discovered has to be generalizable to all rheologically relevant
flow protocols. To check this condition, the comparison of the
model and the experimental measurements during a series of start-
up flow experiments with applied deformation rates varying by

more than a factor of 20, from 0.005 [1/s] to 0.1 [1/s] is shown
in Fig. 3. The discovered model is found to closely track the
experimentally measured shear stresses regardless of the applied

Fig. 3. Stress response of the elasto-visco-plastic fluid to a start-up of shear
experiment, benchmarked against the prediction of recovered/constructed
constitutive model for applied shear rates of ̇ = 0.001 to 0.1 [s−1]. The
symbols represent the experimental measurements and solid lines represent
the model predictions.
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Fig. 4. Strain rate response of the elasto-visco-plastic fluid in a creep experiment, benchmarked against the prediction of recovered/constructed constitutive
model, with different applied shear stresses. Scattered data on the Left represent the experimental measurements and solid lines on the Right represent the
model predictions.

deformation rate, with an accurate initial elastic modulus, and an
accurate prediction of the critical shear strain at which the stress
approaches its quasi-steady state value.

To truly test the applicability of the model in predicting the
behavior of the material under question, an inverse solution of
the constitutive model is considered. In this case, the inverse
solution comes in the form of creep experiments, in which a shear
stress is applied and rate of deformation is solved for. Results
in Fig. 4 show the experimental measurements of the creep
response (scattered data) benchmarked against the predictions
of our discovered model (solid lines). A hallmark of these elasto-
visco-plastic materials is the phenomenon of viscosity bifurcation,
where the viscosity remains measurable and finite above the yield
stress and diverges below it (65, 66). A bifurcation in the viscosity
is also a bifurcation in the shear rate, which we show in Fig. 4.
At larger applied shear stresses, a transient decay to a terminal
but quasi-steady measurable deformation rate is usually observed.
Although quantitatively at different critical applied stresses for the
bifurcation (126 Pa for the model and 96 Pa for the experiments),
Fig. 4 indicates that our model successfully predicts the viscosity
bifurcation phenomenon.

Conclusion
In this work, we introduced a framework for data-driven
informed discovery and construction of rheologically relevant
constitutive models for soft materials. By leveraging the advances
in automatic differentiation, and different dimension reduction
algorithms, an automatic and unbiased model construction and
identification platform has been developed. This framework
allows for automatic sensitivity analysis of a vast number of
candidate functions (modes) to be included in a test library.
Through a multi-step process, the most dominant modes within
the candidate function library are automatically identified and a
model is constructed using those functions. To benchmark and
validate our discovered model for a test elasto-visco-plastic fluid,
a series of different rheological experiments were performed.

Our six-parameter model was found to recover a variety of
different rheological tests closely, with no further adjustment
of the parameters, and only from two sets of initial experiments.
While applicability of the full model was presented, removal
of any of the six components within the model will result in
loss of accuracy. In particular, removal of the product of the
first and second strain derivatives yields predictions that differ
qualitatively and quantitatively from observed experiments (SI
Appendix, Fig. S3). This further suggests that the neural network
indeed recovers the essential functions to describe a physical
behavior. More importantly, the model was found to be capable
of predicting the material’s behavior in flow protocols that
significantly differ from the ones used in the discovery step,
suggesting that the platform truly discovers the most effective
and compact form of the constitutive relation with a minimal
number of experimental inputs. However, in the model discovery
stage, additional care should be taken in ensuring that different
regimes of a material’s response are provided. Training and
discovery based only on SAOS or LAOS data were found
to result in an incomplete model construction with limited
predictability.

The general methodology and the framework developed
here offer a series of significant advances that compliment
conventional approaches to constitutive modeling in mechanics
or rheology: i) The model discovery/construction is efficiently
performed using a very limited number of experiments; ii) model
parameters are strictly limited to those that are truly dominant
modes within the candidate functions, preventing redundant
parameter additions that do not necessarily contribute to a
specific system’s response to an applied deformation; and iii)
unbiased and exhaustive search of the candidate functions can
lead to discovery of new physics. In our work, we found that the
product of the first and second derivatives of the shear strain plays
a key role in the total stress response of the elasto-visco-plastic
fluid. This is unexpected, and not a common term in classical
constitutive equations in the rheology literature. As such, the
methodology/platform proposed here could potentially enable a
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leap forward in our fundamental understanding of complex fluids
in general, and more particularly in how we perceive their con-
stitutive modeling. While the proposed methodology was tested
and validated in a series of rheological tests for a soft material,
the general approach can be easily adapted to other material
characterization techniques and mechanical probes as well, with
applications far beyond rheology. It should be noted that for the
constitutive model developed here to be directly used in place
of any similarly formulated constitutive model of interest, and
combined with conservation equations to describe actual complex
fluid flows beyond viscometric ones, a tensorial description with
frame-invariance is a necessity. The current model developed here
solely focuses on the shear stress (a single component of the stress
tensor) and as such is unable to describe normal stresses that are
essential in recovery of a realistic flow. However, by extension
of the current model and adaptation of frameworks such as
one introduced by Lennon et al. (67), frame-invariant tensorial
constitutive models can be developed. Finally, similar to any
data-driven approach, there are important practical limitations
to the applicability of our approach beyond which this general
methodology may not result in an accurate model construction.
Beyond practical choice within the candidate function library
and training process, perhaps the most important limitation of
data-driven model construction and physics discovery is with

regard to the physical behavior of the material itself. In particular,
the number of measurable/observable parameters of the system
must strictly follow the number of dependent variables in the
model. For instance, in describing thixotropy, inclusion of a
microstructure parameter and its time evolution equation within
the constitutive model is commonly required. However, this
microstructural parameter is not directly measurable, and as
such no data can be made available to construct a model for it.
Similarly, exposing the neural network to a full range of physical
behavior is necessary in constructing an accurate model.

Data, Materials, and Software Availability. All study data presented in the
manuscript are available in the Mendeley Data repository (68).
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