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Abstract

Heterogeneous survival data are commonly present in chronic disease studies. Delineating 

meaningful disease subtypes directly linked to a survival outcome can generate useful scientific 

implications. In this work, we develop a latent class proportional hazards (PH) regression 

framework to address such an interest. We propose mixture proportional hazards modeling, which 

flexibly accommodates class-specific covariate effects while allowing for the baseline hazard 

function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood 

estimation, we derive an Expectation-Maximization (E-M) algorithm to estimate the proposed 

model. We establish the theoretical properties of the resulting estimators. Extensive simulation 

studies are conducted, demonstrating satisfactory finite-sample performance of the proposed 

method as well as the predictive benefit from accounting for the heterogeneity across latent 

classes. We further illustrate the practical utility of the proposed method through an application to 

a mild cognitive impairment (MCI) cohort in the Uniform Data Set.
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1. INTRODUCTION

The problem of exploring heterogeneous survival data often arises in studies of 

neurodegenerative diseases such as mild cognitive impairment (MCI). For example, 

amnestic MCI and non-amnestic MCI represent different etiologies that manifest different 

risk of progression to dementia [22]. Accurately classifying MCI into meaningful subtypes 

has played an important role in disease prognosis. Traditionally based on the number 

and the type of affected cognitive domains [28], classification of MCI subtypes has 

evolved toward data-driven approaches that permit flexible utilization of various phenotype 

measurements collected from MCI patients, such as cognitive tests in different domains [11] 

and neuroimaging biomarkers [9]. However, little investigation has been made to delineate 

the subtypes of MCI and the associated heterogeneity directly with respect to the timing of 

landmark disease events (e.g., diagnosis of dementia), which may provide useful insight to 

help develop early and precise intervention.

To fill in such a gap, a natural venue is to consider latent class analysis (LCA) of the 

time-to-event outcome of interest, which takes the perspective that the observed survival 

data (e.g., time to dementia) are manifestations from distinct latent classes or subgroups. In 

literature, the LCA of a survival outcome has often been investigated in conjunction with 

latent class modeling of other types of outcomes, such as longitudinal outcomes [15, 23, 

24, 29, among others] and questionnaire responses [14]. These methods generally require 

imposing assumptions regarding the relationship between the survival outcome and the other 

outcomes, such as the conditional independence given the latent class membership, which 

are difficulty to verify with the observed data. More importantly, the interpretation of the 

latent classes under such joint LCA models can be largely attributed to the variations in the 

non-survival outcomes, and thus may considerably deviate from the survival heterogeneity 

of interest.

LCA methods tailored to probe the heterogeneity solely pertaining to a survival outcome, 

however, are sparse. Relevant existing work includes the mixture Weibull models [4, 16, 

for example] and mixture exponential models [13, for example], which were proposed 

to investigate heterogeneous event time distributions for two or more underlying classes. 

However, these methods assumed parametric distributions, and thus may be in jeopardy 

of generating biased inference when these parametric assumptions are not adequate for 

the real data. Rosen and Tanner [26] developed an estimation procedure for a mixture of 

Cox’s proportional hazards (PH) models [5] under the concept of “mixture-of-experts”. 

However, their model assumed a common baseline hazard function for all component Cox 

models within the mixture. Note that even when considering the Cox PH modeling under 

the joint LCA modeling of survival and longitudinal data, additional model restrictions 

were often imposed, such as a spline formulation of the baseline hazard function [23] or 

a common covariate effect across different latent classes [15, 14]. More recently, a deep 

neural network approach [21] was proposed to tackle a mixture of Cox models; however 

such an approach lacks a clear statistical framework for studying asymptotic behaviors of the 

resulting estimates.
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Motivated by the limitations of the existing methods, we propose a semi-parametric 

approach to conducting latent class proportional hazards (PH) regression analysis of survival 

data to help reveal the heterogeneity of disease population and its implications on disease 

progression. In this work, we adopt flexible latent class PH modeling which permits the 

nonparametric baseline hazard function to vary across different latent classes, and also 

allows for class-specific covariate effects. To estimate the proposed model which involves 

an infinite-dimensional parameter (i.e. the unspecified baseline cumulative hazard function), 

we employ the technique of non-parametric maximum likelihood [32, NPMLE] and properly 

adapt it to deal with the extra challenges associated with the unobservable latent class 

label or membership. Following the lines of [17], we rigorously establish the asymptotic 

properties of the proposed estimators through employing empirical process arguments [27] 

and semi-parametric efficiency results [2]. We also investigate different inference strategies, 

including utilizing the information matrix or employing the profile likelihood [19]. Finally, 

we derive a stable expectation-maximization (E-M) algorithm to implement the proposed 

estimation and inference. Our algorithm can be easily carried out with existing software or 

algorithms. According to our numerical experience, the proposed EM algorithm is robust to 

initialization and performs well with non-informative initial values.

2. DATA AND MODELS

2.1 Data and notations

Let T  denote time to the event of interest and let C denote time to independent censoring of 

T . Let x denote a p × 1 vector of baseline covariates. Define T = T ∧ C and Δ = I T ≤ C , 

where ∧ is the minimum operator. The observed data consist of n independent and 

identically distributed replicates of O = T , Δ, x , denoted by Oi = T i, Δi, xi , i = 1, …, n . The 

latent class membership is indicated by ξ = ξ1, …, ξL , where L denotes the number of latent 

classes, and ξl = 1 if the underlying latent class is the l-th class and 0 otherwise.

2.2 The assumed models

We assume that the whole population consists of L latent classes, within each of which, T
follows a class-specific semiparametric proportional hazards model. We further assume that 

the class-specific baseline hazard functions are proportional to each other. To formulate 

class-specific baseline hazard functions under this proportionality assumption, we first 

choose a reference class and then define the baseline hazard functions for the other 

classes as some constants multiplying the baseline hazard function for the reference 

class. Specifically, without loss of generality, we let class 1 (i.e. ξ1 = 1) be the reference 

class, where T  has the hazard function λ(t ∣ ξ1 = 1, x) = λ0(t)exp(xTζ1). Here λ0(t) is the 

unspecified baseline hazard function for the reference class, x is a q × 1 subvector of x
with q ≤ p, and ζ1 is a q × 1 vector representing unknown covariate effects in the reference 

class. For the other classes, we assume λ(t ∣ ξl = 1, x) = λ0(t)exp{al + xT (ζ1 + ζl)}, l = 2, …, L, 

where al is an unknown parameter with exp(al) representing the constant hazard 

ratio between class l and class 1, and ζl is a q × 1 vector of unknown coefficients 

representing the differences in covariate effects between class l and class 1. Define 
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zl = (xT , 0(q + 1) × (L − 1)
T )T ⋅ I(l = 1) + (xT , (el − 1 ⊗ x)T )T ⋅ I(l > 1) and γ = (ζ1

T, a2, ζ2
T, a3, ζ3

T, …, aL, ζL
T)T , 

where 0d represents a d-vector of zeros, el − 1 represents a vector of length (L − 1), where the 

(l − 1) th element is 1 and the other elements are equal to zero, x̆ = (1, xT )T , and ⊗ denotes 

Kronecker product operator. With these notations, it is easy to see that a unified expression 

for the class-specific hazard functions is given by

λ t ∣ ξl = 1 = λ0 t exp zl
Tγ , l = 1, …, L

(1)

By the definition, γ is the vector of unknown parameters with length q × L + L − 1 .

We also adopt a standard latent polytomous logistic regression model [1] to model the latent 

class probabilities. That is, we assume

Pr ξl = 1 ∣ x = pl(x; α) =
exp xTαl

d = 1
L exp xTαd

, l = 1, …, L,

(2)

where x = 1, xT T , α1 = 0 for the identifiability consideration, and α = α2, …, αL
T  is a vector 

of unknown parameters with length p + 1 × L − 1 .

Define Λ0(t) = ∫0
t λ0(s)ds and let θ = {γT , Λ0( ⋅ )}T . Under models (1) and (2), the conditional 

density of (T , Δ) given x can be written as

f(T , Δ ∣ x; α, θ) = ∑
l = 1

L
pl(x, α)fl(T , Δ ∣ x; θ),

(3)

where fl(T , Δ ∣ x; θ) = {λ0(T )ezl
Tγ}Δexp{−Λ0(T )ezl

Tγ}, standing for the class-l l density of (T , Δ)
implied by model (1).

In the sequel, we shall use α0, γ0, and Λ0 to denote the true parameters in model (1) and 

model (2), and use α, γ, and Λ to denote elements in the parameter spaces for α0, γ0, and Λ0

respectively.

3. ESTIMATION AND INFERENCE

In this section, we derive the estimation procedure for α0, θ0, and Λ0 ⋅ . We also study the 

theory and inference associated with the proposed estimators.

3.1 The observed data likelihood

Under models (1) and (2), the observed data likelihood can be written as
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L(α, γ, Λ; O) = ∏
i = 1

n
∑

l = 1

L
pl xi; α λ T i exp zil

Tγ Δi

exp −Λ T i exp zil
Tγ fX xi ,

(4)

where fX ⋅  is the density function of x. Note that fX xi  does not involve the unknown 

parameters, α, γ, and Λ, and thus is omitted in further derivations.

It is challenging to directly maximize the observed data likelihood L α, γ, Λ; O  due to the 

structure of mixture distributions and the involvement of the nonparametric parameter Λ ⋅ . 

To conquer these difficulties, we derive an Expectation-Maximization (EM) algorithm which 

naturally accommodates the unobservable latent class membership and incorporates the 

strategy of NPMLE for the estimation of Λ0 ⋅ .

3.2 The proposed EM algorithm

Suppose ξ is observed. The likelihood corresponding to the complete data ξ, O  takes the 

form,

Lc(α, γ, Λ; ξ, O) = ∏
i = 1

n
∏

l = 1

L
pl xi; α λ T i exp zil

Tγ Δi

exp −Λ T i exp zil
Tγ I ξil = 1 .

Following the NPMLE strategy, we further treat Λ ⋅  as piecewise constant between the 

observed event times. That is, we let Λ(t) = ∑j: tj ≤ t Λ tj  with Λ tj = dj, where t1 < t2 < … < tm

are distinct uncensored event times. Denote the cumulative hazard function Λ tj  at tj by 

Λj j = 1, …, m . Then the corresponding log complete data likelihood can be expressed as

ℓc (α, γ, Λ; ξ, O) =

∑
j = 1

m
∑

l = 1

L
ξ(j)l logΛ tj + z(j)l

T γ − ez(j)l
T γΛj

− ∑
j = 1

m
∑

k: tj ≤ T k < tj + 1

I Δk = 0 ∑
l = 1

L
ξklezkl

T γΛj

+ ∑
i = 1

n
∑

l = 1

L
ξillogpl xi; α ,

(5)

where ξ j l and z j l respectively represent the membership indicator ξl and covariate vector zl

for the observation with uncensored failure time tj j = 1, …, m .

In the E-step, we calculate the expectation of the log complete data likelihood conditioned 

on the observed data O and the current estimates of unknown parameters α j , γ j , and Λ j
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at the j th iteration, namely, E{ ℓc (α, γ, Λ; ξ, O) ∣ O, α j , γ j , Λ j }. Given the linearity with 

respect to ξ in (5), it is straightforward to see

E{ ℓc (α, γ, Λ; ξ, O) ∣ O, α(j), γ(j), Λ(j)} =
ℓc {α, γ, Λ; E(ξ), O},

where Ê(ξ) = {Ê ξil : i = 1, …, n; l = 1, …, L} with Ê ξil = E(ξil ∣ Oi; α(j), γ(j), Λ j ). Note that 

E ξil ∣ Oi; α, γ, Λ = Pr ξil = 1 ∣ Oi; α, γ, Λ . By applying the Bayes’ Rule, we get

E(ξil) = Pr(ξil = 1 ∣ Oi; α(ℎ), γ(ℎ), Λ(ℎ))

= pl(xi; α(ℎ))fl(T i, Δi ∣ xi; γ(ℎ), Λ(ℎ))
∑d = 1

L pd(xi; α(ℎ))fd(T i, Δi ∣ xi; γ(ℎ), Λ(ℎ))
.

(6)

Denote the resulting conditional expectation ℓc {α, γ, Λ; Ê(ξ), O} by Q α, γ, Λ . In the 

subsequent M-step, Q α, γ, Λ  serves as the target function to maximize.

In the M-step, we adopt a profile likelihood strategy to maximize Q α, γ, Λ  that profiles 

out Λ, where Λ is treated as an m-dimensional unknown parameter dk:k = 1, …, m  with 

dk = Λ tk . First, with fixed α and γ, we obtain Λ̂(t; α, γ) = argmaxΛ Q(α, γ, Λ) by solving

∂
∂dk

Q(α, γ, Λ)

= 1
dk

−
i:T i ≥ tk l = 1

L
Ê ξil ezil

Tγ = 0, k = 1, …, m .

This gives dk(γ) = {∑i:Ti ≥ tk ∑l = 1
L E ξil ezil

Tγ}−1
, k = 1, …m, and

Λ(t; α, γ) = ∑
k: tk ≤ t

dk(γ) = ∫
0

t ∑i = 1
n dNi(s)

∑i = 1
n ∑l = 1

L E ξil Y i(s)ezil
Tγ ,

(7)

where Ni t = I T i ≤ t, Δ = 1  and Y i t = I T i ≥ t . Then by plugging in Λ̂(t; α, γ) into 

Q α, γ, Λ , we obtain the profile complete data log likelihood Qp(α, γ) ≡ Q{α, γ, Λ̂(t; α, γ)}:

Qp(α, γ) = ∑
i = 1

n
∑

l = 1

L
E ξil logpl xi; α +

∫
0

t*
{log 1

∑i = 1
n ∑l = 1

L E ξil Y i(s)ezil
Tγ + zil

Tγ}dNi(s) ,

(8)
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where t* is a finite constant satisfying t* > tm. Then we can find α̂ = argmaxα Qp α, γ  and 

γ̂ = argmaxγ Qp α, γ  by solving

∂
∂α Qp(α, γ) =

i = 1

n

l = 1

L
Ê ξil

∂
∂α log pl xi; α = 0

and

∂
∂γ Qp(α, γ) =

i = 1

n

l = 1

L

0

t*

Ê ξil zil

−
j = 1
n

k = 1
L Ê ξjk Y j(u)zjkexp zjk

T γ

j = 1
n

k = 1
L Ê ξjk Y j(u)exp zjk

T γ
dNi(u) = 0 .

The resulting estimator of Λ0 t  is given by Λ(t) = Λ(t; α, γ ).

Remark: It is easy to see that solving ∂
∂α Qp(α, γ) = 0 is equivalent to fitting a weighted 

multinomial logistic regression with weights E(ξ), which can be easily implemented by 

R package VGAM [30]. In addition, equation ∂
∂γ Qp(α, γ) = 0 can be viewed as the score 

equation corresponding to the partial likelihood of the proportional hazards regression 

with data T il, Δil, zil : i = 1, …, n; l = 1, …, L  with T il = T i, Δil = Δi, and weights Ê ξil . 

Nevertheless, we choose not to solve ∂
∂γ Qp(α, γ) = 0 by fitting a weighted Cox regression. 

This is because an existing computational routine for the weighted Cox regression would 

exercise a special tie treatment for the pseudo ties caused by repeatedly counting each 

observed event time for multiple latent classes (i.e. T il l = 1
L

), making the resulting estimates 

not accurately correspond to a solution to ∂
∂γ Qp(α, γ) = 0. Instead, we implement an efficient 

Newton-Raphson algorithm under Rcpp environment [6] to directly solve the equation 
∂

∂γ Qp(α, γ) = 0

To implement the proposed EM algorithm, we begin with an initial guess of Ê(ξ), which 

can be a random guess or obtained in an informative way such as K-means clustering 

of T . Then we repeat the M-step and E-step until a stopping criterion is satisfied. We 

propose to use an Aitken acceleration-based stopping criterion as described in [18, page 

52]. Denote l(k) as the logarithm of the observed-data likelihood (4) evaluated with the 

parameter estimates at the kth iteration. Define a(k) = (l(k + 1) − l(k))/(l(k) − l(k − 1)) and 

lA
(k + 1) = l(k) + (l(k + 1) − l(k))/(1 − a(k)). The algorithm is stopped when lA

(k + 1) − lA
(k) < tol, where 

tol is a pre-specified tolerance parameter. In our numerical studies, we set tol = 10−7 to 

ensure convergence to a local optimum.
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3.3 Asymptotic properties and inference procedures

We establish desirable asymptotic properties of the estimators obtained from the proposed 

estimation procedure by using the NPMLE arguments similar to those used in [31] and [17].

We assume the following regularity conditions:

(C1) There exists t* > 0 such that Pr C = t* > 0 and Pr C > t* = 0;

(C2) For l = 1, …, L, Pr ξl = 1 ∣ x; α ∈ (0,1).

(C3) ∥ α0 ∥ < ∞; ∥ γ0 ∥ < ∞; ∥ zl ∥ < ∞ for l = 1, …, L; Λ0( ⋅ ) is continuously differentiable 

with Λ0
′ (t) > 0 on 0, t* , where ∥ ⋅ ∥ denotes the Euclidean norm.

Conditions (C1)-(C3) are reasonable in practical applications. Condition (C1) is often 

satisfied in the presence of administrative censoring. This condition helps prove the uniform 

consistency of Λ̂( ⋅ ) on 0, t* . Condition (C2) ensures that the latent class membership 

probabilities pl(x; α) is greater than zero, which further guarantees that logpl(x; α) has a finite 

lower bound. Condition (C3) assumes the smoothness of Λ( ⋅ ) and the boundedness of α0, γ0

and baseline covariates x.

We establish the asymptotic properties of the proposed estimators in the following two 

theorems with proofs provided in Web Appendix A.

Theorem 3.1.—Under regularity conditions (C1)-(C3), α̂, γ̂, and Λ̂( ⋅ ) are strongly 

consistent. That is, ∥ α̂ − α0 ∥ + ∥ γ̂ − γ0 ∥ + supt ∈ 0, t* Λ̂(t) − Λ0(t) 0 almost surely.

Theorem 3.2.—Under regularity conditions (C1)-(C3), n α̂ − α0  and n γ̂ − γ0  converges 

to multivariate mean zero Gaussian distributions; n{Λ̂(t) − Λ0(t)} converges weakly to a 

univariate mean zero Gaussian process on t ∈ 0, t* . In addition, α̂ and γ̂ are semiparametric 
efficient as defined in [2].

Based on the developed theory, we propose to conduct variance estimation based on 

the information matrix of the observed-data profile log-likelihood [19], defined as 

pl(α, γ) ≡ ℓ {α, γ, Λ̂(α, γ); O}. Define pl̂(α̂, γ̂) = ℓ {α̂, γ̂, Λ̂(α̂, γ̂); O}, and let pl̂j(α̂, γ̂) be the 

subject j’s contribution to pl̂(α̂, γ̂). The covariance matrix of θ̂ ≡ (α̂T , γ̂T )T ∈ ℝr can be 

estimated by the inverse of

j = 1

n
pl̂j θ̂ + ℎnϵ1 − pl̂j θ̂ − ℎnϵ1

2ℎn

⋮
pl̂j θ̂ + ℎnϵr − p̂j θ̂ − ℎnϵr

2ℎn

⊗ 2

,

where r = (p + 1) × (L − 1) + q × L + L − 1, ϵk is the kth canonical vector in ℝr, d ⊗ 2 = ddT , 

and ℎn is a constant of order n−1/2. In our numerical studies, we choose ℎn = 5n−1/2
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by following [8]. Instead of using the numerical approximation of Hessian matrix as in 

[19], we utilize the outer product of the first order numerical differences, which is more 

computationally affordable and guarantees that the resulting covariance matrix estimator is 

positive definite.

Alternatively, an analytical consistent variance estimator based on observed-data log-

likelihood can be constructed by adapting the arguments of [31], which enable inference 

for Λ̂(t) in addition to α̂ and γ̂. Details about the analytical variance estimator are provided 

in Web Appendix A. The analytical variance estimator typically requires inverse matrix 

computation for a large covariance matrix due to the inclusion of the cumulative hazard 

function, which may cause numerical instability. In practice, we recommend using the 

profile likelihood approach to obtain variance estimates for α̂ and γ̂, and making inference 

on Λ0(t) based on the analytical approach.

3.4 Selection of the number of latent classes

In practice, the number of latent classes, L, can be selected by using domain knowledge 

or some data-driven criteria. The commonly used data-driven criteria include standard 

model selection criteria, for example, the Akaike information criterion (AIC) defined 

as −2 log L(α, γ, Λ; O) + 2r, where r = (p + 1) × (L − 1) + q × L + L − 1, and the Bayesian 

information criterion (BIC) defined as −2 log L(α, γ, Λ; O) + rlogn, and entropy-based 

criteria, such as the standardized entropy index 1 − ∑i = 1
n ∑l = 1

L Ê ξil {−logÊ ξil }/nlog L
[20], and integrated complete-data likelihood (ICL-BIC) [3, 12], which is defined as 

−2 log L(α, γ, Λ; O) + rlog(n) − 2∑i = 1
n ∑l = 1

L Ê ξil logÊ ξil . We investigate the performance of 

using different criteria for determining the number of latent classes through the simulation 

studies reported in Section 4.2.

3.5 Survival prediction

Precise survival prediction is of great practical interest. Based on the models (1) and (2), we 

propose to predict the survival function for a subject with covariates x by

S(t ∣ x) = ∑
l = 1

L
pl(x; α)exp{−Λ(t)exp(zl

Tγ)} .

(9)

As shown by our numerical studies, the survival prediction by Ŝ(t ∣ x) properly accounts 

for the heterogeneity across latent classes and can be more precise than the predictions that 

ignore the existence of latent classes.

To evaluate the performance of survival prediction, we propose to utilize the Brier Score, 

defined as E[{I(T ≥ t) − Ŝ(t ∣ x)}2]. In practice, we observe Y (t) = I(T ≥ t) instead of I(T ≥ t). 
To accommodate censoring to T , we consider the following two estimators of the Brier 

Score which are adapted from the estimators presented in [25]: (a) databased Brier score,
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BŜ1(t) = 1
n i = 1

n I T i > t
Ĝ(t)

{1 − Ŝ t ∣ xi }2

+ ΔiI T i ≤ t
Ĝ T i

{0 − Ŝ t ∣ xi }2 ;

(b) model-based Brier score,

BŜ2(t) = 1
n i = 1

n
I T i > t 1 − Ŝ t ∣ xi

2 +

ΔiI T i ≤ t 0 − Ŝ t ∣ xi
2

+ 1 − Δi I T i ≤ t 1 − Ŝ t ∣ xi
2 Ŝ t ∣ xi

Ŝ T i ∣ xi
+

0 − Ŝ t ∣ xi
2 1 − Ŝ t ∣ xi

Ŝ T i ∣ xi
.

Here Ĝ( ⋅ ) is the Kaplan-Meier estimator of G(u) ≡ Pr(C ≥ u) under the assumption that C is 

independent of x. We may replace Ĝ( ⋅ ) by an estimate for Pr(C ≥ u ∣ x) obtained through 

regressing C over x to allow for covariate-dependent censoring.

4. SIMULATION STUDY

We conducted simulation studies to evaluate the finite-sample performance of the proposed 

method. We considered data scenarios with L = 2 or 3. We generated a two-dimensional 

baseline covariate vector x = x1, x2 , where x1 is a binary Bernoulli (0.5) random variable 

and x2 is a continuous Uniform (0, 1) random variable. Then the latent class label 

vector ξ was generated from a Multinomial (1, p1(x; α), …, pL(x; α) T ) distribution following 

model (2). Given ξ, the time-to-event T  was generated from the class-specific distribution 

function FT t ∣ ξl = 1) = 1 − exp 0.1 1 − et exp zl
Tγ (l = 1, …, L) which satisfied model (1) 

with Λ0(t) = 0.1 et − 1 . Then we generated independent censoring time C as the minimum of 

an Exponential(r) variable and a Uniform(5, 6) variable.

Supplementary Table S.1 summarizes the choice of r, α and γ in five simulation scenarios. 

Among scenarios with L = 2 (i.e., (I), (II), (III), and (IV)), scenario (I) served as a 

benchmark with relatively light censoring rate and less overlapped survival distributions 

among the two classes. In contrast, scenario (II) involved more overlapped survival 

distributions while heavy censoring is present in scenario (III). Scenario (IV) considered 

a special situation where covariate x1 had a large effect size on class probability pl(x; α) but 

zero covariate effect on survival, while x2 had zero covariate effect on latent class probability 

but a large effect size on survival. Compared to scenario (I), scenario (IV) had slightly 

heavier censoring but with similar level of overlapping of the survival distributions among 

the two classes. Scenario (V) concerned three latent classes and was comparable to scenario 

(I) in terms of censoring and the overlapping among class-specific survival distributions. 

Fei et al. Page 10

Stat Interface. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Empirical metrics of censoring and overlapping among classes for the five scenarios can be 

found in Supplementary Table S.2.

4.1 Parameter estimation

To evaluate parameter estimation, we conducted 10,000 simulations with sample size 

n = 1000 under scenarios (I)-(IV) and sample sizes n = 1000, 2000 and 3000 under 

scenario (V). To initialize the algorithm, we used a perturbed Ê(ξ) from the true latent 

class labels ξ. In addition, the variance estimation for {α̂T , γ̂T}T
 was conducted using 

both the profile likelihood and the analytical approaches, while the variance estimation 

for Λ̂( ⋅ ) was conducted using the analytical approach. We considered an outlying estimate 

as non-convergent if its L2 norm (i.e., ∥ α̂ − α0 ∥2 + ∥ γ̂ − γ0 ∥2) was greater than the median 

L2 norm (out of 10,000 simulation runs) plus 5 times median absolute deviation (MAD). 

Supplementary Table S.2 displays the estimation convergence rate along with median 

standardized entropy index and median censoring rate under different simulation scenarios. 

Supplementary Table S.2 indicates that the convergence rates are generally acceptable in all 

settings.

The simulation results on the estimates for the four representative parameters, α2,2, ζ1,1, a2, 

and Λ(3), are shown in Table 1. Full estimation results for all unknown parameters are 

available in supplementary Tables S.3 and S.4, which also compares the two variance 

estimation approaches for α̂ and γ̂. We observe that under scenarios (I) and (IV), the 

proposed estimator achieved very small median biases and accurately estimated standard 

errors. The coverage probabilities of the 95% confidence intervals are close to 0.95 for 

both regression coefficients α0 and γ0 and the infinitedimensional baseline cumulative hazard 

Λ0(t). We also note that, compared to scenarios (I) and (IV), a fuzzier mixture pattern of 

distributions in scenario (II) and heavier censoring in scenario (III) may result in larger 

median biases for most parameters. In addition, slight underestimation of the standard 

errors is observed for scenario (II) and scenario (III). That is, the empirical coverage 

probabilities are slightly lower than 0.95, in particular for a2. For scenario (V) with three 

latent classes, unstable estimation may occur with the smaller sample size 1000, as reflected 

by the higher estimation biases for parameters a2 and a3 and regression parameters ζ21 and 

ζ22 as compared to those given the larger sample sizes 2000 or 3000. This observation 

suggests that recovering the information on a larger number of latent classes may warrant a 

larger sample size. In scenarios (I)-(IV), the two variance estimators behave similarly, both 

achieving satisfactory standard error estimation and coverage probabilities for all unknown 

parameters. In scenario (V) with sample size 1000, both approaches yield empirical 

coverage probabilities considerably lower than the nominal value for some parameters, such 

as a2 and a3. However, the under-coverage issue is resolved with increased sample sizes 

very quickly by the profile likelihood approach but rather slowly by the analytical approach. 

This may suggest better finite-sample performance of the profile likelihood based variance 

estimation as compared to the analytic variance estimation.

We repeated the above simulations with non-informative initial values, 

Ê ξil = 1/L(i = 1, …, n, l = 1, …, L). The results are presented in Supplementary Tables S.5–
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S.7, indicating similar performances to that shown in Table 1. This demonstrates the 

robustness of the proposed E-M algorithm to different initial values.

4.2 Selecting the number of latent classes

We further conducted 1000 simulations for each of the five simulation scenarios with sample 

size n = 1000. Given each simulated dataset, we fitted the assumed latent class PH model 

with the proposed E-M algorithm initiated by K-means clustering, and then applied the four 

data-driven criteria, AIC, BIC, the standard entropy index, and the integrated complete-data 

likelihood BIC (ICL-BIC), to select L among the candidate values, {2, 3, 4, 5}. Figure 1 

shows the empirical percentages of selecting each candidate value of L by the different 

selection criteria.

As shown in Figure 1, BIC correctly selected L in all 1000 simulations when the two 

latent classes are well separated (see scenario (I)), even with heavily censoring (see scenario 

(III)). BIC also performed well under heavy distribution overlapping (see scenario (II)), with 

separated covariate effects on survival and marginal latent class probability (see scenario 

(IV)), and with three latent classes (see scenario (V)). Compared to BIC, AIC tended to 

select a larger number of latent classes, particularly for the heavy distribution overlapping 

scenario (see scenario (II)). In terms of entropy-based criteria, we find that the standardized 

entropy index tended to select incorrect L, and accordingly ICL-BIC performed worse than 

the stand-alone BIC. Similar results were also observed when there were three latent classes 

in scenario (V). The superiority of BIC over entropy-based criteria may relate to the fact 

that the proposed method is a likelihood-based method. Based on our simulation results, we 

recommend using BIC to select L when applying the proposed method.

4.3 Assessing prediction performance

For each of the five simulation scenarios, we further simulated 1000 datasets with sample 

size 1000. For each simulated dataset, we conducted five-fold cross-validation to assess the 

survival prediction performance of the proposed latent class PH regression and the standard 

PH regression. Specifically, we fit models on the training dataset, and estimate the Brier 

Score BŜj
(f)(t)(j = 1,2) based on the testing set, where f indicates one of the five random folds 

(f = 1, …, 5). Then we compute the average Brier score BSj

(f)
(t) = 1

5 ∑f = 1
5 BSj

(f)(t) for a range of 

t’s within the timeinterval 0, t* . We set the upper bound of time interval t* = 5 for scenarios 

(I) - (IV) and t* = 5.75 for scenarios (V) to cover the support of the generated event times.

Supplementary Figures S.1–S.5 plot the estimated Brier Scores over time under scenarios 

(I)-(V), respectively. In all simulation scenarios, the proposed latent class PH regression 

analysis consistently achieved lower median average Brier Score estimates as compared 

to the standard PH regression which ignores the existence of latent classes. While the 

improvement in survival prediction is rather minor under scenarios (I), (II), (III) and (V), 

we observe quite major improvement under scenario (IV), particularly for the survival 

prediction at early time points. Note that under scenario (IV), covariates have different 

effects on the latent class probability and class-specific survival. The large difference in 
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prediction error in this setting suggests that the standard PH regression analysis may have 

inadequate capacity to capture such complex data heterogeneity.

5. REAL DATA EXAMPLE

We applied our method to a subset of the Uniform Data Set, which included 5348 patients 

who were followed-up between September 2005 and June 2015 by the National Alzheimer’s 

Coordinating Center. The goal of our analyses is to understand potential subtypes of MCI 

directly linked to the heterogeneity in the time to the onset of dementia. In this dataset, 

1501 patients developed dementia during the follow-up, resulting in a censoring rate of 72%. 

The censoring occurred mostly due to reasons such as moving out of area, and hence we 

deem the random censoring assumption as reasonable for this dataset. We fit the model 

given by (1) and (2) with covariates that measure various baseline cognitive characteristics, 

including overall cognition (Mini-mental state examination, MMSE), executive functions 

(Trail making test B, TB, and Digit symbol, DS), memory (logical memory delayed, LMD, 

and category fluency, CF), language (Boston naming, BN), and attention (Trail making test 

A, TA, and digit span forward, DSF). All the cognitive scores were normed based on age, 

race, and educational attainment. In addition, baseline number of impaired instrumental 

activities of daily living (IADLs), number of neuropsychiatric symptoms (NPI-Q), binary 

measure of depression (GDS), indicator of cerebrovascular disease (EH), and baseline age 

centered at 75 years (AGE) were also included as covariates in our models. A more detailed 

descriptions of this dataset can be found in [10].

We first determined the number of latent classes L for our latent class PH analysis. As 

suggested by the simulation studies, we employed BIC as the data-driven criterion to select 

L. The 2-class model yielded the smallest BIC, 24481, as compared to the 3-class model 

which yielded BIC= 24625 and the 4-class model which yields BIC = 24797. By these 

results, we selected L = 2.

In Table 2, we present the parameter estimates along with the corresponding 95% confidence 

intervals which were obtained from fitting the model given by (1) and (2) with L = 2
or fitting the standard PH regression model. Based on the results from the standard PH 

regression (see ζ̂ in Table 2), we see that patients with worse baseline conditions in different 

cognitive domains (executive function, memory, language and attention), functional abilities, 

behavioral features and aging tended to have increased risk, or earlier onset, of dementia. 

However, these results do not directly reveal a finite number of potential MCI subtypes 

pertaining to the progression to dementia.

The proposed latent class PH regression analyses can help fill in this gap. Specifically, the 

parameter estimates for model (2) (see α̂ in Table 2) suggest that younger MCI patients 

with more severe problems in language domain (BN) were more likely to belong to the 

latent class 1, while older MCI patients with worse executive functions (TB and DS) 

and impaired functional abilities (IADLs) were more likely to be belong to class 2. The 

parameter estimates for the class-specific survival model (1) help delineate the heterogeneity 

in covariate effects on time-to-dementia between the two latent classes (see ζ̂1 and ζ̂1 + ζ̂2

in Table 2). We first note that for both classes, worse baseline overall cognition (MMSE) 
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is statistically significantly associated with higher risk of developing dementia. In addition, 

memory loss (LMD) has a significant effect within both classes but its effect sizes are fairly 

different. In addition, the effects of worse executive functions (TB and DS) are statistically 

significant only for class 2, while problems in language domain (BN), functional abilities 

(IADLs), behaviors (NPI-Q) and age (AGE) have significant effects on time-to-dementia 

only for class 1. Combing these results, we are able to correspond the two data-driven 

classes to meaningful clinical MCI subgroups. Patients in class 1 tended to be younger 

with milder baseline impairment and are prone to a wider range of baseline risk factors 

including memory, language, functional abilities, and behavioral assessment domains. This 

suggests a more diverse manifestation of disease progression for the MCI patients in class 

1. In contrast, class 2 were comparably older patients who exhibited amnestic impairment at 

baseline, with executive function and memory domains as the only risk factors, which may 

correspond to the typical phenotypes of Alzheimer’s Disease.

Based on the estimation results, we assigned each patient to one of the two latent classes 

according to the modal rule. That is, we assigned patient i to the class associated with the 

highest posterior membership probability E(ξil). This led to 69% of the patients assigned 

to class 1 and 31% of the patients assigned to class 2. Table 3 summarizes patient 

characteristics by the latent class assignment. Comparing the two classes, patients in class 

1 have higher MMSE compared to those in class 2, showing better overall cognitive status. 

Moreover, class 1 is generally better than class 2 in most of the domain-specific scores, 

except for the Boston Naming test attached to the language domain. In addition, patients 

in class 2 are older than those in class 1. In terms of time-to-dementia, patients in class 1 

generally show slower progression to dementia than patients in class 2. This is consistent 

with the observation that only 18% of patients in class 1 developed dementia in contrast to 

half of patients in class 2.

We also assessed the goodness-of-fit of our latent class PH models by comparing the 

empirical Kaplan-Meier curve of time-to-dementia versus the estimated overall survival 

function based on models (1) and (2), which was calculated as n−1∑i = 1
n Ŝ t ∣ xi . As 

shown in Figure 2, the empirical Kaplan-Meier curve (referred to as “K-M”) is very 

close to the estimated survival curve based on the proposed models (referred to as 

“Overall”), indicating reasonable goodnessof-fit of the two-class PH regression model to 

the MCI dataset. In Figure 2, we also plot the estimated class-specific survival functions, 

∑i = 1
n I i ∈ Cl Ŝ t ∣ xi /∑i = 1

n I i ∈ Cl , where Cl denotes the set of patients assigned to class 

l(l = 1,2). We see that the estimated survival curve for class 1 is higher than the curve for 

class 2, indicating that patients in class 1 had slower progression towards dementia. This 

result is consistent with the observation from Table 3.

We compared the predictive performance of the proposed latent class PH regression versus 

the standard PH regression using the estimated Brier Scores BS1(t) and BS2(t) for t ∈ (0,8
computed via 5-fold cross-validation. Figure 3 shows that the proposed latent class PH 

regression achieved lower Brier Scores than the standard PH regression. This evidences a 

gain in survival prediction accuracy from properly accounting for the heterogeneity across 

latent classes.
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6. DISCUSSION

In this work, we propose a semi-parametric approach to conducting latent class PH 

regression, which can lead to improved understanding of heterogeneous survival data and 

generate useful scientific implications. Our numerical studies consistently suggest empirical 

gains in survival prediction benefited from properly accounting for survival heterogeneity 

across latent classes. This justifies a recommendation of considering latent class PH 

regression as a useful complementary analysis of survival data in practice. We develop 

an efficient and stable E-M algorithm which has a solid theoretical underpinning from the 

general NPMLE framework. The algorithm is efficiently implemented in Rcpp [7] format 

and is publicly available as an R package.

In our work, the class-specific baseline hazard functions are assumed to be proportional 

to each other. To assess the method’s robustness when the proportionality assumption is 

violated, we conducted an additional simulation study as described in Appendix B, and 

the results are shown in supplementary Table S.8 and Figure S.6. As observed, when the 

proportionality assumption is violated, the proposed method can still reasonably delineate 

survival heterogeneity across latent classes and achieve better predictive performance 

compared to the standard Cox regression.

It is worth mentioning that the proposed latent class PH regression framework can be 

extended to handle time-dependent covariates with delicate modifications to the complete 

data likelihood and the corresponding algorithm. When competing risks are present in 

addition to random censoring to the event time outcome, the proposed method is still 

applicable as long as regression coefficients are properly interpreted as covariate effects 

on cause-specific hazard. The proposed work is confined to handle a finite number of 

covariates. Extensions for handling survival data with a large number of covariate merit 

future research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Percentage of latent classes selected by different model selection criteria out of 1000 

simulations under simulation scenarios (I)-(V).
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Figure 2. 
Blue dashed and dotted lines (Class 1 and Class 2): Estimated class-specific survival 

probabilities by the latent class model. Blue solid line (Overall): Estimated overall survival 

probability by the latent class model. K-M: Estimated Kaplan-Meier curve for overall 

survival probability.
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Figure 3. 

Average of 5-fold cross-validated Brier Scores, BSj(t), j = 1,2, obtained by the Cox model 

and the proposed latent class model with L = 2, for the MCl data application.
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Table 3.

Summary statistics of the survival outcome and baseline covariates for the two MCI latent classes, based on 

modal assignment of class identity.

Class 1, N=37141 Class 2, N=16341

T 1.8 (0.0, 3.4) 1.1 (0.0, 2.1)

Δ2 683 (18%) 818 (50%)

MMSE −0.99 (−2.2, 0.0) −2.1 (−3.8, −0.9)

TB4 0.4 (−0.2, 1.4) 1.7 (0.5, 4.0)

DS −0.5 (−1.2, 0.1) −1.4 (−2.0, −0.8)

LMD −1.2 (−2.1, −0.4) −1.5 (−2.3, −0.7)

CF −0.8 (−1.4, −0.1) −1.3 (−1.9, −0.7)

BN −0.6 (−1.9, 0.2) −0.5 (−1.6, 0.3)

TA3 0.1 (−0.4, 0.9) 0.7 (−0.1, 1.7)

DSF −0.3 (−0.9, 0.5) −0.4 (−1.0, 0.4)

EH 224 (6.0%) 104 (6.4%)

IADLs 1 (0, 2) 4 (2, 6)

NPI-Q 1 (0, 2) 2 (1, 4)

GDS 694 (19%) 279 (17%)

AGE −0.2 (−0.8, 0.4) 0.2 (−0.4, 0.8)

1
Median (IQR); n (%)

2
Number of patients diagnosed with dementia

3
Larger TB and TA scores indicate worse conditions.
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