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Abstract

Horizontal disparities between the two eyes’ retinal images are the primary cue for depth. 

Commonly used random ot tereograms (RDS) intentionally camouflage the disparity cue, 

breaking the correlations between monocular image structure and the depth map that are present 

in natural images. Because of the nonlinear nature of visual processing, it is unlikely that 

simple computational rules derived from RDS will be sufficient to explain binocular vision in 

natural environments. In order to understand the interplay between natural scene structure and 

disparity encoding, we used a depth-image-based-rendering technique and a library of natural 

3D stereo pairs to synthesize two novel stereogram types in which monocular scene content was 

manipulated independent of scene depth information. The half-images of the novel stereograms 

comprised either random-dots or scrambled natural scenes, each with the same depth maps as 

the corresponding natural scene stereograms. Using these stereograms in a simultaneous Event-

Related Potential and behavioral discrimination task, we identified multiple disparity-contingent 

encoding stages between 100 ~ 500 msec. The first disparity sensitive evoked potential was 

observed at ~100 msec after an earlier evoked potential (between ~50–100 msec) that was 

sensitive to the structure of the monocular half-images but blind to disparity. Starting at ~150 

msec, disparity responses were stereogram-specific and predictive of perceptual depth. Complex 

features associated with natural scene content are thus at least partially coded prior to disparity 

information, but these features and possibly others associated with natural scene content interact 

with disparity information only after an intermediate, 2D scene-independent disparity processing 

stage.
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1. Introduction

The visual system uses many different sources of information to estimate depth in the 

natural three-dimensional world. Depth cues such as linear perspective, texture gradients, 

shading and lighting all provide cues for inferring an object’s position in space. These cues 

are monoscopic in the sense that they can be seen by one eye. A direct volumetric sensation 

– known as stereopsis – comes from the specifically binocular depth cue of horizontal retinal 

disparity that is created by the image differences afforded by our laterally separated eyes 

(Wheatstone, 1838; Palmer, 1999; Howard and Rogers, 2002).

The neural basis of stereopsis has been frequently studied by isolating the disparity cue 

through the use of random-dot stereograms (RDS) (Julesz, 1960). By isolating the disparity 

component of the general depth perception mechanism with RDS, much knowledge has 

been gained regarding the perception of depth from disparity and its neural basis (Cumming 

and DeAngelis, 2001; Blake and Wilson, 2011; Welchman, 2016). Studies with RDS find 

that disparity is first encoded in primate V1 where cells are sensitive to absolute disparity 

(Cumming and Parker, 1999; Thomas et al., 2002), with sensitivity to relative disparity 

emerging in V2 (Thomas et al., 2002; Qiu and von der Heydt, 2005; Bredfeldt et al., 2009). 

Spatial modulations of disparity, e.g. relative disparities, are encoded macaque V2 (Nienborg 

et al., 2004; Bredfeldt and Cumming, 2006), V3A (Anzai et al., 2011), V4 (Umeda et al., 

2007; Shiozaki et al., 2012) and IT (Janssen et al., 2001) and a limited form of relative 

disparity sensitivity can be seen in MT (Krug and Parker, 2011). Broadly similar patterns of 

disparity selectivity have been reported in studies with human fMRI (Goncalves et al., 2015; 

Welchman, 2016; Kohler et al., 2019).

The broader problem of depth extraction has also been approached by studying the 

combination of disparity information with other depth cues using simple stimuli to 

determine how different depth cues are combined into a unitary depth percept (Welchman, 

2016). The combination of single cues is complex – one cue can veto others, or the cues 

can compete in a bi-stable/multi-stable fashion for perceptual access (Bülthoff and Mallot, 

1988; Landy et al., 1995; Hillis et al., 2002; Knill and Saunders, 2003; Schiller et al., 

2011; Dövencioğlu et al., 2013; Chen and Tyler, 2015). Cortical activations measured with 

fMRI for different depth configurations are more discriminable when shading or texture and 

disparity cues for depth agree (Dövencioğlu et al., 2013; Murphy et al., 2013), suggesting a 

form of cooperative combination.

While much has been learned about stereopsis and depth cue-combination through the use of 

simple stimuli, our sensory systems have evolved under the constraints imposed by natural 

tasks and the natural environment (Geisler, 2008). Visual function is thus intimately related 

to the properties of the stimulation commonly encountered in the natural environment 

(Felsen and Dan, 2005; Clifford et al., 2007). While disparity coding in natural scenes 

has been studied using computational methods (Hibbard, 2008; Burge and Geisler, 2014; 
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Goncalves and Welchman, 2017), virtually nothing is known about the neural basis of 

disparity processing in natural scenes (Fischmeister and Bauer, 2006; Gaebler et al., 2014; 

Ogawa and Macaluso, 2015).

To study the neural basis of disparity processing in the context of naturalistic stimuli instead 

of in isolation, we previously measured human brain responses evoked by monsocopic 

and stereoscopic versions of a diverse range of natural scenes (Duan et al., 2018). Disparity-

contingent responses were extracted by subtracting responses evoked by the 2D monoscopic 

images from the responses evoked by their corresponding 3D stereoscopic counterparts. 

Using this approach, we measured disparity-contingent evoked potentials for many different 

natural scenes. By controlling statistically for simple summary statistics of the image depth 

maps, we found that the disparity-contingent difference potential was positively correlated 

with neural responses driven by the higher-order scene statistics of the monocular half-

images.

Motivated by this finding, the present study used high-density EEG recordings and a 

disparity discrimination task to determine more directly how monocular half-image content 

interacts with disparity processing both neurally and perceptually. Here, we experimentally 

manipulated the relationship between monoscopic image content and disparity by using 

novel stereograms that differed in whether the half-images were comprised of the original 

natural scene, visually scrambled textures or random dots. Taking advantage of the 

millisecond-scale precision of EEG recording, we provide evidence that the initial stage 

of the disparity computation is independent of identifiable features and objects, but that later 

stages are. By relating the magnitude of disparity-contingent activity to behavioral responses 

during the recordings, we show that activity in the later stages, but not the earlier stage of 

disparity processing is predictive of discrimination accuracy.

2. Methods

2.1. Participants

Fifty healthy adults (24 males) aged between 18 and 44 years (mean = 23.4 years) 

participated in this study. All participants had normal or corrected-to-normal visual acuity 

and the average logMar visual acuities of their left and right eyes were each −0.03 

(corresponding to a Snellen acuity of ~20/20). They reported no difficulty perceiving 

stereo-scopic depth when viewing 3D pictures, and their average stereoacuity as measured 

by Randot® stereotest (Stereo Optical, Inc., Chicago, IL) was 20.3 arcsec. The study was 

approved by the Stanford University Institutional Review Board and all participants gave 

written informed consent prior to the experiment. The procedures were in accordance with 

the Declaration of Helsinki.

2.2. Stimulus construction and trial structure

We selected our images from a natural scene data-base that included both stereo half-images 

as well as ground truth depth-maps. A comprehensive description of the natural-scene 

data-base and image capture pipeline can be found in Burge et al. (2016) and the database 

is available at http://natural-scenes.cps.utexas.edu/db.shtml. Briefly, each image pair was 
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collected using two camera station-points spaced 65mm apart, mimicking the average 

distance between the two eyes of adult males (Dodgson, 2004). The corresponding depth 

map for each image was obtained using a scanning laser range finder. Forty high-quality 

stereo image pairs of outdoor scenes from the database were selected. The scenes included 

trees, lawns, buildings, signs and fences. All images were resampled to a resolution of 1920 

pixels width × 1080 pixels height. The images were presented at a 3-meter viewing distance 

and this resulted in images of natural size (ortho-stereoscopic presentation) with minimal 

conflict between vergence and accommodation.

By presenting the right-eye image to both left and right eyes, we created monoscopic, two-

dimensional (2D) images. To disrupt the relationship between monoscopic depth cues and 

stereoscopic cues we took two approaches. In one, we generated scrambled versions of each 

scene by applying the Portilla-Simoncelli algorithm (http://www.cns.nyu.edu/~lcv/texture/) 

to the monocular half images. In the other, we used random dot stereograms (RDS) that are 

devoid of monocular cues for depth structure. Depth Image Based Rendering (DIBR, see 

below) was used to transfer the natural scene depth map to texture-scrambled and random 

dot stereograms on a scene-by-scene basis. Each natural scene thus had a 2D and a 3D 

version and corresponding texture-scrambled and random dot 2D and 3D versions.

To create monoscopically scrambled stereograms that shared common low-level image 

statistics, the half-image synthesis (scrambling) algorithm started with a random noise 

half-image and an intact natural scene half-image. Through an iterative matching procedure, 

several image statistics were matched between the original natural image and the synthetic 

scrambled image (Portilla and Simoncelli, 2000). The algorithm (http://www.cns.nyu.edu/

~lcv/texture/) employs a multi-scale, oriented Gabor-filter reconstruction pyramid and the 

matching process equates the pyramid filter responses between synthetic and natural images 

and thus their power spectrum. By nature of the iterative matching procedure employed by 

the algorithm, the intact and scrambled images have the same nominal mean luminance, 

minimum and maximum pixel luminance, variance, skew and kurtosis. The algorithm 

also matches a histogram of second- order correlations over filter locations, scales and 

orientations, as well as certain cross-orientation phases.

To determine the extent to which the synthesis algorithm, as we applied it, was able to 

match low-level statistics between intact and scrambled natural scenes, we measured space 

and frequency domain summary statistics for the intact and scrambled natural scenes. We 

found that the pixel standard deviations were matched to within 16%, with the scrambled 

images being higher. We used 2D Fourier transforms to measure band-limited differences 

between natural and synthesized spatial frequency spectra as a cross-check. To do this, 

we converted the images to gray-scale values (0–255) and cropped the images to 1040 

× 1040 pixels. We used the MATLAB functions “fft2” and “fftshift” to compute the 2D 

Fourier amplitudes of each image. These amplitudes were then averaged separately over 

the exemplars of the intact and scrambled natural scenes. These amplitude spectra were 

summarized using a one-dimensional slice that averaged over orientation and are plotted on 

log amplitude vs log spatial frequency to better visualize the spectral slopes (Field, 1987). 

To convert the amplitude spectral values into interpretable visibility units, we converted 

them to Fourier contrast by dividing the average spectral amplitude at each spatial frequency 
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by the DC value, multiplying the result by a factor of two to account for positive and 

negative frequencies (Hess et al., 1983). We then computed the difference in contrast 

between image types so that we could relate the magnitude of the residual differences in 

the images to estimates from the literature of thresholds for detecting band-limited contrast 

changes embedded in high contrast broadband targets such as natural images or Gaussian 

noise.

2.3. Depth Image Based Rendering of synthetic stereograms

Since depth information is available for each point in the images for each eye from the 

ground-truth depth maps, we applied a depth-image-based rendering technique (McMillan, 

1997) to produce synthetic 3D images for each natural scene that had the original depth 

map, but whose monocular half-images were comprised of either scrambled textures or 

random dots. The approach, illustrated schematically in Fig. 1, starts from a monoscopic 

image (scrambled texture or random dots; top middle panel) and the separate left- and right-

eye depth maps whose pixel coordinates match those of the source natural scene. To create 

stereopairs with the specified depth map, separate and identical target left and right eye 

half-images (bottom panes) are first created. In the left/right output half-images, the depth 

at each pixel from the left or right eye depth map is used to calculate the corresponding 

location in the source texture image which should be used to assign color for the output 

pixel (Fig. 1, the black arrows indicating pixel shift based on depth). Since each pixel in 

the left/right output has a valid depth value associated with it, we are able to perform this 

texture-lookup for each output pixel without running into the problem of holes or missing 

regions due to disocclusions. The resulting monocular half-images were smoothly varying 

textures with no visible discontinuities. Note that while the dis-occluded areas get filled 

with unmatched texture, they have the correct binocular disparity relative to the monoscopic 

texture (Fig. 1, regions highlighted in red). In the example, the depth map contains two 

disparate regions, a background and a disk, each with different but constant depth values. 

The disparity value of a given point in the depth map is used to replace the color at the 

shifted (disparate) location with that from the original pixel location in the source texture 

using opposite directions of shift in the left and right eye target textures.

The same depth rendering procedure was used to create a 3D random-dot stereogram for 

each scene from a 2D random dot image with 3.5 arcmin dot size and 25% dot density 

and the corresponding depth map. In the end, we thus had three different stereogram 

classes in monoscopic and stereoscopic formats: full natural scenes, scrambled scenes 

without recognizable content, and random dot images with no scene-related information. 

An example of three stereogram classes is shown in Fig. 2.

Image pairs were presented using in-house software on a Sony Bravia (model 

XBR-65HX929) 3D TV (143.4 × 80.7 cm) at a resolution of 1920-by-1080 pixels. Active 

shutter glasses were used to present separate images to each eye. The images were either 

a disparate stereo-pair in the 3D conditions, or copies of the right eye image in the 2D 

conditions. A single trial was constructed as a 750 msec gray screen prelude followed by a 

750 msec image presentation, during which a 2D monoscopic or 3D stereoscopic image of a 

natural scene, a scrambled scene or a random dot image was presented in random order (see 
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Fig. 3). During each trial, a cross was placed in the center of the prelude image at the plane 

of the screen when viewed stereoscopically. The cross was removed when the test images 

were presented. Stereo disparities of the 3D images were rendered behind the fixation cross. 

The participant was instructed to maintain fixation on the cross and to reduce blinks and 

movements to a minimum.

A two-alternative temporal forced choice procedure with a response deadline of 750 msec 

was used in which the participants were instructed to respond as quickly and as accurately 

as possible with a button press to indicate whether the image they saw was 2D or 3D (see 

Fig. 3). A block consisted of 240 trials, in which each version of a scene was shown once. A 

total of four blocks of trials were administered to each participant and the scene presentation 

order within each block was randomized.

2.4. EEG acquisition and preprocessing

The EEG data were collected using 128-channel HydroCell Geodesic Sensor Nets and 

a NetAmp 400 system (Electrical Geodesics Inc., Eugene, OR). The EEG was bandpass 

filtered from 0.3 to 50 Hz and digitized at a rate of 420 Hz. Individual electrodes were 

adjusted until impedances were below 50 kΩ before starting the recording. Artifact rejection 

was performed off-line according to a sample-by-sample threshold procedure to remove 

noisy electrodes, replacing them with the average of the six nearest neighboring electrodes. 

On average, less than 5% of the electrodes were substituted; these electrodes were mainly 

located near the forehead or the ears, and substituting them is unlikely to impact our results. 

The EEG was then re-referenced to the common average of all the remaining electrodes. 

Epochs with more than 15% of the data samples exceeding 30 μV were excluded on a 

sensor-by-sensor basis. Typically, these epochs included movements or blinks. A 130 msec 

delay between the onset of EEG recording and the stimulus onset caused by the EEG 

recording system (65 msec) and the BRAVIA monitor (65 msec) has been corrected in 

analysis.

2.5. Behavioral data statistical analysis

The response time (RT) and response accuracy for discriminating 2D vs. 3D images were 

averaged across all participants within each stereogram condition. Because of the repeated 

measurements within each participant, their behavioral data were then compared across 

conditions using a linear mixed model (Bates et al., 2014b), where stereogram condition was 

set as a fixed effect and individual participants were defined as random effects. Post-hoc 

Tukey tests were then administered for pair-wise comparisons between different conditions 

(Hothorn et al., 2017).

2.6. Analysis of EEG global field power

Global field power (GFP) is a single, reference-independent measure of brain response 

strength. The GFP equals the root mean square (RMS) across the average-referenced 

electrode values at a given instant in time,
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GFP(t) = i = 1
N V i(t) − V (t) 2

N

where N is the number of electrodes, and V is the voltage at a specific electrode. GFP 

provides a single number summary across the electrode montage of the response strength 

(Lehmann and Skrandies, 1980; Murray et al., 2008) as a function of time. It has been 

demonstrated to be an unbiased dimension-reduction method that can determine time points 

that have maximal field strength (Hamburger and van der Burgt, 1991). The participants’ 

time-locked Visual Evoked Potentials were summarized by GFP waveforms for each of the 6 

image types (i.e. 2D or 3D natural scenes, scrambled scenes, and random dot stimuli).

Disparity-contingent potentials were calculated by subtracting 2D responses from 3D 

responses for each scene condition. In a first analysis, these difference potentials were 

converted to GFPs that were analyzed across the three different stereogram types by 

randomization statistics implemented in the RAGU software package (Koenig et al., 2011; 

Habermann et al., 2018). Briefly, a global measure of GFP cross-stereogram differences at 

each time point is defined as

s =
i = i

c
GFP i − GFP 2

where c is the number of conditions, GFP i is the average GFP over subjects within condition 

i and GFP  is the grand mean GFP across all subjects and conditions. We would like to 

know if the value of s depends solely on the random variance across subjects and conditions, 

but not on the differences across conditions. To assess the statistical significance of s, we 

generated a distribution of s under the null hypothesis by randomly shuffling the condition 

assignment in each subject, recomputing s 5000 times. The significance of the effect is then 

given by the percent of randomly obtained values of s that are larger than or equal to the 

value of s obtained with the real data. After testing the significance of s at each time point, 

a multiple comparison correction was implemented by estimating how likely it was that 

the overall duration of a period of significant effects would have been observed by chance 

(König and Garcia, 2009).

2.7. Topographical analysis of variance

The GFP metric does not provide any information about how the potential is distributed 

across the electrodes – i.e. where large and small potentials were measured. The different 

stimulus conditions could alter the shape of the scalp topography without changing its 

magnitude. To compare the disparity-specific scalp maps in terms of their topographic 

distribution and thus their underlying neural generators across different scene conditions, 

the voltages of the scalp field maps were first normalized so that any differences across 

conditions were not merely due to a scaling factor that is common for all active sources. If 

differences still exist after map normalization, the active intracerebral sources must have had 

at least partially different locations and/or orientations. The normalized disparity-contingent 

Duan et al. Page 7

Neuroimage. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



scalp fields were compared through randomization statistics implemented in the RAGU 

software (Koenig et al., 2011; Habermann et al., 2018). The statistical testing procedure is 

similar to that described in the previous section, except that the global measure of scalp field 

differences s is defined as below:

s =
i = i

c j = 1
n vij − v‾j

2

n

Where c is the number of conditions and group, n is the number of electrodes, vij is the 

voltage of the grand mean across subjects of condition i at electrode j, and vj is the grand 

mean across subjects and conditions of the voltage at electrode j.

2.8. Micro-state analysis

The configuration of the evoked scalp field changes over time, but we can identify “micro-

states” – consecutive scalp fields that remain stable during a prolonged period. The change 

of the potential distribution can be quantified by an index called topographical dissimilarity 

(DISS), which calculates the standard deviation between successive maps at each time point:

DISSu, v = 1
n*

i = 1

n ui
GFPu

vi
GPFv

2

where u and v represent two consecutive scalp field maps, and n is the number of 

electrodes (Lehmann and Skrandies, 1980; Skrandies, 1990). A number close to 0 indicates 

topographic homogeneity.

2.9. Correlational analysis of behavioral and neural data

To determine whether behavioral and electrophysiological patterns observed in the group 

averages are also consistently present in individuals (Fisher et al., 2018), we correlated the 

average disparity-sensitivity GFP during each microstate with the response accuracy using 

a repeated measure correlation analysis (Bakdash and Marusich, 2017). Repeated measures 

correlation (R package ‘rmcorr’ version 0.3.0) is a statistical technique for determining 

the common within-individual association for paired measures assessed on two or more 

occasions for multiple individuals. Specifically, since each participant provides three GFP 

measurements and a corresponding response accuracy for the same three scene conditions, 

the assumption of independence is violated. Using analysis of covariance, rmcorr accounts 

for non-independence among observations and statistically adjusts for inter-individual 

variability. After removing measured variance between participants, rmcorr provides the 

best linear fit for each participant using parallel regression lines with varying intercepts. The 

common regression slope is thus the association shared among individuals.
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3. Results

3.1. Behavioral results

We measured the accuracy (Fig. 4, left) and response time (Fig. 4, right) for discrimination 

of 2D vs. 3D versions of each image type in order to make sure that the participants could 

perceive depth for each image class and as an attentional control during the EEG recordings. 

Discrimination accuracy was high for each of the three image classes. The accuracy of 

2D vs. 3D discrimination was 87.6% (se = 0.009, N = 50) for natural images, 90.1% (se 

= 0.006, N = 50) for scrambled images and 94.7% (se = 0.005, N = 50) for random dot 

images. Accuracy differed across the three conditions as measured by an omnibus repeated 

measures ANOVA (χ2 (50, 2) = 49. 0, p < 0. 001) (R package ‘lme4’ (Bates et al., 2014a)). 

In order to determine which pairwise differences contributed to the omnibus effect, we 

performed post-hoc Tukey tests that provide a more controlled Type I error than a set of 

independent pairwise T-tests (R package ‘multcomp’ (Hothorn et al., 2017)). Post-hoc Tukey 

tests indicated that the accuracy for random dot images was significantly higher than for 

scrambled images (Z = 4.48, p < 0.001) and natural images (Z = 6.90, p < 0.001). Accuracy 

for scrambled images was significantly higher than for natural images (Z = 2.42, p = 0.041).

Image conditions that were discriminated more accurately also led to faster response times 

(Fig. 4, right). The mean response time was 1388 msec (se = 2.73, N = 50) for random dot 

images, 1415 msec (se = 1.80, N = 50) for scrambled images and 1447 msec (se = 3.29, N 

= 50) for natural images. Response times differed cross the three conditions as measured by 

an omnibus repeated measures ANOVA (χ2(50, 2) = 235. 7, p < 0. 001). Post-hoc Tukey 

tests indicated that the response time for random dot images was significantly faster than 

that for scrambled images (Z = 6.9, p < 0.0001) and natural images (Z = 15.3, p < 0.0001). 

Response time for scrambled images was significantly faster than for natural images (Z = 

8.4, p < 0.0001).

3.2. Evoked responses generated by monoscopic image content

As a first point of reference for the sequence of stimulus encoding, we measured the 

earliest timepoint at which responses to the three monoscopic (2D) image classes can be 

differentiated, either in terms of the brain response amplitude, the topographical distribution 

of sources, or both. This analysis sets a limit on when responses to different types of 

monoscopic image structure first become available and when they are differentiable. As a 

measure of the temporal evolution of the signal magnitude across conditions, we measured 

the global field power (GFP) as a function of time after image onset for each image 

class. The GFP is the standard deviation across the average-referenced electrode values 

and it provides a summary measure of response strength at a given instant in time. The 

results are shown in Fig. 5a as red curves for 2D natural images, green for 2D scrambled 

images and blue for 2D random dot images. Fig. 5b shows a zoomed-in view over the first 

100 msec of the trial that includes the I initial rising phase of the responses. The onset 

of responses to 2D image contrast starts at around 50 msec for each image type. After 

response onset, the responses to the three image types are tightly coupled between and have 

a common GFP time-course between 50 ~ 100 msec (Fig. 5b). Randomization statistics 

were used to compare mean GFPs across the three conditions. The purple/grey bars on the 

Duan et al. Page 9

Neuroimage. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



horizontal axis indicate the time points at which a significant difference occurred, with gray 

uncorrected for multiple comparisons. Runs surviving multiple comparison correction are 

indicated by purple. The GFP time-course first begins to differ around 100 msec for the 

different stereogram classes (indicated by purple bars on the time-axis of Fig. 5a). Periods of 

significant differences among the three classes occurred between 100 ~ 140 msec, 180 ~ 320 

msec, and 635 ~ 680 msec, as indicated by the purple bars above the x-axis of Fig. 5.

The GFP analysis is only sensitive to amplitude differences across conditions, but not 

to possible differences in response topography caused by shifting of the locations of the 

underlying activity over time. To check whether the response topography differed between 

50 ~ 100 msec across the three image classes, we plotted the average brain topographies 

over 50 ~ 100 msec. As can be seen in Fig. 5c, the different stimulus conditions do not 

share the same topography – despite having the same GFP profile. The reliability of these 

apparent topographic differences was assessed by first normalizing the scalp field maps to 

remove any amplitude differences between conditions, followed by a permutation test called 

Topographical Analysis of Variance (TANOVA) that compared the topographies resulting 

from the presentation of the three 2D image types. The significance was computed as a 

function of time and was controlled for Type II error (see methods section for details). The 

TANOVA indicated that the topographies differed starting at or very near the time that the 

response left baseline (~50 msec) and continued to differ up to ~500 msec and then again 

between 510 ~ 750 msec. Thus, although the amplitudes during 50 ~ 100 msec period are 

not different, the topographies and thus the underlying source distributions were not the 

same across conditions.

It is not surprising that early latency activity might differ between the random-dot half-

images and the intact and scrambled natural scenes, given that the random-dot stimuli are 

comprised of binary achromatic elements while the other two stimuli comprise continuous-

tone chromatic images. However, the topographies of the intact and scrambled natural 

scenes also differ over this time frame. Could this difference be due to uncontrolled 

differences in low-level image statistics? To begin to answer this question, we determined 

whether the synthesis algorithm was able to match commonly used low-level summary 

statistics. We computed the pixel-level standard deviations and also the band-limited 

differences in the 2D spatial frequency spectra for the two image classes. The pixel standard 

deviations were matched to within 16%. We also computed the Fourier amplitude of the 

intact and scrambled natural scenes as a function of spatial frequency (Fig. 6a; blue symbols: 

natural images, red symbols: scrambled images), averaging the amplitudes over images 

within a scene type. From these two average spectra, we computed the residual differences 

(black symbols). These differences are expressed as a percentage difference in Fig. 6b (see 

Methods). Fractional differences are largest at spatial frequencies above about ~10 c/deg 

where amplitudes were higher for the original images. Below ~10 c/deg amplitudes were 

higher for the scrambled images, but by a smaller amount. To relate these between-condition 

differences to their likely visibility, we converted the Fourier amplitudes to units of contrast 

(see Methods). As can be seen in Fig. 6c, the differential contrast values are low. They are 

particularly low at higher spatial frequencies where contrast in the images is low, offsetting 

the impact of the larger fractional differences at higher spatial frequencies. These differences 

in image contrast between scene types are likely to be below the observers’ contrast 
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discrimination thresholds based on the threshold levels reported in prior psychophysical 

studies of contrast discrimination of bandlimited targets embedded in high contrast broad 

band backgrounds such as Gaussian noise or natural images (Lu and Dosher, 1999; Chandler 

and Hemami, 2003; Hemami et al., 2006; Bex et al., 2007).

3.3. Evoked responses generated by binocular disparity

The main interest of the present study was determining how monocular scene content 

interacts with complex patterns of horizontal disparity provided by a common set of depth 

maps. By design, the only difference between the monoscopic and stereoscopic versions of 

each of the different stereogram types was the presence of horizontal binocular disparity 

as provided by the ground truth depth maps. Therefore, we isolated disparity-contingent 

responses by subtracting the monoscopic responses from the stereoscopic responses for each 

stereogram type. This subtraction tests the linear summation model of the total response 

being equal to the sum of a response to monoscopic image content plus a response to 

disparity. If monocular image content doesn’t have any effect on disparity processing, the 

differential responses should not differ for the natural, scrambled and random dot versions, 

as they are generated from matched depth maps. If, on the other hand the measured 

responses differ across stereogram types, then there is a non-linear interaction between 

monoscopic scene content and disparity.

Fig. 7a shows the GFP of the difference between monoscopic and stereoscopic responses 

as a function of time for natural, scrambled, and random dot images. A disparity-contingent 

response rises from baseline starting at around 100 msec (see Fig. 7a, and the inset 7b). 

Between 100 and ~ 150 msec, the amplitude of the disparity-contingent response is the 

same for all three conditions, consistent with the disparity response being independent of 

monoscopic scene content. Between 150 ~ 300 msec, the amplitude of disparity-contingent 

responses depended on stimulus type, with response for random dot images being largest, 

followed by the scrambled and natural image responses (Fig. 7a). Between 310 ~ 510 msec, 

the disparity-evoked response to the random dot images has an extra peak that was not 

present in the other two conditions. After 150 msec, monoscopic and stereoscopic scene 

content interact in a non-linear fashion. Note that the GFP of the difference between 2D 

and 3D conditions would have been sensitive to either amplitude or topographic differences 

between the two conditions, had they been present in the raw data.

Because we found topographic differences in the absence of a GFP difference in the 2D 

image-onset responses, we also compared the disparity-contingent scalp topographies using 

TANOVA. Fig. 8a shows time-resolved topographies for the three stimulus conditions that 

were submitted to TANOVA. TANOVA indicated that at least partially non-overlapping 

sources were recruited for disparity processing between 180 ~ 310 msec, 350 ~ 490 msec 

and 570 ~ 650 msec (purple bars). Post hoc tests for pairwise comparisons between natural, 

scrambled and random dot images indicate that all pair-wise differences are significant 

during at least one time period both in terms of response amplitudes) and their topography/

underlying neural generators.

As can be seen in the disparity-contingent scalp field topographies in Fig. 8a, there 

are multiple stable scalp topographies, suggesting stable underlying source configurations/

Duan et al. Page 11

Neuroimage. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processing stages that unfold after stimuli presentation. To assess the stable periods and 

times of transition between different scalp field topographies for each image condition, we 

calculated a global dissimilarity index on the normalized scalp field maps over successive 

time points in order to categorize the brain activity into different “micro-states” (Skrandies, 

1990). The index is in the form of 1 minus the spatial correlation between pairs of successive 

topographies. Fig. 8b displays the resulting dissimilarly index as a function of time. The 

figure shows an initial high dissimilarity period between 0 ~ 100 msec. This is expected 

because the analysis is based on difference maps between 2D and 3D images. This interval 

is before the onset of the disparity-contingent response which occurs around 100 msec (cf 
Fig. 8a,b) and the difference maps are thus expected to very noisy and unstable. The first 

stable micro-state occurs after the onset of the disparity-contingent response for each image 

type and is captured by the relatively low dissimilarity indices for each image type between 

100 ~ 300 msec which correspond to gradually shifting topographies centered over the 

posterior occipital cortex (Fig. 8a).

The second micro-state is captured by another period of relatively low dissimilarity index 

that occurs between 300 ~ 500 msec, following a surge of dissimilarity at around 300 msec. 

The surge of dissimilarity indicates a change of the underlying sources, which can be seen 

in the visualization of topographies in Fig. 8a, where occipital activity switched to a parieto-

central activity that remained relatively stable within an image type until 500 msec. The last 

stable phase of brain activity is during 500 ~ 750 msec that has a more complex topography 

over parietal-occipital cortex. Compared to the highly stable source distributions for the 

first two microstates, the last phase is less reliable in our measurements, as indicated by its 

elevated dissimilarity index. The results from amplitude differences, source differences, and 

micro-states analysis suggest a segmentation of the interaction between monocular image 

content and disparity into three distinct stages: stage I 150 ~ 300 msec, stage II 300 ~ 500 

msec, and stage III 500 ~ 750 msec. Within each of these stages, the maps for each image 

type are relatively stable within an image type but differ from each across the different 

image types and this pattern is recapitulated across the three stages that involve distinct 

topographies.

3.4. Relationship between neural responses and perception

An important goal of studying neural responses is to use that information to predict or 

understand behavioral phenomena. In the case of disparity processing, a link between neural 

activity and depth perception could occur as soon as disparity-contingent activity is present, 

given that the behavioral task was a simple 2D vs 3D discrimination. On the other hand, 

monocular image content interacts with disparity processing starting from 150 msec and 

goes through three distinct processing stages (cf Fig. 8b). To determine which time-points 

contribute to perception, we used repeated measures correlation (Bakdash and Marusich, 

2017) to correlate the behavioral accuracy on the 2D/3D discrimination task with the GFP 

of disparity-contingent responses measured simultaneously during the different processing 

stages (see Fig. 9). The correlation procedure determines whether individual-participant data 

can be explained by common regression parameters across the three stimulus conditions 

(see Methods). Not surprisingly, neural responses during the processing of monocular-image 

content between 50 and 100 msec, e.g. prior to the onset of disparity-contingent responses 
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did not predict the discrimination accuracy (r = −0.09, p > 0.05). Interestingly, the neural 

responses between 100 and 150 msec when disparity sensitivity is present but is insensitive 

to monocular image content also did not predict discrimination accuracy (r = −0.16, p 
> 0.05). However, during the period between 150 ~ 300 msec when disparity responses 

do depend on monocular image content, the higher the GFP, the more accurate the 

discrimination is (r = 0.36, p < 0.001). A similar correlation pattern occurs between 300 

~ 500 msec (r = 0.40, p < 0.001). Finally, during the last phase we identified from the micro-

state analysis (500 to 750 msec), the neural response no longer predicted the behavioral 

accuracy (r = 0.04, p > 0.05), suggesting this phase reflects post-encoding activity.

4. Discussion

Bela Julesz, when first describing the RDS posed the question of whether binocular 

parallax is determined by recognizing and then matching objects or contours in the 

monocular half-images or by first searching for patterns in the fused binocular field 

or both (Julesz, 1960). By showing that parallax could be estimated in the absence of 

monocularly identifiable and familiar features, he argued that binocular pattern matching 

was sufficient to extract parallax. Here we considered the converse – the extent to which 

matches between monoscopic and stereoscopic features influence the extraction of depth. 

Implicit in Julesz’s simple models was an implied order of processing. If monocular pattern 

recognition precedes the computation of parallax, then we might expect that the different 

stereogram types would lead to differences in the early time-course of disparity processing 

given that the monoscopic images differ so dramatically. If the latter was true, we might 

expect a period of common processing comprising this binocular matching process. We find 

evidence that the early time course of disparity processing is not measurably affected by 

monoscopic scene content, but that the later stages are. The pattern of results we observe 

suggests a “late fusion” model of the integration of stereoscopic and monoscopic depth cues 

in which rudimentary features of the depth map are extracted without reference to possibly 

larger-scale monoscopic content.

4.1. Image onset response timing

The earliest evoked responses we measure occur at around 50 msec after the onset of 

monoscopically visible contrast (Fig. 5), consistent with prior intra-cranial studies of the 

latency for information to reach primary visual cortex in human (Yoshor et al., 2007; Regev 

et al., 2018; Martin et al., 2019). In macaque the shortest single-cell onset latencies in V1 

have been estimated to be 20–31 msec (Maunsell and Gibson, 1992), 27 msec (Nowak 

et al., 1995), 34 msec (Schmolesky et al., 1998) and 25–30 msec (Bair et al., 2002), as 

typical examples. The earliest image-onset latencies in macaque V1 to dynamic random dot 

stereograms were measured to be ~20–40 msec, median 54 msec (Gonzalez et al., 2001). 

Another study has measured macaque V1 image-onset times for RDS patterns as the time to 

60% peak response (Nienborg et al., 2005), a more conservative estimator than that used by 

Gonzalez et al., (2001). Nienborg et al.’s onset latencies on this criterion ranged between 42 

and 208 msec, with a median of ~67 msec. To accurately compare latencies across species, 

previous studies have derived a 5/3 species conversion factor (Schroeder et al., 1995; Chen 
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et al., 2007). Our 50 msec image-onset latency would translate to 30 msec in macaque, 

which is in line with the earliest reported image-onset latencies in macaque.

The response amplitudes we measure between 50 and 100 msec have a common amplitude 

trajectory for each image type as indexed by the GFP profile, but the underlying neural 

generators as indexed by the topographic dissimilarity metric differ almost as soon as 

visual cortex starts to process these images. Direct interpretation of some of these results 

is complicated by the fact that we did not explicitly equalize the power spectra of the 

monocular half-images and thus both low-level and higher-level statistics of the half-images 

differed. In particular, the power spectra and chromaticity distribution of the random dot 

patterns were very different from those of the scrambled and intact 2D natural images. These 

latter images were approximately matched to each other on several summary statistics, but 

there were residual differences especially at higher spatial frequencies (see Fig. 6b). Our 

analysis of the contrast of the residual spectral differences between intact and scrambled 

natural scenes indicates that these differences are small in terms of visual contrast and are 

unlikely to dominate the response differences we observe. While the match over commonly 

used summary statistics appears adequate, we have not explored other image-based features 

or statistics that could drive the measured differences. We conclude that the measured 

topographic differences in Fig. 5 arise from differences in low-level features, as well as 

higher-order features in the case of the dot vs intact natural images and primarily, if not 

exclusively, from differences in higher-order statistics not controlled by our application 

of the synthesis algorithm in the case of the intact vs scrambled natural scenes. These 

differences are sufficient to shunt activity to different cortical areas, starting at very early 

time-points, a pattern that is difficult to appreciate in the single-unit literature due to the 

area-onset latencies being measured in separate experiments.

4.2. Onset latency for disparity-contingent responses

After the initial transient response to image onset occurs, disparity-contingent responses 

depart from baseline at around 100 msec for all three types of stereograms (Fig. 7). The 

timing of the onset of disparity-contingent responses is broadly similar to previous studies 

that measured disparity-evoked responses in human with random-dot stereograms (DRDS) 

that isolate the disparity cue (Regan and Spekreijse, 1970; Lehmann and Julesz, 1978; Neill 

and Fenelon, 1988; Michel et al., 1992; Fahle et al., 2003; Şahinoğlu, 2004).

In macaque V1, Durand et al. (2007) have measured the onset latency for disparity tuning 

and compared it to the onset-latency for orientation tuning. These selectivity-onset latencies 

were summarized with respect to the individual-cell latencies to image onset. They found 

that the onset of disparity selectivity lagged the image-onset response by an average of 77 

msec with a semi-interquartile range of 22–148 msec. By contrast, the onset of orientation 

selectivity occurred at an average of 9 msec (2–55 msec). These results indicate that tuning 

for a monoscopically available feature – orientation – occurs shortly after cells begin to 

respond to image onset and well before tuning for binocular disparity emerges. The 77 

msec average relative delay of stereoscopic processing with respect to image onset in the 

Durand et al. study converts to 128 msec in human. We find this relative delay to be 50 msec 
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(e.g.100 msec after stimulus onset) which is more in line with their earliest relative delays 

(22 msec macaque/37 msec human).

In our paradigm and in the great majority of single-unit studies of disparity selectivity, the 

onset of image contrast occurs simultaneously with the onset of disparity. Multiple studies 

of disparity-selective cells in macaque have measured population responses for disparity 

sensitive cells responding to preferred vs non-preferred disparities under these conditions. A 

common feature of these time-courses is an initial response period where the cell response 

is above baseline but is not disparity selective. In macaque V2 (Nienborg and Cumming, 

2006), the single-unit population response histogram leaves baseline at ~30 msec after image 

onset for both preferred and non-preferred disparities (50 msec human equivalent). However, 

it is not until ~125 msec (208 msec human equivalent) that responses to preferred and null 

disparities diverge. This pattern of a non-selective initial transient response to image onset, 

followed by a disparity-selective sustained response has also been observed in MT (Uka and 

DeAngelis, 2004; Ruff and Born, 2015), V4 (Tanabe et al., 2004; Shiozaki et al., 2012), IT 

(Janssen et al., 1999; Janssen et al., 2001, 2003; Uka et al., 2005), TEO (Alizadeh et al., 

2018) and ventral premotor cortex (Theys et al., 2012b). In AIP, one study of 3D curvature 

selectivity showed a difference between image onset latency and disparity selectivity (Theys 

et al., 2012a) that an earlier study with similar stimuli did not (Srivastava et al., 2009). Of 

more direct relevance to the present study is work from the same group (Romero et al., 

2013) that recorded responses in AIP to real-world objects presented in 2D vs 3D formats 

– a mode similar to our presentation of 2D vs 3D scenes. They found that the response to 

image onset occurred at ~45 msec, while the differential response to 2D vs 3D occurred at 

~105 msec, a difference of 60 msec, somewhat longer than what we observe with the species 

conversion.

All of the studies of population response time-courses, except for Durand et al., (2007) did 

not measure the onset of disparity selectivity with respect to the individual-cell image onset 

latency, so there may have been some blurring of the profiles due to variability in onset 

latency across the population (Kiani et al., 2005). A relative delay of disparity-contingent 

responses – as we observe in human is, nonetheless seen in the clear majority of these 

macaque population-average time courses.

Why is the initial cortical response not disparity tuned, even in cells that are disparity 

selective? One possibility is that an abrupt onset of the monoscopic image drives cells into 

saturation and disparity tuning can only be expressed once rapid adaptation has occurred. 

While the initial contrast transient supports rapid decoding of stimulus orientation (Muller 

et al., 2001; Durand et al., 2007), the same might not be true for disparity. Alternatively, as 

in the case of orientation tuning (Ringach et al., 2003), disparity tuning may emerge after 

a period of recurrent intracortical cortical processing has occurred. The Durand et al (2007) 

results suggest either that orientation tuning is more robust to image contrast transients or 

that the period of recurrent processing needed to develop disparity selectivity is longer. 

Studies are needed that dissociate the onset of image contrast from the onset of disparity to 

separate these two possibilities.

Duan et al. Page 15

Neuroimage. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.3. Stereogram-independent, disparity-contingent responses between 100 ~ 150 msec

Disparity-contingent responses to each stereogram type emerge by 100 msec, but they are 

tightly coupled and not measurably different between 100 ~ 150 msec despite the large 

differences in their monoscopic appearance. By design, the stereogram classes were equated 

for disparity and one interpretation of this result is that responsiveness at early time-points 

is limited to a local feature analysis, such as that described by the disparity energy model 

(Ohzawa et al., 1990, 1997). Notably, in the present context, the disparity energy model of 

complex cells explicitly removes a dependence between disparity tuning and the position 

of features in the monocular half-images. Such an operation would make it difficult to 

distinguish the different relationships between disparity edges and monoscopic edges in our 

different stereogram types. Alternatively, it is always possible that our scalp recordings are 

insensitive to differences that might be present and measurable by other means, e.g. absence 

of evidence is not evidence of absence.

4.4. Interaction between monocular image content and disparity processing

After 150 msec, our measurements indicate that monoscopic and stereoscopic image content 

interact. We previously showed that the disparity-contingent response to natural scenes, 

measured as the difference potential between monoscopic and steroscopic scenes, was larger 

for scenes that had a larger difference potential between intact and scrambled monoscopic 

scenes (Duan et al., 2018). Scenes with “stronger” monoscopic content supported a larger 

disparity-contingent response, suggesting that monoscopic scene content interacts with 

disparity. While that analysis was consistent with an interaction between monoscopic and 

stereoscopic image content, it was not time- resolved and lacked a direct experimental 

manipulation of the relationship between monoscopic and stereoscopic image content. Here 

we find response amplitudes for the three types of depth-map-matched stereograms differed 

from 150 msec (Fig. 7a), indicating that interaction between monocularly available image 

content and the structure of the depth maps occurs no later than this time-point. At this 

point, it is not clear exactly which monoscopic image features interact with disparity. We can 

say that these features are higher-order than those preserved by the scrambling algorithm.

Previous work on interactions between disparity and monocular depth cues has used 

synthetic stimuli portraying pairs of depth cues rather than natural scenes that contain 

multiple cues. Observers have been shown combine information from texture and disparity 

when judging surface orientation (Hillis et al., 2002) and disparity and shading information 

when judging perceived depth (Lovell et al., 2012). Human imaging studies have similarly 

examined combinations of pairs of depth cues generated in synthetic images (Welchman 

et al., 2005; Ban et al., 2012; Dovencioglu et al., 2013; Murphy et al., 2013), implicating 

second-tier extra-striate visual areas such as V3B/KO. Single-unit recordings in macaque 

have found evidence for combination of disparity and texture/perspective cues in Caudal 

Intraparietal (CIP) cortex (Taira et al., 2000; Tsutsui et al., 2001; Rosenberg and Angelaki, 

2014) and disparity and relative motion in MT of macaque (Armendariz et al., 2019) and 

V3B/KO in human (Ban et al., 2012). While these previous studies have implicated some 

important higher-order cues such as shading and perspective as interacting with disparity, 

the previous literature has not addressed the multi-stage temporal evolution of monoscopic 

and stereoscopic processing as done here. Importantly, while an earlier stage of disparity 

Duan et al. Page 16

Neuroimage. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processing (100 ~ 150 msec) can be probed equivalently by the RDS and other stereograms, 

RDS-based experiments may not fully reflect depth processing in natural scenes due to the 

non-linear effects we demonstrate here at later time-points.

4.5. Temporal stages of disparity processing and association with perceptual decision 
making

We find two stable disparity-contingent cortical micro-states between 150 to 300 and 

between 300 to 500 msec (Fig. 8), both occurring well before the motor responses that occur 

roughly 1 sec later. It is therefore unlikely that activity during either of these microstates 

reflects motor response preparation or execution, rather these micro-states may reflect a 

temporally extended period of joint encoding of monoscopic and stereoscopic cues that is 

accomplished within at least two broad but distinct cortical networks. Based on the scalp 

topographies, the first is likely to be located in posterior occipital and temporal areas and 

the second in dorsal occipital and parietal areas (see Fig. 8). Importantly, within each of 

these stable micro-states, the detailed topography and thus underlying sources differ across 

stereogram types (Fig. 8b).

Perceptual read-out of depth appears to rely on these two stages of processing that start 

at ~150 msec, rather than on the earlier stage of processing between 100 and 150 msec 

that is disparity contingent, but not stereogram dependent (see Fig. 9). This relatively 

late perceptual access to the internal disparity response is consistent with a recent study 

of the temporal order of binocular depth perception that suggested that perceptual access 

occurs at around 200 msec after stimulus onset (Caziot et al., 2015). Data from single-unit 

electrophysiology also suggests relatively late perceptual access. For example, responses to 

anti-correlated RDS that support disparity tuning but not perceptual depth are progressively 

rejected from V1 to V4 and IT (Janssen et al., 2003; Tanabe et al., 2004). Similarly, 

sensitivity to relative disparity, key to perceptual stereopsis and extracting shape from 

disparity is poor in V1 and increases as the cortical hierarchy is ascended (Anzai et al., 

1997; Cumming and Parker, 1999; Janssen et al., 2001; Thomas et al., 2002; Umeda et al., 

2007). Finally, and more directly relevant to the present work, choice probability for surface 

orientation defined by disparity and texture cues is found in CIP, but not in V3A of macaque 

(Elmore et al., 2019).

We linked brain and behavior by exploiting the co-variation of individual differences in the 

amplitude of the disparity response and individual differences in discrimination accuracy. 

Importantly, the pattern of response amplitudes seen in the group data (Fig. 5 and 7) is 

also reflected at the individual level: the pattern of GFP amplitude over the three stimulus 

conditions is predictive of accuracy on an individual-subject basis, indicating a causal 

relationship between brain response amplitudes and perceptual accuracy. One thing worth 

noting in our experiment is that the response time is around 1400 msec after stimuli onset, 

with the best performance not faster than 1290 msec. It is possible that the two stages 

of disparity processing just described are both involved in disparity encoding, with the 

perceptual decision being reached after an extended period of evidence accumulation. The 

stimulus-locked analysis we have performed here favors the former over the latter. It would 
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be useful to analyze responses that are locked to the time of the motor response to better 

explore the hypothesized accumulation stage (Cottereau et al., 2014).

5. Conclusions

By experimentally controlling for image depth maps and systematically manipulating 

monoscopic image content, we identified multiple disparity-encoding stages, with the 

earliest stage between 100 ~ 150 msec being insensitive to monoscopic image content. 

This stage is followed by two additional disparity-contingent stages between 150 ~ 500 

msec that were image-content sensitive and predictive of behavioral accuracy on a disparity-

discrimination task. Our results demonstrate that while the earliest stage of disparity 

processing can be effectively probed with RDS, the results may not fully reflect the nature 

of depth processing in natural scenes. Further work with more sophisticated experiments 

involving a combination of natural and naturalistic stimuli will be necessary to clarify the 

role of monocular image statistics and monocular depth cues in relationship to disparity 

processing.
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Fig. 1. 
A high-level block diagram of depth-image-based synthesis. The top row shows the 

monoscopic source texture in the middle and the left and right input depth maps on either 

side. In each depth map, we can use the depth value for a pixel to compute where it maps to 

in the monoscopic texture image (shifts shown in black arrows). The corresponding output 

textures generated using texture-lookup are shown in the bottom row. Dis-occluded areas are 

highlighted with a red border.
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Fig. 2. 
An example of three different stereograms based on a common natural-scene depth map. 

Left: Natural scene stereogram. Middle: Scrambled-scene stereogram with matched depth 

map. Right: Random Dot Stereogram with matched depth map. Note: For illustration 

purposes, the images shown here are stereopairs for a blue-red anaglyph. In the experiment, 

the images were viewed through a pair of shutter glasses.
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Fig. 3. 
Experiment trial structure. A mean luminance matched prelude image was displayed with 

a fixation cross in the center for 750 msec, followed at random by a natural image, a 

scrambled image, or a random dot image in either 2D or 3D formats. 2D images comprised 

identical image pairs to left and right eyes. 3D images comprised 3D disparate half-images 

to left and right eyes. A block consisted 240 trials, with each version of scene presented 

once. A uniform gray background was displayed between each trial until the response was 

made.
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Fig. 4. 
Mean accuracy and response time for the different image conditions. Left: Mean accuracy 

averaged across subjects plotted for natural images (red), scrambled images (green) and 

random dot images (blue). Right: Mean response time, averaged across subjects, plotted for 

natural images (red), scrambled images (green) and random dot images (blue). Error bars 

represent the standard error of the mean corrected for within-subject correlations (Morey, 

2008).
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Fig. 5. 
Global field power of 2D image response and average brain topographies between 50 ~ 100 

msec. a.) GFP of 2D natural image (red), 2D scrambled image (green), and 2D random 

dot image (blue) responses are plotted as a function of time. Shaded area represents the 

standard error of the mean. Randomization statistics were used to compare mean GFPs 

across the three conditions. The purple/grey bars on the horizontal axis indicate the time 

points at which a significant difference occurred, uncorrected for multiple comparisons. 

Runs of significant values surviving multiple comparison correction are indicated by purple, 

while those failing correction are indicated by grey. The monocular images start to elicit 

differential brain response between 100 ~ 140 msec, 180 ~ 320 msec and 635 ~ 680 msec. 

b.) A zoomed in view over the first 100 msec. The GFPs of each image condition rise from 

baseline starting at around 50 msec, which is indicated by the dashed red line. Between 50 ~ 

100 msec the GFPs were tightly coupled and no significant difference was observed during 

this time period. c.) The average scalp field maps during 50 ~ 100 msec for each 2D image 

condition and different underlying sources can be directly observed in this visualization.
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Fig. 6. 
Comparison of summary statistics of intact and scrambled natural scenes. a) Amplitude 

spectra for intact natural scenes (blue), scrambled scenes (red) and the difference (black). 

b) Difference in amplitude between intact and scrambled scenes scaled to scene with 

largest amplitude. c) Fourier contrast as a function of spatial frequency for intact (blue) 

and scrambled scenes (red) and the difference (black).
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Fig. 7. 
Global Field Power of disparity-contingent responses. a.) GFP of disparity-contingent 

responses for natural images (red), scrambled image (green), and random dot image (blue), 

plotted as a function of time. Shaded areas represent the standard error of the mean (N 

= 50). An analysis of GFP using randomization statistics was used to compare the mean 

GFP across the three conditions. The purple/grey bars on the horizontal axis indicate the 

time points at which a significant difference occurred. Runs of significant values surviving 

multiple comparison correction are indicated by purple, while those failing correction are 

indicated by grey. Disparity sensitivity starts to elicit a differential brain response between 

150 ~ 300 msec, and between 310 ~ 510 msec. b.) A zoomed in view over the first 150 msec 

after stimulus onset. The GFPs for disparity-sensitivity across the three image conditions 

each rise from baseline starting at around 100 msec as indicated by the dashed red line. 

Between 100 ~ 150 msec the GFPs were tightly coupled and no significant differences were 

observed during this time period.
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Fig. 8. 
The normalized topographies of disparity-contingent responses for different image types 

and how they change over time. a. Normalized brain topographies of disparity-contingent 

responses for natural, scrambled, and random dot images. The topographies differed during 

180 ~ 310 msec, 350 ~ 490 msec and 570 ~ 650 msec, corrected for multiple comparisons, 

as indicated by the purple bands below the timeline. b. A global map dissimilarity index 

was plotted for each of the image types, indicating the spatial correlation between pairs of 

successive topographies. Two highly stable micro-states were identified during 150 ~ 300 

msec and 300 ~ 500 msec.
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Fig. 9. 
Correlation between GFP of disparity-contingent responses and 2D/3D discrimination 

accuracy across different time bins. The grey regression lines indicate the common slope 

fitted to each individual’s repeated measurements across three stimulus types. GFP of 

disparity-contingent response is predictive of behavioral accuracy of 2D/3D discrimination 

tasks between 150 ~ 300 msec (r = 0.36, p < 0.001), and between 300 ~ 500 msec (r = 0.40, 

p < 0.001). The correlation coefficients and their significance levels are annotated as insets 

in each panel (N = 50).
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