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S Y S T E M S  B I O L O G Y

A meta-analysis of Boolean network models reveals 
design principles of gene regulatory networks
Claus Kadelka1*, Taras-Michael Butrie2, Evan Hilton3,4, Jack Kinseth1, Addison Schmidt3,  
Haris Serdarevic1

Gene regulatory networks (GRNs) play a central role in cellular decision-making. Understanding their structure 
and how it impacts their dynamics constitutes thus a fundamental biological question. GRNs are frequently mod-
eled as Boolean networks, which are intuitive, simple to describe, and can yield qualitative results even when data 
are sparse. We assembled the largest repository of expert-curated Boolean GRN models. A meta-analysis of this 
diverse set of models reveals several design principles. GRNs exhibit more canalization, redundancy, and stable 
dynamics than expected. Moreover, they are enriched for certain recurring network motifs. This raises the impor-
tant question why evolution favors these design mechanisms.

INTRODUCTION
Gene regulatory networks (GRNs) describe how a collection of genes 
governs key processes within a cell. Understanding how GRNs per-
form particular functions and do so consistently despite ubiquitous 
perturbations constitutes a fundamental biological question (1). Over 
the past two decades, a variety of design principles of GRNs have been 
proposed and studied, with a focus on discovering causal links be-
tween network form and function.

GRNs have been shown to be enriched for certain subgraphs with 
a specific structure, so-called network motifs, like feed-forward loops 
(FFLs), feedback loops (FBLs) but also larger subcircuits (2–5). Theo-
retical studies of the dynamic properties of these motifs revealed spe-
cific functionalities (6, 7). For example, coherent FFLs can delay the 
activation or inhibition of a target gene, while incoherent ones can act 
as accelerators (8). Other hypothesized design principles include re-
dundancy in the regulatory logic (9, 10) and a high prevalence of can
alization (11, 12). Canalization, a concept originating from the study 
of embryonal development (13), refers to the ability of a GRN to 
maintain a stable phenotype despite ample genotypic as well as envi-
ronmental variation.

Over the past decades, Boolean networks [reviewed in (14)] have 
become an increasingly popular modeling framework for the study of 
biological systems, as they are intuitive and simple to describe. When 
data are sparse, as is still often the case for less-studied organisms and 
processes, complicated models (e.g., continuous differential equation 
models), which harbor the potential for quantitative predictions, can-
not be appropriately fitted to the data because of their high number of 
parameters (15). In this case, Boolean network models can often still 
yield qualitative results.

Static network models are composed of (i) a set of considered nodes 
(genes, external parameters, etc.) and (ii) a wiring diagram (also known 
as dependency graph), which describes which node regulates which 
and often also contains information about the respective type of regula-
tion (positive because of e.g. transcriptional activation versus negative 
because of e.g., inhibition). A dynamic Boolean network model has 

these same features but obtains its dynamics from an additional set of 
update rules (i.e., Boolean functions) that describe the regulatory logic 
governing the expression of each gene. Each gene is either on (i.e., high 
concentration, expressed) or off (i.e., low concentration, unexpressed) 
and time is discretized as well.

Large, genome-wide static transcriptional network models can 
be easily assembled from existing databases like TRANSFAC (16), 
JASPAR (17), or RegulonDB (18), by simply considering all known tran-
scriptional regulations for a given species. However, information 
about the network topology alone provides only an incomplete un-
derstanding of a system, which is intrinsically dynamic. The formula-
tion of dynamic models such as Boolean networks requires a careful 
calibration of the update rules by a subject expert. Therefore, all dy-
namic Boolean GRN models published thus far focus on specific bio-
logical processes of interest and contain only those genes involved in 
these processes (19). Moreover, most dynamic models have been pub-
lished over the course of the past 12 years, as biological data needed 
for an accurate model description has become increasingly available. 
Over the course of the past few years, researchers have started to lev
erage the collection of these models to gain insights into specific as-
pects of GRNs such as the role of nonlinearity (20), canalization (21, 
22), or the connection between canalization and criticality (12, 23, 24).

Here, we describe a comprehensive meta-analysis of the largest re-
pository of published, expert-curated Boolean GRN models assem-
bled thus far. This provides a detailed understanding of the design 
principles of GRNs that are potentially conserved across organisms 
and can help explain how GRNs operate smoothly and perform par-
ticular functions.

RESULTS
Using the biomedical literature search engine Pubmed, we created a da-
tabase of 163 Boolean GRN models. To avoid introducing bias into the 
meta-analysis, we only included expert-curated models where the 
nodes and the update rules were selected by hand and not by a predic-
tion algorithm or where default choices like threshold rules were used 
throughout. We further included only one version of highly similar 
models. This led to the exclusion of 41 models (see Materials and Meth-
ods for details), resulting in a total of 122 models used in the meta-
analysis, of which 61 are included in the Cell Collective (19) and 61 are 
not. The models describe the regulatory logic underlying a variety of 
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processes in numerous species across multiple kingdoms of life (ani-
mals: 93, plants: 10, fungi: 9, bacteria: 9; data S1).

The models contain different types of nodes. Some nodes are un-
regulated (i.e., they do not receive incoming edges in the wiring dia-
gram) and remain thus constant over time. We refer to these nodes as 
external parameters because they frequently represent abstract external 
conditions such as the temperature or pH level. Most other nodes rep-
resent genes. We therefore refer to all nodes that receive incoming edges 
in the wiring diagram as genes but acknowledge that this is a simplifica-
tion as some regulated nodes also represent molecules or abstract 
phenotypes such as cell proliferation or apoptosis. The 122 investigated 
GRN models ranged in size from 3 to 302 genes (mean = 41.9, medi-
an = 23), and encompassed a total of 5112 genes as well as 742 external 
parameters (Fig. 1A). Some genes (as well as external parameters) ap-
peared in multiple models (data S2), with AKT appearing the most fre-
quently, in 33 models.

A majority of the investigated models (94, 77%) contained external 
parameters. As expected, network models with more genes contained 
on average more external parameters (ρSpearman = 0.51, Fig. 1B). On the 
other hand, the size of a network was slightly negatively correlated with 
the average connectivity, i.e., the average number of regulators per gene 
(ρSpearman = −0.15, Fig. 1C). The average connectivity differed widely 
across the 122 models; we observed a range of [1.22,6.5] and a mean 
average connectivity of 2.56 (median = 2.27). The degree distribution of 
a random graph, in which the edges are distributed randomly, is a Pois-
son distribution (25). When considering all update rules separately, we 
identified that the in-degree distribution resembled a Poisson distribu-
tion, while the out-degree distribution had a power-law tail (Fig. 1D), as 
has been observed for many diverse types of networks (25, 26), includ-
ing the yeast transcriptional regulatory network (27). The tails of the 

two degree distributions differed substantially; we found many more 
instances of high out-degree versus high in-degree, highlighting the 
presence of key transcription factors that act as network hubs (28, 29).

Next, we investigated the prevalence of different types of regula-
tions. If gene A regulates gene B, there are three possibilities: (i) Gene A 
may activate gene B, meaning that an increased expression of gene A 
(i.e., a change from 0 to 1 in the Boolean world) leads to an increased 
expression of gene B for some states of the other regulators, and possi-
bly no change in B for other states of the other regulators. (ii) Gene A 
may inhibit gene B, meaning that an increase in A leads to a decrease in 
B for some states of the other regulators, and possibly no change in B for 
other states of the other regulators, and (iii) gene A’s effect on gene B 
may be conditional (i.e., not monotonic), meaning that for some states 
of the other regulators, A activates B, while for other states of the other 
regulators, A inhibits B. Except for two rules with more than 20 inputs, 
we investigated all update rules, resulting in a total of 12,514 analyzed 
regulators (where some genes regulate more than one gene and each 
such regulation is considered separately). The majority of regulations 
were activations (9237, 73.8%), followed by inhibitions (2951, 23.6%) 
and conditional behavior (111, 0.9%). Regulatory networks in eukary-
otes operate mainly by activation of otherwise inactive promoters (30). 
On the contrary, many promoters in prokaryotes are by default ex-
pressed and require repressors to reduce gene activity (31). Most of the 
considered GRN models are eukaryotic (data S1), which could serve as 
an explanation of the increased prevalence of activation. Unexpectedly, 
we found, however, the largest proportion of activating interactions in 
bacterial (i.e., prokaryotic) GRN models (656/785 = 83.6%), compared 
to 7844/10,367 = 75.7%, 324/482 = 67.2%, 401/640 = 62.7% in GRNs 
of animals, fungi, and plants, respectively. Activation further seemed 
particularly prevalent in situations where a gene’s state is determined by 
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Fig. 1. Summary statistics of the analyzed GRN models. (A) Plot of the number of genes and external parameters for each model sorted by number of genes. 
(B and C) For each model, the number of genes is plotted against (B) the number of external parameters and (C) the average essential in-degree of the genes. The Spear-
man correlation coefficient and associated P value are shown in red. (D) In-degree (red circles) and out-degree (black stars) distribution derived from all 5112 update rules. 
(E) Prevalence of each type of regulation (activation, blue; inhibition, orange; conditional, gray) stratified by the number of regulators (x axis). Nonessential regulations are 
excluded.
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one or only a few regulators (Fig. 1E), irrespective of the considered 
kingdom (fig. S1).

We found that 215 of the 12,514 regulators (1.7%) contained in the 
ensemble of Boolean update rules were nonessential. That is, these 
regulators appeared in the published rules but did not have any effect 
on the output. For example, the Boolean update rule (X AND Y) OR 
X simplifies to X; Y is therefore a nonessential regulator. The nones-
sential regulators were spread across 23 (18.9%) models and 120 
(2.3%) update rules, i.e., some update rules contained more than one 
nonessential regulator. In one extreme case, an update rule with 12 
different inputs simplifies to the Boolean zero function. Figure  S2 
shows the discrepancy between the number of inputs in the published 
update rules and the number of inputs that have an actual effect on 
the dynamics. In the rest of this paper, only essential regulators were 
considered.

Canalization
The concept of canalization, already introduced in the 1940s in the 
context of embryonal development (13), has been proposed as a pos-
sible explanation for the remarkable stability of GRNs in the face of 
ubiquitous perturbations (32, 33). Accordingly, Boolean canalizing 
functions have been proposed as suitable update functions in Boolean 
GRN models (34). Recently, the class of canalizing functions has been 
further stratified and studied (35, 36). Some smaller studies support 
the general hypothesis by revealing an overabundance of canalizing 
functions in GRN models (12, 37), but a rigorous, comprehensive 
analysis that considers various types of canalization is still missing.

A canalizing function has at least one input variable such that, if this 
variable takes on a certain “canalizing” value, then the output value 
is already determined, regardless of the values of the remaining in-
put variables. If this variable takes on another value, and there is a sec-
ond variable with this same property, the function is two-canalizing. If 
k variables follow this pattern, the function is k-canalizing (35), and the 
number of variables that follow this pattern is the canalizing depth of 
the function (38). If the canalizing depth equals the number of inputs 
(i.e., if all variables follow the described pattern), the function is also 
called a nested canalizing function (NCF).

To test the level of canalization in published GRN models, we 
stratified all 5112 update rules based on their number of essential in-
puts and their canalizing depth. The number of Boolean functions 
with a certain canalizing depth is known (35), and the fraction of ran-
dom Boolean functions which are canalizing (i.e., those with canaliz-
ing depth ≥1) decreases exponentially as the number of inputs 
increases (Fig. 2A). Most identified update rules, however, had a high 
canalizing depth, even rules with many inputs (Fig. 2B). Four thou-
sand eight hundred twenty-seven of the 5110 investigated update 
rules (94.4%) were even nested canalizing, meaning that all their vari-
ables become “eventually” canalizing (39). A comparison of the ex-
pected and observed proportion of canalizing and NCFs reveals the 
true significance of the overabundance of canalization in GRN mod-
els. These findings agree with earlier, smaller studies (12, 37), which 
focused solely on the abundance of canalizing and NCFs but lacked 
the finer level of detail added by the canalizing depth.

Our findings raised an important question: Are biological net-
works enriched for canalizing functions solely because of the strong 
overabundance of NCFs, or is there broader evidence for canalization 
in general? To answer this, we relied on a broader mathematical defi-
nition of the biology-inspired concept of canalization, called collec-
tive canalization (40). Rather than focusing on single inputs that 

determine the output of a function regardless of the values of the re-
maining inputs, we studied the proportion of sets of inputs that have 
this canalizing ability. The recently introduced canalizing strength of 
a Boolean function summarizes this information in a single measure 
(41). By comparing the canalizing strength of all identified noncana-
lizing update rules with three to six inputs (i.e., those with canalizing 
depth 0) with random noncanalizing Boolean functions, we found 
that even those update rules, noncanalizing according to Kauffman’s 
stringent definition of canalization (34), exhibited a higher level of 
collective canalization than expected. Published noncanalizing up-
date rules also exhibited more than expected input redundancy, which 
is an alternative measure of collective canalization (21).

Redundancy
Genetic redundancy constitutes an important feature of gene regula-
tion, as the presence of duplicate genes provides robustness against 
null mutations (9, 10). We tested the level of redundancy contained in 
the GRN models by quantifying the number of symmetry groups for 
each update rule. Two regulators are in the same symmetry group if 
they have exactly the same effect on the targeted gene, for all possible 
states of all other regulators. Redundant genes perform the same 
function and would thus be part of the same symmetry group. We 
found a much higher level of redundancy in the biological networks 
(i.e., much fewer symmetry groups; Fig. 3 and fig. S3A) than expected 
by chance (fig. S3B). This comparison is skewed because canalizing 
functions have on average fewer symmetry groups. To exclude this 
confounding effect of canalization, we considered random functions 
whose canalizing depth was drawn from the empirical canalizing 
depth distribution of the published update rules (fig. S3C). Even after 
this correction, published models exhibited a substantially higher 
level of redundancy (Fig. 3).

Feed-forward loops
Network motifs are subgraphs with a specific structure that recur 
throughout a network and often carry out a certain function (3, 4). Sev-
eral network motifs are commonly found in large, static GRN models 
such as the transcriptional network of Escherichia coli (2). One such mo-
tif is the FFL, which consists of three genes: one master regulator that 
regulates both other genes, one target gene that is jointly regulated by 
both others, and one intermediate gene. In a coherent FFL, the direct 
effect of the master regulator on the target has the same sign, either pos-
itive or negative, as the net indirect effect through the intermediate gene. 
Otherwise, the FFL is incoherent (Fig. 4A displays all eight FFL types). 
Incoherent FFLs may act as sign-sensitive accelerators of the expression 
of the target gene, while coherent FFLs act as sign-sensitive delays (6). 
Here, sign-sensitive means that the motif performs a function only in 
one direction, either when the target is up- or down-regulated.

We identified a total of 3938 FFLs in the GRN models and stratified 
the number of occurrences by type (Fig. 4A) and additionally by model 
(Fig. 4B and data S3). One hundred twenty-two FFLs (3.1%) contained 
conditional regulations, which means that the type of these loops chang-
es dynamically. The expected number of activating versus inhibitory 
regulations contained in a FFL depends on the proportion of activating 
regulations in the GRN models. This proportion varies strongly from 
model to model (fig. S4) and decreases on average for models with high-
er degree. We therefore computed an expected number of each FFL type 
for each model, which we then summed up to obtain a total number (see 
Materials and Methods). Overall, the GRN models were enriched for 
each type of coherent FFL (Fig. 4A). This finding was consistent across 
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Fig. 2. High prevalence of canalization. (A) Expected distribution of the canalizing depth for random Boolean functions for different numbers of essential inputs (1–10), 
based on 1000 random functions each. (B) Stratification of all identified update rules based on the number of essential inputs (rows) and the canalizing depth (columns). 
Update rules with more than 10 inputs were omitted here; table S1 contains the full analysis. The color gradient in (A) and (B) is computed separately for each row. 
(C and D) For Boolean functions with 2 to 10 (not necessarily essential) inputs, the proportion of (C) canalizing functions and (D) NCFs observed in published expert-
curated GRN models (blue x) is compared to the expected proportion (orange dots), which is computed using explicit formulas for the number of canalizing and nested 
canalizing functions from (35). (E and F) The distribution of the (E) canalizing strength and (F) normalized input redundancy of all observed functions with three to six 
essential inputs and canalizing depth 0 [that is, all functions in the blue box in (B)] is shown (blue), as well as the expected distribution for random Boolean functions 
(orange), derived from 1000 samples each. Horizontal lines depict the respective mean values.
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kingdoms (fig. S5). All coherent FFL types, most involving two inhibi-
tions, were almost as frequent as any incoherent FFL type, most of which 
contain only one inhibition. Moreover, the incoherent FFL with three 
inhibitory regulations (type 8) was more prevalent than two of the three 
incoherent FFL types with only one inhibitory regulation. It was even the 
only incoherent FFL, which appeared more frequently than expected.

As reported for the static GRN models of E. coli and Saccharomyces 
cerevisiae (6) and as expected by chance, the FFL with three activating 
edges (type 1) proved by far the most prevalent. The type 2 FFL far 
outnumbered the remaining FFL types, including the two other 
coherent ones. This is unexpected as coherent FFLs of types 2 to 4 all 
contain one activating and two inhibiting edges. The only potential 
explanation is that type 2 FFLs induce a positive effect on the target 
gene, while the effect is negative in type 3 and type 4 FFLs. Another 
interesting observation relates to type 6 FFLs. While these FFLs out-
numbered all other incoherent FFLs (types 5, 7, and 8) in the static 
GRN models of E. coli and S. cerevisiae (6), we found FFL type 6 to be 
the least abundant. This may be due to low sample sizes in the earlier 
publication, or due to genuine differences in genome-wide transcrip-
tional networks versus dynamic GRN models, which focus on a rela-
tively small subset of genes involved in a certain biological process of 
interest. To explain all these observed differences, theoretical studies 
similar to (8, 42) may be needed, which focus on the functions of the 
different types of FFLs in dynamic GRN models.

The target gene in a FFL is regulated by both the master regulator and 
the intermediate regulator. To test whether one of these two regulations 

Fig. 3. High prevalence of redundancy. The empirical distribution of the re-
dundancy, measured by the number of symmetry groups (y axis), is computed 
for all identified update rules (blue), stratified by the number of essential in-
puts (x axis). For comparison, the expected distribution of the number of sym-
metry groups for random Boolean functions with 1 to 10 essential inputs is 
included (green), as well as the expected distribution for random Boolean 
functions with the same canalizing depth distribution as observed update 
rules (orange), as shown in Fig. 2A. Each expected distribution was generated 
using 1000 random functions. Figure  S3 contains the explicit values of each 
distribution.

A

B

C

Fig. 4. Abundance of coherent FFLs. (A) Total number of the different types of FFLs in the 122 GRNs (colored bars). Conditional FFLs (gray) contain at least one 
conditional regulation preventing the determination of their exact type. Black horizontal lines indicate the respective expected number, which is based on null 
model 1 (see Materials and Methods). Type 1 to 4 FFLs are coherent, while type 5 to 8 FFLs are incoherent. (B) Proportion [stacked bar, color-coded as in (A)] and 
total number (black line) of the different types of FFLs for each network. The 17 networks without any FFLs are omitted. (C) For each target gene in a FFL (green), 
the edge effectiveness of the master regulator (blue) and the intermediate regulator (orange) is compared, stratified by the essential in-degree of the target 
gene. Horizontal lines depict the respective mean values. n = number of target genes with given essential in-degree, P = P value from a two-tailed Wilcoxon 
signed-rank test.
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is generally more important, we compared their edge effectiveness, 
which captures the extent to which a given input (i.e., an edge) is on aver-
age necessary to determine the value of a Boolean function (21); an im-
portant input has high edge effectiveness. As inputs to functions with 
more variables generally have lower edge effectiveness, we stratified the 
analysis by the essential in-degree k of the target gene. Albeit weakly sig-
nificant but opposing differences for k = 3 (two-tailed Wilcoxon signed-
rank test; P = 0.003) and k = 4 (P = 0.004), we did not find any support 
for the hypothesis that either the master regulator or the intermediate 
regulator in a FFL is generally more important.

We further investigated the occurrence of clusters of FFLs, that is, 
two FFLs that share at least one node. As with single FFLs, we can 
distinguish different types of FFL clusters on the basis of the distribu-
tion of activating and inhibiting edges in the motif (Fig. 5 displays all 
15 types of FFL clusters). A recent analysis of a diverse set of natural 
and engineered networks revealed wide differences in the distribution 
of the different types of FFL clusters (43).

We identified a total of 101,832 FFL clusters in the 122 GRN models 
(data S4). As with the single FFL motifs, we stratified the number of 
occurrences by type (Fig. 5) and additionally by model (fig. S6). As ex-
pected, we found most FFL clusters to involve five genes (79,115, 
77.7%), followed by four (21,168, 20.8%) and by three genes (1549, 
1.5%). As in the transcriptional networks of E. coli and S. cerevisiae 
(43), type 6 was the most abundant. This type of FFL cluster features a 
master regulator involved in both FFLs and its abundance is likely due 
to the known presence of transcription factor hubs, which was also ob-
served in this meta-analysis (Fig. 1D). Type 11 was the most abundant 
among all FFL clusters involving four genes. This is unexpected because 
transcriptional networks of E. coli and S. cerevisiae contained almost 
exclusively type 12 and hardly any of the other 4-gene FFL clusters (43). 
An explanation for these discrepancies likely requires novel theoretical 
or computational studies that relate motif structure to motif function.

Feedback loops
FBLs constitute another important network motif. The parity of the 
number of inhibitory regulations determines if a FBL is positive (even 
number) or negative (uneven number). Each gene in a positive (nega-
tive) FBL exerts a positive (negative) effect on its own downstream ex-
pression. In general, negative FBLs buffer a perturbation and ensure 
homeostasis, while positive FBLs amplify perturbations and are neces-
sary for bi- or multistationarity (44–46). We identified all FBLs involving 

up to six genes. For each FBL, we counted the number of activating and 
inhibitory regulations involved (fig. S7). Just like FFLs, some FBLs con-
tained conditional regulations, which prevented the determination of 
their exact type. As expected by chance, we found more complex loops 
than short 2-loops or even autoregulatory loops (i.e., 1-loops). Also, 
FBLs with a balanced number of activating and inhibitory regulations 
are combinatorially more likely and were accordingly found more 
frequently.

To compute an expected distribution for the number of activating 
versus inhibitory regulations in fixed-length FBLs, we used two null 
models, which differ in the way that the proportion of activating regu-
lations is computed. Null model 1 uses the same proportion for all 
FBLs within the same network, while null model 2 uses the fact that 
each FBL is contained in a strongly connected component (SCC) and 
derives the proportion of activating regulations only from this SCC 
(see Materials and Methods).

For all different lengths, positive FBLs appeared slightly more fre-
quently than expected (Fig. 6A). We also observed more self-reinforcing 
than self-inhibitory regulations (1-loops) than expected. On the other 

Fig. 5. Abundance of clusters of FFLs. Total number of the different types of clus-
ters of FFLs in the 122 GRN models. Nodes in the motif graphs are color-coded on 
the basis of their role in the two clustered FFLs: master regulators (blue), intermedi-
ate genes (orange), target genes (green), genes that appear in both FFLs but with a 
different role (gray).

B

A

Fig. 6. Complex feedback loops are enriched for inhibitory edges. (A) Stratifica-
tion of all observed FBLs based on the number of involved genes (x axis) and the 
number of activating versus inhibitory edges they contain (color). Positive FBLs are 
blue, while negative FBLs are red. FBLs that contain conditional regulations are ex-
cluded. Each observed distribution (the rightmost of three bars with solid border) 
is compared to the expected distribution (left and middle bars with dashed and 
dotted borders), which is computed using two different null models (see Materials 
and Methods for details). n = total number of observed FBLs of a given length. 
(B) For four and six loops of the same type (positive or negative) and the same 
combinatorial likelihood, which depends on the number of activating versus 
inhibitory edges in the FBL, the observed relative abundance of FBLs with more 
activating versus more inhibitory edges is compared to the respective expected 
relative abundance, which is based on the same two null models as in (A).
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hand, more complex FBLs containing two or more genes were enriched 
for inhibitory regulations. To enable an unbiased comparison, we 
considered specifically complex loops of the same type (positive or 
negative), with the same number of genes and the same number of 
combinatorially expected occurrences (that is, 4-loops with 4 versus 
none or 3 versus 1 inhibitory regulations, or 6-loops with 6 versus none, 
5 versus 1 or 4 versus 2 inhibitory regulations). All five comparisons 
confirmed a unexpected overabundance of negative regulations in the 
observed FBLs (Fig. 6B). Notably, the differences between observed and 
expected relative abundances were consistently smaller (but still sub-
stantial) when considering null model 2. This aligns with our finding 
that most SCCs that contain many FBLs have a lower proportion of 
activating edges than the full network (Supplementary Datasets 1 and 
5). Because of insufficient numbers of FBLs in nonanimal GRN models, 
we were unable to assess the potential for kingdom-specific differences 
in the prevalence of specific types of FBLs (figs. S8 and S9).

Criticality
Gene regulation is a highly stochastic process due to e.g. low copy num-
bers of expressed molecules, random transitions between chromatin 
states, and extrinsic environmental perturbations (46, 47). While some 
bacteria rely on noise in gene regulation to successfully mitigate risk 
through bet-hedging strategies (48), most GRNs are incentivized to 
maintain a stable phenotype to ensure consistent operation of the cel-
lular processes, despite various sources of stochasticity. At the same 
time, GRNs must be able to adapt to lasting changes in the environ-
ment. Because of this stability-evolvability trade-off, GRNs have been 
hypothesized to operate in the so-called critical dynamical regime, on 
the edge of order and chaos (49). Criticality has also been postulated for 
a variety of other biological networks such as neural networks or net-
works describing animal motion and social behavior (50). The dynami-
cal robustness of a Boolean network is typically measured by the average 
sensitivity or more general Derrida values (51, 52), which describe how 
a small perturbation affects the network over time. If, on average, the 
perturbation reduces in size after each gene has been synchronously 
updated once, the system operates in the ordered regime; if it amplifies 
on average, the system is in the chaotic regime, and if it remains, on 
average, of the similar size, the system exhibits criticality. Many biologi-
cal systems, modeled using Boolean networks, operate in the critical 
regime (12, 53).

For a synchronously updated Boolean network with N nodes, the 
Derrida value for a single perturbation is simply the mean average 
sensitivity s = 1∕N

∑N

i=1
S(fi) where S(fi) ∈ [0, ni] is the average sen-

sitivity of update function fi with ki inputs (54). For random Boolean 
functions in k (not necessarily essential) variables and with output 
bias p (which describes the probability of activation, i.e., the probabil-
ity of ones in the function’s truth table), the expected average sensitiv-
ity is 2p(1 − p)k, and thus increases linearly in k. On the contrary, the 
expected average sensitivity of NCFs is 1, irrespective of k (36). All 
120 investigated models exhibited a mean average sensitivity near 1 
(mean = 1.0014, SD = 0.09), which constitutes the critical threshold 
between order and chaos (Fig. 7A).

Across the models, mean average sensitivity was not associated 
with average essential degree (Pearson’s r = 0.03), nor with network 
size (Pearson’s r = −0.03) but depended strongly on a model’s propor-
tion of update rules that were nested canalizing (Pearson’s r = −0.73; 
fig. S10). The eight models with the lowest mean average sensitivity 
(≤0.9) were all completely governed by NCFs, while the five models 
with the highest mean average sensitivity (≥1.17) were among the 
models containing the lowest proportion of NCFs (Fig. 7A).

This led us to investigate the relative frequency of different NCFs 
in the published models. Any nonzero Boolean function has a unique 
standard monomial form, in which all variables are distributed into 
canalizing layers of importance and a noncanalizing core (35, 55). 
NCFs are specifically those Boolean functions where the core is emp-
ty, i.e., where all variables become eventually canalizing and have a 
hierarchical importance order. To understand why NCFs appear fre-
quently in GRNs, consider as an example a typical situation in gene 
regulation: two proteins X and Y can each independently initiate the 
transcription of a gene, as long as a repressor Z is not present to block 
the recruitment of RNA polymerase. The regulation of the gene in 
Boolean logic is best described by the NCF (X OR Y) AND NOT Z, 
which has two layers of importance, with Z being most important. As 
an example, consider again the NCF (X OR Y) AND NOT Z, which 
has two layers of importance, with Z being most important. NCFs 
with the same layer structure (i.e., with the same number of variables 
in each canalizing layer) have the same average sensitivity (36, 56). 
For a given number of variables k ≥ 2, there exists a bijection between 
p(1-p) and the layer structure of an NCF, and there are 2k−2 NCFs with 
different layer structure, with each layer structure appearing equally 

A B

Fig. 7. Dynamical robustness of the GRN models. (A) For each published model, the mean average sensitivity is plotted against the average number of essential regula-
tors, colored by the proportion of model update rules that are NCFs. (B) Stratification of the observed NCFs by number of variables (x axis) and layer structure (colored 
bars). The observed relative abundance (right bars with solid borders) is compared to the respective expected relative abundance (left bars with dotted borders).
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likely by chance. Unexpectedly, we found a very nonequal occurrence 
among the NCFs in the published models (table S2). Partially in line 
with the findings of high redundancy, NCFs with fewer layers ap-
peared more frequently (Fig. 7B). The observed NCFs also exhibited 
lower than expected mean average sensitivity (Fig. 8), and the higher 
the number of variables the lower was the observed mean average 
sensitivity. These findings suggest that biological networks are en-
riched for NCFs that induce stable dynamics as a means to counter-
balance some less canalizing and more sensitive functions. While 
earlier studies suggested GRNs manage to operate in the critical re-
gime due to the abundance of canalizing update rules (12), our results 
provide a more detailed understanding of this process, by pointing to 
NCFs with specific dynamic features as stabilizers of GRNs.

For many years, an accurate description of the critical bound-
ary in terms of macro- and micro-level network properties has 
received a lot of attention. Rather than considering a binary 
classification problem as in (23, 24), we tested how well several 
suggested predictors of criticality correlated with the mean av-
erage sensitivity across this largest repository of published bio-
logical networks (fig. S10). The first description of the critical 
boundary 2〈k〉〈p(1 − p)〉 = 1 (54), where 〈·〉 denotes the mean 
value across all rules within one model, only weakly correlated 
with the mean average sensitivity (Pearson’s r = 0.31). As de-
scribed in (12), this is likely because it lacks to account for can
alization, the essential in-degree and a negative correlation 
between k and p(1 − p) in most models. Accounting for this covar
iance via 〈k〉〈p(1 − p)〉 + Cov, as suggested in (12), led to a bet-
ter correlation (Pearson’s r = 0.49). However, the covariance 
alone was even more correlated with the mean average sensitiv-
ity (Pearson’s r = 0.66). A predictor of the critical boundary that 
accounts for collective canalization by replacing k, the connec-
tivity, with Ke, the effective connectivity, was recently suggested: 
3.94〈Ke〉〈p(1 − p)〉 (23). This predictor correlated almost per-
fectly with the mean average sensitivity (Pearson’s r = 0.95), 
highlighting how well the effective connectivity captures the 
stabilizing effect of canalization on the dynamics of biological 
networks.

DISCUSSION
Gene expression constitutes the most fundamental process in which 
genotype determines phenotype. A detailed understanding of the de-
sign principles that regulate this process is therefore of great impor-
tance. We used combined knowledge from numerous experts in their 
respective fields to perform a meta-analysis of published GRNs. Bool-
ean networks constituted the perfect modeling framework for this 
kind of analysis due to their simplicity, easy comparability, and wide-
spread use. A large literature search yielded the most extensive data-
base of expert-curated Boolean GRN models thus far, which may be 
queried to generate and test various types of hypotheses.

We highlighted the usefulness of this resource by focusing on sev-
eral design principles of GRNs. We confirmed that the regulatory 
logic is not random but highly canalized. Using a broader definition of 
canalization, we showed that even regulatory interactions that were 
not considered canalizing in previous analyses, exhibited a high level 
of canalization. Canalization and genetic redundancy are two corre-
lated concepts; GRNs proved to be independently enriched for both. 
We further studied the presence of small network motifs and found 
various types of motifs that were vastly more or less abundant than 
expected by chance. Last, we provided strong evidence for the hy-
pothesis that all GRNs operate dynamically close to the edge of order 
and chaos due to a trade-off between stability and adaptability. The 
abundance of nested canalizing update rules, specifically NCFs that 
are insensitive to perturbations, appeared to maintain critical dynam-
ics for more densely connected GRNs.

A recent study challenges the hypothesis that most biological net-
works exhibit criticality (57). The authors argue that the abundance of 
external parameters (i.e., unregulated nodes) in biological network 
models somewhat artificially increases a network’s mean average sen-
sitivity. When disregarding perturbations in external parameters and 
when considering several novel dynamical robustness metrics, many 
biological networks exhibit more ordered dynamics than thus far ap-
preciated. In future work, it would be interesting to investigate how 
our findings, specifically the overabundance of specific classes of 
NCFs, affect the dynamical robustness when assessed using these 
novel metrics.

The described analysis suffers from several obvious limitations. 
First, not all biological phenomena can be accurately described in 
simple Boolean logic. There are a variety of published models that al-
low for more than two states. A similar analysis of more general mod-
els might provide more detailed insights into gene regulation but will 
itself suffer from the increased complexity of describing the studied 
concepts in the non-Boolean case. Second, there exists no feasible way 
to test the representativeness or completeness of our generated data-
base of Boolean models. Even if a complete database of all published 
Boolean network models existed, the results would still be biased as 
some processes and species (e.g., model organisms) receive more at-
tention and are modeled more frequently than others. Third, design 
principles of GRNs will likely differ among kingdoms of life or even 
among lower taxonomic levels. We therefore stratified the main anal-
yses, wherever feasible, by kingdom. Because most of the published 
Boolean models and especially the large ones describe GRNs in ani-
mals, this meta-analysis lacks the statistical power to identify poten-
tial differences in design principles between kingdoms. In light of this, 
the identified design principles should primarily be understood as 
features of animal GRNs. A last limitation lies in the study design it-
self. Because we analyze expert-curated Boolean GRN models, it is 
impossible to rule out the introduction of bias by the experts who 

Fig. 8. Abundance of insensitive NCFs. The relative proportion of observed NCFs 
in k = 3 to 6 variables, stratified by layer structure (exact numbers in table S2), is 
plotted against their average sensitivity (markers, with color differentiating k). For 
each k, the mean average sensitivity of all observed NCFs in k variables is depicted 
by a vertical line.
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built the models. Many of the trends and properties we identified are 
highly significant and consistent, which means they likely reflect true 
biological qualities of regulatory networks. However, to know for 
sure, future research is needed. Because one of the main goals of syn-
thetic biology is to generate complex networks with programmable 
functionality, synthetic biologists could, for example, engineer and 
study gene circuits that feature specific design principles suggested 
here. In addition, in silico experiments could clarify if and how the 
suggested design principles are advantageous for GRNs.

MATERIALS AND METHODS
Database creation
Aiming to identify all published Boolean network models of GRNs, 
we developed an algorithm that parses all of the more than 30 million 
abstracts indexed in the literature search engine Pubmed and used 
keywords to rank the abstracts based on how likely they were to con-
tain a Boolean network model. To identify the keywords, we relied on 
the Cell Collective, a pre-existing repository of Boolean network 
models, which, at the time of access, contained 78 Boolean network 
models published in 65 distinct papers (19). The abstracts of these 65 
papers served as a training set for the identification of keywords in-
dicative of the presence of a Boolean network model. We considered 
as possible indicators (i) any word that occurred in at least two Cell 
Collective abstracts and was not among the most common 3000 
words found in an English dictionary, (ii) all fixed combinations of 
two and three noncommon words like “logical modeling” or “Bool-
ean network model”, and (iii) all co-occurrences of two or three single 
noncommon words in the same abstract, e.g. the co-occurrence of the 
words “logical”, “regulatory” and “modelling” in an abstract, not nec-
essarily in the same fixed order. While the use of an automatic British 
English to American English conversion tool may have helped to 
limit the number of indicators, we chose to treat words that are spelled 
differently in British and American English as two separate words. For 
any possible indicator, we calculated a quality score as the ratio of the 
number of Cell Collective abstracts in which it occurred over the total 
number of Pubmed abstracts containing this indicator. This proce-
dure resulted in 1297 publications with at least one indicator with a 
quality score of 5% or greater. We then manually investigated these 
1297 publications to decide whether they indeed contained a GRN 
model. During the manual review, an additional 369 referenced pub-
lications were investigated, as they were manually deemed to be of 
potential interest despite lacking an indicator with quality score ≥5%, 
resulting in a total of 1666 reviewed publications.

Model exclusion
To avoid the introduction of various of kinds of bias into the analysis, 
we used the following strict criteria for the inclusion of models.

1) We excluded models where the update rules were solely gener-
ated using an inference method or where default updates like thresh-
old rules were consistently used. Our goal was to include only models 
where the update rules were built on the basis of biological expertise 
and knowledge gained from appropriate experiments.

2) In addition, identical models that were presented in multiple 
publications were only included once, and we aimed to include the 
earliest publication that initially presented the model. In total, 165 
models passed this step and were extracted as described in the next 
subsection.

3) An automated quality check ensured that highly similar models 
were only included once in the analysis. The overlap index, also 
known as Szymkiewicz-Simpson coefficient, measures the overlap be-
tween two sets A and B and is defined as ∣A ∩ B∣ / min (∣A∣, ∣B∣) ∈ [0,1] 
(58). We defined two models to be highly similar if the overlap be-
tween the set of their variables (with each variable expressed as a 
lower case string with ‘ . ’, ‘-’,  and ‘_’ removed) was ≥90%. After single-
linkage hierarchical clustering of highly similar models, we manually 
reviewed all clusters. For each cluster, we removed all but one model 
from the analysis, aiming to include the final version of the model in 
the analysis. Most frequently, this meant inclusion of the latest pub-
lished model, or the last stated model for highly similar models stem-
ming from the same publication. This additional quality control step 
led to the exclusion of 39 of the 163 identified models.

4) Last, we manually investigated the overlap between all models 
stemming from the same publication. For one publication, we re-
moved two additional models as a third, included model from this 
publication was the combination of the two excluded models (59). 
Three other publications also contained more than one model. All 
these models were substantially different, as they described different 
GRNs or pathways with low overlap between the variables (60–62).

Model extraction and standardization
Boolean network models are presented in various formats in the lit-
erature. Using customized Python scripts, we extracted all published 
Boolean network models that were not excluded (see Model exclu-
sion) and transformed them into a standardized format. In this for-
mat, each line describes the regulation of one gene; the name of the 
regulated gene is on the left, followed by “=”, followed by the Boolean 
update rule with operators AND, OR, and NOT. External parameters 
do not have an update rule and only occur in the update rules of the 
genes they regulate. For example

represents a model with three genes, A, B, and C, and one external 
parameter D.

Meta-analysis
All analyses were performed in Python 3.10 using the libraries numpy, 
scipy, networkx, cana, matplotlib, and itertools. In particular, we 
wrote a Python script, which takes as input a Boolean model, de-
scribed in standardized format, and returns, among other things, an 
adjacency matrix of the wiring diagram of the model, as well as com-
pletely evaluated update rules. That is, each update rule of k inputs is 
represented as a vector of length 2k, which together with the wiring 
diagram enables all presented analyses.

For computational reasons, we restricted most analyses to update 
rules with 20 or fewer inputs. The two models that each contained a 
single rule with more inputs (GLI1 in the hedgehog signaling path-
way (63) is regulated by 24 inputs, while Shc in a multiscale model of 
ErbB receptor signal transduction (64) is even regulated by 27 in-
puts) were excluded from the network motif and criticality analyses, 
as the specific types of regulation (activation, inhibition, conditional) 

A = BORC

B = AOR (CANDD)

C = NOTA
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and number of essential inputs could not be determined for rules 
with so many inputs.

Measures of canalization
This study includes several measures of canalization. By (34), a Bool-
ean function f(x1, …, xn) : {0,1}n → {0,1} is canalizing if there exists a 
canalizing variable xi, a canalizing input a ∈ {0,1} and a canalized out-
put b ∈ {0,1} such that

If the subfunction g is also canalizing, then f is 2-canalizing, etc. 
More generally, f is k-canalizing, where 1 ≤ k ≤ n, with respect to the 
permutation σ ∈ 𝒮n, inputs a1, …, ak, and outputs b1, …, bk if

Here, fC = fC[xσ(k+1), …, xσ(n)] is the core function, a Boolean func-
tion on n-k variables. When fC is not canalizing, then the integer k is 
the canalizing depth of f (38). If k = n (i.e., if all variables are become 
eventually canalizing), then f is an NCF (65). By (35), every nonzero 
Boolean function f(x1, …, xn) can be uniquely written as

where each Mi =
∏ki

j=1
(xij + aij ) is a nonconstant extended mono-

mial, pC is the core polynomial of f, and k =
∑r

i=1
ki is the canalizing 

depth. Each xi appears in exactly one of {M1, …, Mr, pC}. The layer 
structure of f is the vector (k1, k2, …, kr) and describes the number 
of variables in each layer Mi (36, 39).

More recently, canalization has been considered as a property of 
the Boolean function, rather than on the variable level (40). In (21), 
canalization is equated to input redundancy, enabling the definition 
of variable/edge- and function/node-level properties, used in this 
study, such as the edge effectiveness and the effective connectivity. 
The canalizing strength constitutes an alternative approach to mea-
sure canalization on the function level (41). This approach generalizes 
Kauffman’s original definition of canalization more closely. For brev-
ity, we refer the interested reader to these papers for details.

Expected number of loops
The likelihood of a specific FFL or FBL type depends on the ratio of 
positive versus negative edges. Because of substantial variation of this 
ratio across models (data S1), we computed the expected distribution of 
specific FFL and FBL types separately for each model. For model i, let 
pi ∈ [0,1] denote the proportion of activating edges (out of all activating 
and inhibitory edges, excluding conditional and nonessential edges).

To compute the expected number of different FFLs in model i, let 
ni and nt

i
 denote the total number of FFLs and the total number of 

FFLs of type t, respectively. To create a null expectation, we assume 

that each edge is activating with probability pi and inhibitory with 
probability 1 − pi. Then

where a(t) ∈ {0,1,2,3} denotes the number of activating edges in FFLs of 
type t. The expected number of FFLs of type t across all models is simply 
the sum of all model-specific expected numbers. This is null model 1.

Null model 1 can also be used to compute the expected number 
of different FBLs. Let nk

i
 and nk,j

i
 denote the total number of k-loops 

and the total number of k-loops containing exactly j inhibitory edg-
es, respectively. Then

The expected number of k-loops containing exactly j inhibitory edges 
across all models is the sum of all model-specific expected numbers.

Null model 2 differs in the way the proportion of activating edges 
is computed. It uses the fact that each FBL is part of a SCC. Rather 
than using one overall proportion per model, null model 2 bases the 
expectation on the proportion within each FBL’s SCC. Let pi,c ∈ [0,1] 
denote the proportion of activating edges in SCC c (out of all acti-
vating and inhibitory edges, excluding conditional and nonessential 
edges). Let �r , r = 1, … , nk

i
 denote all k-loops of model i and let 

c(ℓr) denote the SCC containing ℓr. Then

As before, the expected number of k-loops containing exactly j in-
hibitory edges across all models is the sum of all model-specific ex-
pected numbers.

Dynamical robustness
As an indicator of the dynamical robustness of a Boolean network F, 
we computed the mean average sensitivity s, which describes the 
average size of an initial perturbation of size 1 after each gene has 
been synchronously updated once. That is

where d is the Hamming distance between two binary states. For 
nested canalizing networks, there exists an exact formula for s (36). 
For all biological networks that were not entirely governed by NCFs, 
we relied instead on simulations to estimate s. For each network, we 
generated 10,000 random states x ∈ {0,1}N+E where N is the number 
of genes and E the number of external parameters. For each state, we 
selected a random gene i ∈ {1,2, …, N} to be flipped to generate y = 
x + ei with d(x, y) = 1.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Tables S1 and S2
Legends for data S1 to S5

Other Supplementary Material for this manuscript includes the following:
Data S1 to S5
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