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Abstract

Characterizing the metabolic profile of a microbial community is crucial for understanding its 

biological function and its impact on the host or environment. Metabolomics experiments directly 

measuring these profiles are difficult and expensive, while sequencing methods quantifying the 

species composition of microbial communities are well-developed and relatively cost-effective. 

Computational methods that are capable of predicting metabolomic profiles from microbial 

compositions can save considerable efforts needed for metabolomic profiling experimentally. Yet, 

despite existing efforts, we still lack a computational method with high prediction power, general 

applicability, and great interpretability. Here we develop a method — mNODE (Metabolomic 

profile predictor using Neural Ordinary Differential Equations), based on a state-of-the-art 

family of deep neural network models. We show compelling evidence that mNODE outperforms 

existing methods in predicting the metabolomic profiles of human microbiomes and several 

environmental microbiomes. Moreover, in the case of human gut microbiomes, mNODE can 

naturally incorporate dietary information to further enhance the prediction of metabolomic 

profiles. Besides, susceptibility analysis of mNODE enables us to reveal microbe-metabolite 

interactions, which can be validated using both synthetic and real data. The presented results 
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demonstrate that mNODE is a powerful tool to investigate the microbiome-diet-metabolome 

relationship, facilitating future research on precision nutrition.

Introduction

Metabolic activities of microbial communities play an important role in shaping their 

biological functions and their interactions with hosts or environments. For example, a key 

way the human gut microbiome affects host physiology involves the production of small 

molecules1–3. Microbes in the gut can digest undigestible carbohydrates4 and eventually 

produce important metabolites such as essential amino acids5 and short-chain fatty acids2, 

which are crucial for human well-being6–8 To understand and eventually control microbial 

communities by modulation of nutrients or probiotic administration, the first step is to 

connect the metabolomic profile of a microbial community with its microbial composition.

Experimental measurement of metabolomic profiles usually requires metabolomics 

techniques. However, metabolomics experiments are difficult because of expensive 

equipment9–11, lack of automation12,13, and limited metabolite coverage9,14. In contrast, 

amplicon or shotgun metagenomic sequencing data are more readily available for complex 

microbial communities because they are less expensive, more easily automated, and provide 

good microbial coverage15,16. Hence, it is desirable to develop a computational method to 

predict metabolic profiles based on microbial compositions. Moreover, such a method could 

facilitate our understanding of the interplay between microorganisms and their metabolites.

Numerous computational methods have been proposed to achieve this goal, and they 

can be divided into the following three categories. (1) Reference-based methods such 

as MAMBO17, MIMOSA18, and Mangosteen19 that rely on genome-scale metabolic 

models (GEMs). As a result, they rely heavily on the completeness and accuracy of 

queried databases and GEMs. (2) Ecology-guided methods, which simulate metabolite 

consumption and byproduct generation by microbes20–23. Those methods heavily rely on 

the quality of ecological networks. (3) Machine learning (ML)-based methods, which are 

trained from paired microbiome and metabolome datasets, and then used to predict the 

metabolic profile of never-seen microbiome samples, without using any reference database 

or domain knowledge regarding relationships between genes and metabolites. Various ML 

techniques such as elastic net24, sparsified NED (Neural Encoder-Decoder)25, multilayer 

perceptron26, and word2vec27 have been employed to predict metabolic profiles from 

microbial compositions. However, none of these ML-based methods utilize state-of-the-art 

deep neural network models such as Neural Ordinary Differential Equation (NODE)28, so 

their performance has not been fully maximized.

Residual neural networks (ResNet) are the precursor of NODE. As the most important 

characteristic of ResNet, the skip connection is highly analogous to the Euler step in 

ODE solvers29,30. More specifically, one residual block can be regarded as a small time-

change of variables in the language of ODEs29,30. This analogy fostered the invention of 

NODE28. Rather than specifying a discrete sequence of hidden layers like ResNet, NODE 

parameterizes the derivative of the hidden state using a neural network with output computed 

using an ODE solver. In a sense, NODE represents continuous-depth models, has constant 
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memory cost, adapts its evaluation strategy to each input, and can explicitly trade numerical 

precision for speed28,31. As a result, higher accuracy can be achieved with fewer parameters 

and without explicitly introducing many neural layers28,31.

Here we leverage the power of NODE and propose a computational method called 

mNODE to predict metabolomic profiles from microbial compositions. We first generated 

synthetic data using the microbial consumer-resource model with cross-feeding interactions 

to validate that (1) mNODE outperforms existing ML-based methods, and (2) supplementing 

the information about nutrients as an additional input variable results in more accurate 

metabolome predictions, especially when the nutrient similarity across samples is low. 

We then compared mNODE with existing ML-based methods using microbiome and 

metabolome data collected in real microbial communities finding that mNODE outperforms 

all existing ML-based methods. Moreover, we demonstrated that we could further improve 

the performance of mNODE by including food profiles from food frequency questionnaires 

as an additional input. Finally, to reveal microbe-metabolite interactions, we performed 

susceptibility analysis using mNODE to study how the predicted concentration of one 

metabolite responds to a perturbation in the relative abundance of one microbial species. 

We demonstrated clearly that susceptibilities for all microbe-metabolite pairs can be used to 

accurately predict microbe-metabolite interactions of synthetic and real data.

Results

Overview of mNODE

We aim to predict the metabolomic profile of a microbial community based on its 

microbial composition and the potentially available information about diets. Fig. 1 shows 

a hypothetical example of two training scenarios when we follow the same model training 

protocol for mNODE: (1) without the dietary information as part of the input and (2) with 

dietary information as part of the input. The performance of two scenarios is compared to 

understand to what extent the existence of dietary information helps our predictions. This 

demonstrative example system comprises 3 microbial species, 2 dietary items, 4 metabolites, 

and 15 samples. 10 samples are used in the training set and the remaining 5 samples are 

in the test set. For a given set of samples with paired microbiome and metabolome data, 

we randomly split samples into two non-overlapping sets: the training set and the test set. 

We performed a 5-fold cross-validation on the training set to determine the optimal set of 

hyperparameters that maximizes the prediction power. Here, for each metabolite, we can 

calculate the Spearman’s Correlation Coefficient (SCC), denoted as ρ, between its predicted 

and experimentally observed concentrations across different samples. The overall prediction 

power of any computational method such as mNODE is evaluated as the mean SCC, ρ‾, of 

all metabolites measured in experiments. After the 5-fold cross-validation, we retrained the 

model with the optimal set of hyperparameters on the entire training set and then used this 

trained model to generate predictions on the test data (Fig. 1c).

Since the numbers of microbial species Ns  and metabolites Nm  are generally different 

from each other, it is not possible to directly apply the original NODE architecture28, which 

requires the input and output dimensions to be equal. Here, we leverage the flexibility 
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of the Multilayer Perceptron (MLP) in the data dimension and introduce the NODE as a 

module in the middle, stuck between two densely connected layers (Fig. 1b). Our NODE 

module maps the hidden variable x t = 0 ∈ ℝNh at time t = 0 to its state x t = T ∈ ℝNh at 

time t = T  following the ODE dx
dt = f(x) where f(x) is approximated by the learnable MLP 

with one hidden layer with dimension Nh (Fig. 1b, middle). Note that here the variable 

t is a virtual time representing the continuous transformation of the hidden units in the 

NODE architecture. It should not be interpreted as a real time. We choose T = 1 without loss 

of generality since the ODE can be rescaled. In this study, we did not attempt to predict 

changes in metabolomic profiles over time; instead, the essential idea is to use NODE to 

reduce memory and training time since NODE shares connection weights across continuous 

layers and utilizes fewer parameters. The L2 regularization is adopted to prevent overfitting. 

In total, there are two hyperparameters in mNODE to calibrate: the dimension of the hidden 

layer Nh and the weight parameter for L2 regularization λ.

Validate mNODE using synthetic data

To validate mNODE, we generated synthetic data using the Microbial Consumer-Resource 

Model (MiCRM) which accounts for nutrient competition and cross-feeding interactions32. 

We created each independent synthetic community ("sample") via sampling a set of 

species from a metapopulation pool (each species is introduced with the species 

sampling probability ps) and a set of nutrients from a nutrient pool (each nutrient is 

introduced with its predetermined supply rate with the nutrient sampling probability pn) 

to initiate the community assembly and then collecting the steady-state microbial species 

relative abundances as microbial compositions and steady-state nutrient concentrations as 

metabolomic profiles. Details can be found in see Supplementary Information section 3. 

Specifically, we assumed a metapopulation pool of 10 species Ns = 10  and a nutrient pool 

of 10 nutrients Nn = 10  with predetermined nutrient supply rates for all nutrients.

To explore whether mNODE generates better metabolome prediction than previously 

existing ML-based methods, we generated 300 samples with ps = 0.5 and pn = 0.6. We left 

out 20% of all independent samples (60 samples) as the test dataset, whereas the remaining 

240 samples are used as the training dataset. Figs. 2a1–a3 show the performance comparison 

between mNODE and previous ML-based methods through 3 metrics: (1) mean SCC, ρ‾
(Figs. 2a1, b1,c1), (2) the mean of the top-5 SCCs, ρ‾5 (Figs. 2a2, b2, c2), and (3) the number 

of metabolites (same as nutrients in the MiCRM) with SCCs larger than 0.5, Nρ > 0.5 (Figs. 

2a3, b3, c3). We found that mNODE generates better predictions than all other methods 

across three performance metrics. In addition, when we incorporated nutrient supply rates as 

well as microbial composition as the input of mNODE (denoted as “mNODE + nutrients” in 

Figs. 2a1–a3), it yields the best prediction.

We also examined the influence of training sample sizes by sub-sampling the original 240 

training samples and keeping the same test set. When nutrient supply rates are not used 

in the input, the performance reaches saturation when the training sample size reaches 

8 Nn + Ns  (Figs. 2b1–b3). In contrast, when nutrient supply rates are added to the input, 

the performance saturated as the training sample size is around 4 Nn + Ns . Furthermore, 
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we tested mNODE on synthetic data generated with larger numbers of species(Ns = 100
or 200) and metabolites (Nm = 100, 200, or 300) and found that mNODE achieves a great 

performance when the number of training samples is around 3Ns, independent of the number 

of metabolites Nm (Extended Data Figure 5). A similar scaling happens to MelonnPan and 

MiMeNet but not for poor predictors such as sparse NED and ResNet.

It is natural to speculate that the performance difference may also depend on the nutrient 

similarity across samples because the less variable nutrient information might render it 

less useful in discriminating metabolomic profiles. To test this, we systematically tune the 

nutrient sampling probability pn because higher pn implies more similar nutrient supplies. 

Figs. 2c1–c3 show how three performance metrics change as pn increases. We found that 

when nutrient supply rates are not included in the input of mNODE, all 3 metrics increase 

as pn increases. When nutrient supply rates are included in the input, the performance of 

mNODE is consistently high over a wide range of values for pn. When pn = 100%, there isn’t 

any variation in nutrient supply rates to independent communities across samples and thus 

nutrient supply rates become redundant (closer metric values in Figs. 2c1–c3).

Superior performance of mNODE on real data

Next, we sought to test it using real datasets with paired microbiome and metabolome. 

We started with the dataset PRISM + NLIBD that collected fecal samples from CD 

(Crohn’s Disease) patients, UC (Ulcerative Colitis) patients, and healthy individuals33. This 

benchmark dataset is unique due to the presence of two IBD cohorts: a 155-member cohort 

collected at the Massachusetts General Hospital (PRISM) and a 65-member validation 

cohort collected in the Netherlands (NLIBD/LLDeep). Two cohorts were collected following 

the same protocols and processed in the same way (see Methods and Franzosa et al33 for 

more details). For this dataset, we first selected hyperparameters for mNODE based on 

results of the 5-fold cross-validation of the PRISM cohort. Then, we trained mNODE with 

the selected hyperparameters on the entire PRISM cohort and computed predictions for 

the NLIBD cohort’s metabolome. Similar to the previous three metrics, here we assessed 

the model performance based on ρ‾, ρ‾50, and Nρ > 0.5. Though all metabolites are used in the 

training of ML methods, we only included annotated metabolites in the metric calculation 

to be in line with previous studies to ensure a fair comparison24,26. Figs. 3a1–a3 show the 

performance of 5 methods on the test set NLIBD after their training process on PRISM. 

We found that mNODE had the highest ρ‾ (0.287 compared to 0.191 from MiMeNet), the 

highest ρ‾50 (0.622 compared to 0.512 from MiMeNet), and the highest Nρ > 0.5 (69 compared 

to 28 from MiMeNet) among all ML-based methods. Furthermore, we directly compared ρ
of annotated metabolites via a scatterplot in Extended Data Figure 1. 75.8% of metabolites 

are better predicted by mNODE than MiMeNet (Extended Data Figure 1c)

To examine if the superior performance of mNODE is independent of environments where 

microbial communities reside, we collected another four datasets: (1) lung sputum samples 

of 172 patients with cystic fibrosis21, (2) 19 desert soil biocrust samples after the five 

continuous wetting events34,(3) fecal samples of 340 children at the age of 3 years 

enrolled in the VDAART (Vitamin D Antenatal Asthma Reduction Trial) study35–38, and 
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(4) blood plasma samples of the same 340 children in VDAART35–38. The systematic 

comparison of different methods across the four datasets is shown in Fig. 3b–e. Across four 

datasets, mNODE delivered the best performance. Finally, to check whether mNODE with 

different initial parameters would generate consistent performance after the training, we ran 

mNODE 50 times for each real microbial community dataset and found that the predictive 

performance is very robust (Extended Data Figure 8).

Food profiles further improve the metabolome prediction

One unique feature of VDAART is the documentation of food consumption frequency. We 

obtained food profiles based on the food frequency questionnaire (FFQ) that captures food 

and beverage consumption over time39–42. Later, we converted their food consumption 

frequencies into nutritional profiles based on the nutrient composition encoded in the 

FNDDS (USDA’s Food and Nutrient Database for Dietary Studies)43 database. Details 

about FFQs and FNDDS are specified in the Supplementary Information section 6.

Equipped with the dietary information, we explored the relative importance of the 

gut microbial composition, food consumption, and nutrient intake in determining the 

metabolomic profiles by training the mNODE in different data combinations and later 

comparing their differences in the prediction power. Using food profiles or nutritional 

profiles alone as the input produced almost equally poor performance (Fig. 4). The 

combination of microbial composition and food profiles seems to be the most successful 

approach, as indicated by consistently the best performance across three metrics and two 

environments. This indicates that the variation of food consumption across individuals 

may help us to predict the metabolomic profiles better. One reason why the addition of 

food profiles may be more helpful than adding nutritional profiles is that the Bray-Curtis 

dissimilarity of nutritional profiles across paired samples is much lower than that of food 

profiles (Extended Data Figure 2).

Inferring microbe-metabolite interactions

To interpret mNODE, we proposed a method that perturbs the relative abundance of species 

i xi  by a small amount Δxi for well-trained mNODE, re-predicts the concentration of 

metabolite α, and measures the deviation from the original prediction (we denoted the 

deviation as Δyα). We defined the susceptibility of metabolite α to species i as sαi = Δyα
Δxi

 (Fig. 

5a). Our definition of susceptibility follows the definition of differential susceptibility in 

physics and is very similar to the concept of "sensitivity" in engineering sciences (which is 

a property of a system that indicates how the system reacts to stimuli). sαi < 0 means that a 

higher abundance for species i leads to a lower predicted concentration for metabolite α and 

might imply that species i can consume metabolite α. Similarly, sαi > 0 probably corresponds 

to the production of metabolite α by species i. More technical details about how to compute 

sαi are in the Methods section.

We first validated the idea on the synthetic data used in Figs. 2a1–a3 since we can 

directly compare the susceptibility matrix (Fig. 5b) with the ground-truth consumption 

interactions (Fig. 5c) and production interactions (Fig. 5d) in MiCRM. It is visually evident 
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that many ground-truth interactions in Fig. 5c are correctly revealed in the susceptibility 

matrix (indicated by having red colors in Fig. 5b). For a given susceptibility threshold sthres, 

we classified microbe-metabolite pairs into either (1) consumption interactions if s < sthres

or (2) production interactions if s > sthres. Then we changed the threshold sthres, performed 

the classification task for each threshold, computed TP (True-Positive) rates and FP (False-

Positive) rates for all thresholds, and measured the AUC (Area Under Curve) for the 

ROC (Receiver Operating Characteristic) curve. We found that, for synthetic data, the 

susceptibility can predict consumption interactions with great performance (AUC=0.95) 

and production interactions with decent performance (AUC=0.69). When we imposed 

the constraint that production interactions don’t overlap with consumption interactions in 

MiCRM, the prediction power for production interactions is almost equivalent to that for 

consumption interactions (Extended Data Figure 3e).

We eventually applied the validated susceptibility method to all real-life datasets and 

susceptibility values for all datasets are provided as Supplementary data/tables. Here we 

focused on the dataset PRISM + NLIBD because gut microbiomes of human adults have 

been investigated more extensively. We first tested the robustness of susceptibility values 

by computing them from five mNODE models trained with different initial parameters 

for the PRISM+NLIBD dataset and found that susceptibility values from five training 

repeats are highly correlated (Extended Data Figure 9). Here we focused on the bile 

acid metabolism which is relatively well-studied44–48 and is shown to be associated with 

human gastrointestinal diseases such as gastrointestinal cancers47 and IBD49,50. Bacteroides 
vulgatus ATCC 8482 has large positive susceptibilities for cholate and chenodeoxycholate. 

This is supported by the genomic evidence that Bacteroides vulgatus ATCC 8482 contains 

the bsh (bile salt hydrolase) gene, which encodes the BSH enzyme responsible for 

the deconjugation of conjugated primary bile acids to primary bile acids cholate and 

chenodeoxycholate44,48. Similarly, Lachnospiraceae bacterium 5 1 57FAA has large positive 

susceptibilities for deoxycholate and lithocholate, as evidenced by the presence of the bai 
(bile-acid-induced) operon in its genome, which transforms primary bile acids cholate and 

chenodeoxycholate to secondary bile acids deoxycholate and lithocholate respectively48. By 

constrast, all susceptibilities of Streptococcus salivarius are much closer to zero compared 

with other entries in the susceptibility matrix and its genome indeed contains no genes 

related to bile acid metabolism48.

Discussion

Computational methods, capable of predicting metabolite levels using microbial 

composition, offer a much more cost-effective way to quantify the distribution of metabolite 

concentrations across samples. Moreover, such a model might help us better understand 

the interaction of microbes and metabolites. In this study, we developed the mNODE 

method, which produces better metabolome predictions than almost all previously developed 

methods. Furthermore, we further improved the performance of mNODE by including 

food profiles together with the microbial composition as the input of mNODE. Finally, 

we showed that mNODE infers microbe-metabolite interactions accurately on synthetic 

data and a human dataset (PRISM+NLIBD) via susceptibility analysis. We would like to 
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highlight whether inferred interactions do exist has to be tested experimentally. After all, the 

prediction performance is far from perfect (ρ‾ smaller than 0.5 for most cases). In the future, 

if more omics data such as the metatranscriptome and metaproteome are available, they can 

also be easily incorporated as inputs of mNODE to investigate the relative importance of 

each data type in predicting the metabolome.

Compared to reference-based methods17–19 such as MAMBO17,MIMOSA18, as well as 

Mangosteen19, ML-based methods are better at predicting metabolomic profiles and do 

not require complete GEMs as inputs. For example, it has been previously shown that 

MelonnPan produces 130 well-predicted KEGG metabolites for the PRISM+NLIBD dataset 

(measured by Nρ > 0.3) without using metabolic models, much higher than 20 for MIMOSA24. 

The performance of reference-based methods is limited due to the lack of complete GEMs 

for many microbial species.

The current method of documenting diet information via the FFQ has some limitations51. 

On one hand, the systematic error in the consumption amount occurs because the FFQ only 

surveys the frequency of eating one food item, rather than the amount of each food item 

eaten per meal. Digital documentation of the amount of food eaten for every meal may 

alleviate this error51. On the other hand, the FFQ lacks detailed information about food 

product brands and food preparation. A similar issue arises when food profiles in FFQs 

are converted into nutritional profiles due to limited nutrient items and the lack of detailed 

nutrient composition. A detailed metabolomic analysis of a comprehensive set of foods 

might be important for the advancement of precision nutrition52.

We notice that the prediction accuracy for microbial communities collected from lungs21 

and soils34 is higher than that for human gut microbiomes (i.e. PRISM + NLIBD33 

and VDAART35–38 ), regardless of computational approaches utilized. This implies that 

metabolomic profiles of some microbiomes are harder to be predicted than others and we 

suspect that this is due to the difference in the ratio between the input dimension Ns  and 

the output dimension Nm . For instance, for lung samples21, the number of microbial taxa 

(1119) is much larger than the number of metabolites (168). As a comparison, for fecal 

samples in PRISM + NLIBD, the number of microbial taxa (200) is much smaller than 

the number of metabolites (8848). This comparison just showed the complexity of inferring 

metabolomic profiles for human gut microbiomes.

Methods

Datasets.

PRISM + NLIBD fecal samples.—This dataset was reported by a study related to 

the fecal microbiome and metabolome samples of IBD patients33. There are two cohorts 

involved in the study. The first cross-sectional cohort of individuals was collected by a study 

PRISM (the Prospective Registry in IBD Study at MGH). This cohort includes 68 patients 

with Crohn’s disease (CD), 53 patients with ulcerative colitis (UC), and 34 healthy controls. 

The second study cohort (NLIBD/LLDeep) was independently collected in the Netherlands 

and consists of 20 CD patients, 23 UC patients, and 22 healthy controls. Fecal samples 

from both cohorts were collected following the same protocol and later both the microbiome 
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and metabolome are profiled and analyzed in the same way. In total, 200 microbial taxa 

were generated using the metagenomic shotgun sequencing and 8848 unique metabolites 

were obtained by four LC-MS (Liquid Chromatography-Mass Spectrometry) metabolomics 

methods. Out of 8848 unique metabolites, 466 are annotated. In all machine learning tasks, 

all data (microbial composition and metabolomic profiles) related to individuals in PRISM 

are used as the training set and the external validation cohort NLIBD/LLDeep is used as the 

test set.

Cystic fibrosis lung samples.—lung sputum samples from 172 patients were collected 

in a study that investigates how the chemical gradient drives the shift in the microbiome 

structure and the pattern of metabolite production21. 1119 microbial features were 

determined by the 16S rRNA gene sequencing and profiles of 168 metabolites were 

generated by the tandem liquid chromatography-mass spectrometry (LC-MS/MS) and gas 

chromatography-mass spectrometry (GC-MS) metabolomics. For all machine learning tasks, 

an 80/20 train-test split with the random state set as 42 is utilized to guarantee a fair 

comparison.

Desert soil biocrust samples.—Swenson et al describes how biocrusts from four 

successional stages were wet up and sampled at five time points for each stage34.466 

dominant taxa were determined by the shotgun metagenomic sequencing that measures 

their single-copy gene markers. The liquid chromatography-mass spectrometry (LC/MS) soil 

metabolomics identified 85 metabolites that changed at least two-fold across both wetting 

and successional stages. An 80/20 train-test split with the random state set as 42 is utilized 

for all models.

VDAART children’s fecal samples, plasma samples, and FFQ data.—VDAART 

(Vitamin D Antenatal Asthma Reduction Trial ) is a trial of prenatal vitamin D 

supplementation to prevent asthma and wheezing offspring35,36. Fecal samples and blood 

plasma samples of 340 children at the age of 3 years were collected. The 16S rRNA gene 

sequencing identified the microbiome profiles of 209 microbial taxa in fecal samples38. 

Primer and adapter trimming was performed using Skewer. Chimera checking and filtering 

were performed using Qiime253. Reads were denoised using DADA2 as implemented in 

Qiime254. The metabolomic profiles of both fecal and blood samples are generated via 

the using ultra-high performance liquid chromatography-mass spectrometry (UPLC-LC/MS) 

as previously described37,38,55. Identification of known chemical entities was based on a 

comparison to metabolomic library entries of purified standards based on chromatographic 

properties and mass spectra. 1298 metabolites were determined in the fecal samples and 

1064 metabolites were determined in blood samples. Besides, we extracted their diet 

information from the section in the 36 Months Quarterly Infant Follow-up Questionnaire 

that documented the food frequency consumed by children37. Child diet was evaluated 

at age of 3 years when parents completed a modified version of a semi-quantitative 87-

item food frequency questionnaire (FFQ) that was previously validated in preschool-age 

children56. The food frequency table can be further converted to the nutritional profiles using 

FNDDS (USDA’s Food and Nutrient Database for Dietary Studies) which is a database that 

is used to convert food and beverages consumed into gram amounts and to determine their 
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nutrient values. All 340 children are divided into either the train set or the test set with an 

80/20 ratio with the random state set as 42.

mNODE.

The NODE (Neural Ordinary Differential Equations) is a deep learning method that 

combines explicit layers with implicit layers where the states of hidden layers are described 

by Ordinary Differential Equations. Our mNODE introduces the NODE as a module in the 

middle.

• Data processing: The CLR (Centered Log-Ratio) transformation is applied to 

microbial abundances and metabolite concentrations.

• Model detail: The architecture consists of 3 connected modules: (1) one fully 

connected layer that maps the input (such as the microbial composition) to 

the hidden layer with dimension Nh followed by an activation function, (2) 

Neural ODE module28 where the first-order time derivative is approximated by a 

one-hidden-layer MLP with the hidden layer dimension the same as Nh, and (3) 

one fully connected layer that maps from the hidden layers to the output (i.e., 

the metabolomic profiles). The L2 regularization with the weight parameter λ is 

assumed to prevent overfitting.

• Training method: Adam optimizer57 is used for the gradient descent. The 

training stops if the mean SCC (Spearman Correlation Coefficient) of annotated 

metabolites ρ‾ on the validation/test set starts to decrease within the past 20 

epochs. The criterion for the decrease is judged by whether the number of 

decreases of the mean SCC ρ‾ in the past 20 epochs (i.e., ρ‾ at epoch i minus ρ‾ at 

epoch i-1 is smaller than 0) is larger than 12.

• Activation function: the hyperbolic tangent function tanh.

• Hyperparameter selection: Two hyperparameters are selected based on the 5-fold 

cross-validation results (the mean Spearman’s rank correlation coefficients) on 

the training set: the dimension of the hidden layer Nh and the L2 penalty with 

weight parameter λ . Nh is chosen from [32, 64, 128], and λ is selected from 

[10−6, 10−5, 10−4, 10−3, 10−2].

Inferring microbe-metabolite interactions via susceptibility.

The well-trained mNODE takes relative abundances of all species (relative abundance of 

species i is denoted as xi) as inputs and generate predictions for metabolite concentrations 

(concentration of metabolite α is written as yα). For the sample m in the training set, 

xi
m  for all i is provided as the input vector to the trained mNODE and mNODE can 

predict concentrations yα
m  for all metabolites. To investigate the influence of species i

on metabolite α for a particular sample m, we perturb xi
m  by setting it as the mean of 

relative abundances for species i across samples x‾i while keeping values of xj ≠ i
m  intact. 

Thus the perturbation amount for species i is Δxi
m = x‾i − xi

m . This perturbed vector for 

microbial relative abundances is provided to the trained mNODE to regenerate predictions 

for metabolite concentration yα
m + Δyα

m  where Δyα
m  is the deviation of newly predicted 
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concentration for metabolite α when mNODE uses the perturbed input vector from that 

when mNODE uses the unperturbed input vector. For the sample m, the susceptibility of 

metabolite α to species i can be defined as sαi
m = Δyα

m

Δxi
m . To properly take into account all 

training samples, we average susceptibility over samples and obtain the overall susceptibility 

of metabolite α to species i, sαi = ∑m sαi
m

Ntrain
, where Ntrain is the number of samples in the training 

set.

Statistics.

To calculate correlation coefficients throughout the study, we used Spearman’s rank 

correlation coefficient. Wherever we used P  values, we explained in the Methods how we 

calculated them, since for all such measurements in the study, we calculated the associated 

null distributions from scratch. All statistical tests were performed using standard numerical 

and scientific computing libraries in the Python programming language (version 3.7.3), the 

Julia programming language (version 1.6.2) and Jupyter Notebook (version 6.1.0).
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Extended Data

Extended Data Figure 1: Comparison of SCCs of annotated metabolites on the test set NLIBD.
For each annotated metabolite, its SCC between its predicted values and true values 

across samples is computed for all computational methods. a Comparison of SCCs of all 

annotated metabolites between MiMeNet and ResNet. b Comparison of SCCs of all well-

predicted annotated metabolites between MiMeNet and ResNet. Well-predicted metabolites 

are metabolites that have SCCs larger than 0.5 according to either MiMeNet or ResNet. 

c Comparison of SCCs of all annotated metabolites between MiMeNet and mNODE. 

d Comparison of SCCs of all well-predicted annotated metabolites between MiMeNet 

and mNODE. Well-predicted metabolites are metabolites that have SCCs larger than 0.5 

according to either MiMeNet or mNODE.
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Extended Data Figure 2: Bray-Curtis dissimilarity of the food consumption profiles in FFQs and 
nutritional profiles across samples in VDAART.
The distribution of Bray-Curtis dissimilarity for all paired food consumption profiles in 

FFQs and nutritional profiles.
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Extended Data Figure 3: Using susceptibility of metabolite concentrations to microbial relative 
abundances of well-trained mNODE to infer microbe-metabolite interactions on new synthetic 
data.
New synthetic data in this figure are generated by the microbial consumer-resource model 

with species-specific byproduct generations and without the overlap between consumption 

and production interactions between microbes and metabolites. See the Supplementary 

Information section 4 for more details of this model. a The susceptibility of the 

concentration of metabolite α yα  to the relative abundance of species i xi , denoted as sαi, 

is defined as the ratio between the deviation in the concentration of metabolite α Δyα  and 

the perturbation amount in the relative abundance of species i Δxi . b Susceptibility values 

for all microbe-metabolite pairs in the synthetic data. c The ground-truth consumption 

matrix and corresponding rates in synthetic data. All consumption rates are shown as 

negative values for the convenience of comparison with panel b. d The ground-truth 

production matrix and corresponding rates in synthetic data. e The ROC (Receiver Operating 

Characteristic) curve based on TP (True Positive) rates and FP (False Positive) rates which 

are obtained by setting different susceptibility thresholds for classifications of interactions.
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Extended Data Figure 4: The training sample size needed to reach a great predictive 
performance scales linearly with the number of species in synthetic data.
Synthetic data in this figure are generated by the microbial consumer-resource model with 

nutrient sampling probability pn = 1.0. For the case with 100 species and varying number of 

metabolites (100, 200, or 300), three metrics are used for comparing model performances: 

a1 the mean SCC ρ‾, a2 the top-50 mean SCC ρ‾50, and a3 the number of metabolites 

with SCCs larger than 0.8 divided by the number of metabolites Nρ > 0.8/Nm. b1-b3 The 

performance metrics for the case with 200 species and varying numbers of metabolites (100, 

200, or 300).

Extended Data Figure 5: The training sample size needed to reach a great predictive 
performance scales linearly with the number of species in synthetic data for MelonnPan, 
MiMeNet, and mNODE.
Synthetic data in this figure are generated by the microbial consumer-resource model with 

nutrient sampling probability pn = 1.0. For the case with 100 species and varying number of 

metabolites (100, 200, or 300), three metrics are used for comparing model performances: 

the mean SCC ρ‾, the top-50 mean SCC ρ‾50, and the number of metabolites with SCCs larger 

than 0.8 divided by the number of metabolites Nρ > 0.8/Nm.
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Extended Data Figure 6: The Spearman correlation coefficients of metabolites ρ between its 
predicted and true values from the test set well correlate with those from the training set for the 
PRISM+NLIBD dataset.
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Extended Data Figure 7: More performance metrics to compare mNODE with existing methods 
on five real microbial community datasets.
For the dataset PRISM+NLIBD33, seven performance metrics are used: a1 the top-3 mean 

SCC ρ‾3, a2 the top-5 mean SCC ρ‾5, a3 the top-10 mean SCC ρ‾10, a4 the top-50 mean SCC ρ‾50, 

a5 the number of metabolites with SCCs larger than 0.3 Nρ > 0.3, a6 the number of metabolites 

with SCCs larger than 0.4 Nρ > 0.4, and a7 the number of metabolites with SCCs larger than 

0.5 Nρ > 0.5. b1-b7 Performance of methods measured by seven metrics on the data from lung 

samples of patients with cystic fibrosis21. c1-c7 Performance of methods on the data from 

soil biocrust samples after 5 wetting events34. d1-d7 Performance of methods on the data 

from fecal samples of children at age 335–38. e1-e7 Performance of methods on the data 

from blood plasma samples of children at age 335–38.
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Extended Data Figure 8: 50 mNODE training repeats with different initializations have very 
consistent predictive performances on real microbial community datasets.
For the dataset PRISM+NLIBD33, three performance metrics are adopted for comparing 

model performances: the mean SCC ρ‾, the top-50 mean SCC ρ‾50, and the number of 

metabolites with SCCs larger than 0.5, 0.4, and 0.3 (denotated as Nρ > 0.5, Nρ > 0.4, and Nρ > 0.3

respectively). All datasets21, 33–38 are randomly divided into training and test sets with the 

80/20 ratio except for the PRISM and NLIBD dataset33. In all boxplots, the middle orange 

line is the median, the box extends from the first quartile (Q1) to the third quartile (Q3) 

of the data, the black whiskers extend from the box by 1.5 × IQR (where IQR is the 

interquartile range), and outlier unfilled black circles are those beyond the range defined by 

two whiskers. The sample size n = 50 for all boxplots.
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Extended Data Figure 9: Computed susceptibility values from five mNODE training repeats with 
different initializations are highly correlated with each other on the PRISM+NLIBD dataset33.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability.

The datasets of PRISM + NLIBD33, lung samples21, and soil biocrust samples34 

can be found at https://github.com/YDaiLab/MiMeNet/tree/master/data. The microbiome 

sequencing data, food frequency data, and metabolomics data from VDAART35–38 are 

part of the ECHO (Environmental influences on Child Health Outcomes) consortium and 

ECHO consortium members and other interested scientists can obtain the data directly from 

the ECHO DCC (Data Coordinating Center). The FNDDS (USDA’s Food and Nutrient 

Database for Dietary Studies)43 can be found at https://data.nal.usda.gov/dataset/food-and-

nutrient-database-dietary-studies-fndds.
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Figure 1: The mNODE workflow to predict metabolomic profiles from species microbial 
compositions and other dietary information.
Across all panels, blue-colored arrays represent the microbial composition. Green-colored 

arrays represent the dietary information. Red-colored arrays represent the metabolomic 

profiles. None of the arrays has missing data and white cubes in all arrays just mean small 

values. 15 hypothetical samples in total with 3 species, 2 dietary items, and 4 metabolites 

are used to illustrate the idea. The samples are divided into training and test sets with the 

2/1 ratio. a 10 samples in the training set are used for training machine learning models. 

There are two ways to predict metabolomic profiles: one without diets included in the 

input and the other one with diets included in addition to microbial compositions. b The 

architecture of mNODE for two training approaches. The neural ODE is a module in the 

middle of the architecture and it computes the time evolution of ODEs whose first-order 

time derivatives are approximated by an MLP with one hidden layer. Grey nodes represent 

neurons in hidden layers of mNODE. c Fully trained mNODE can generate predictions for 

metabolomic profiles in the test set. For each metabolite, the Spearman’s rank Correlation 

Coefficient ρ between its predicted profiles across samples and its true profiles in the test set 

is computed to quantify its predictability.
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Figure 2: Model comparison and validation of mNODE on synthetic data generated by the 
microbial consumer-resource model.
The predictive performance of mNODE is compared to other methods through three metrics: 

a1 the mean SCC (Spearman Correlation Coefficient) ρ‾, a2 the top-5 mean SCC ρ‾5, and 

a3 the number of metabolites with an SCC larger than 0.5 Nρ > 0.5. b1-b3 The predictive 

performance of mNODE as a function of training sample size when the nutrient sampling 

probability (i.e. the fraction of nutrients externally supplied) pn = 0.6 and the species 

sampling probability (i.e. the fraction of species introduced) ps = 0.5. c1-c3 The predictive 

performance of mNODE when the training sample size is 240 and the species sampling 

probability ps = 0.5. Solid lines with circles are predicted results when nutrient supply rates 

(i.e. diets in the microbial consumer-resource model) are not included in the input of 

mNODE. Dashed lines with triangles are predicted results when nutrient supply rates are 

included in the input of mNODE.
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Figure 3: Performance comparison between mNODE and existing methods on real microbial 
community datasets.
Three metrics are adopted for comparing model performances: the mean SCC ρ‾, the top-50 

mean SCC ρ‾50, and the number of metabolites with SCCs larger than 0.5 Nρ > 0.5. All 

datasets21,33–38 are randomly divided into training and test sets with the 80/20 ratio except 

for the PRISM and NLIBD dataset33. a1-a3 Performance of methods after training on the 

PRISM and test on the NLIBD33. b1-b3 Performance of methods on the data from lung 

samples of patients with cystic fibrosis21. c1-c3 Performance of methods on the data from 

soil biocrust samples after 5 wetting events34. d1-d3 Performance of methods on the data 

from fecal samples of children at age335–38. e1-e3 Performance of methods on the data from 

blood plasma samples of children at age 335–38.
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Figure 4: Performance of mNODE with different combinations of data types (microbial 
compositions, food profiles, and nutritional profiles) included in the input.
Five different combinations are used: foods only, nutritional profiles only, the microbial 

composition only, foods with microbial composition, and nutritional profiles with microbial 

composition. Three metrics are adopted for comparing model performances: the mean SCC 

ρ‾, the top-50 mean SCC ρ‾50, and the number of metabolites with SCCs larger than 0.5 Nρ > 0.5. 

All datasets are randomly divided into the training set and test set with the 80/20 ratio. a1-a3 
Performance of methods on the data from fecal samples of children at age335–38. b1-b3 
Performance of methods on the data from blood plasma samples of children at age 335–38.
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Figure 5: Using susceptibility of metabolite concentrations to microbial compositions of well-
trained mNODE to infer microbe-metabolite interactions on both synthetic and real data 
(PRISM+NLIBD).
a The susceptibility of the concentration of metabolite α yα  to the relative abundance of 

species i xi , denoted as sαi, is defined as the ratio between the deviation in the concentration 

of metabolite α Δyα  and the perturbation amount in the relative abundance of species i Δxi . 

b Susceptibility values for all microbe-metabolite pairs in the synthetic data used in Fig. 

2a1–a3. c The ground-truth consumption matrix and corresponding rates in synthetic data. 

All consumption rates are shown as negative values for the convenience of comparison with 
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panel b. d The ground-truth production matrix and corresponding rates in synthetic data. 

Details about how the production matrix is obtained can be found in the Supplementary 

Information section 2. e The ROC (Receiver Operating Characteristic) curve based on TP 

(True Positive) rates and FP (False Positive) rates which are obtained by setting different 

susceptibility thresholds for classifications of interactions. f The susceptibility values for all 

microbe-metabolite pairs in PRISM +NLIBD33 used in Fig. 3a1–a3.
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