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Abstract

There have been increased concerns that the use of statins, one of the most commonly prescribed 

drugs for treating coronary artery disease, is potentially associated with the increased risk of 

new-onset Type II diabetes (T2D). Nevertheless, to date, there is no robust evidence supporting 

as to whether and what kind of populations are indeed vulnerable for developing T2D after 

taking statins. In this case study, leveraging the biobank and electronic health record data in 

the Partner Health System, we introduce a new data analysis pipeline and a novel statistical 

methodology that address existing limitations by (i) designing a rigorous causal framework that 

systematically examines the causal effects of statin usage on T2D risk in observational data, (ii) 

uncovering which patient subgroup is most vulnerable for developing T2D after taking statins, and 

(iii) assessing the replicability and statistical significance of the most vulnerable subgroup via a 

bootstrap calibration procedure. Our proposed approach delivers asymptotically sharp confidence 

intervals and debiased estimate for the treatment effect of the most vulnerable subgroup in the 

presence of high-dimensional covariates. With our proposed approach, we find that females with 

high T2D genetic risk are at the highest risk of developing T2D due to statin usage.
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1. Introduction

1.1. Motivation and Objectives

Coronary artery disease (CAD), a disease affecting the function of heart, is the leading cause 

of deaths worldwide (Skourtis et al. 2020). Over the past decades, efforts have been made 

in developing effective and safe drugs in preventing and treating CAD (Povsic et al. 2017). 

Among those novel agents, statins are perhaps the most commonly prescribed drugs due to 

their clear benefits in reducing the level of low–density lipoprotein (LDL) and subsequently 

lowering CAD risks through 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) 

inhibition (Nissen et al. 2005). Despite their clear benefits in reducing CAD risks, the use of 

statins is potentially associated with the increased risk of new-onset Type II diabetes (T2D) 

(Waters et al. 2013; Macedo et al. 2014; Mansi et al. 2015).

Although many studies have been conducted to investigate the potential side effects of 

statins in developing T2D, to date, there is still no robust evidence as to whether and on 

what kind of populations statin usage increases the risk of T2D. Take some frequently 

cited studies as examples. Rajpathak et al. (2009) find through meta-analysis that there is 

a small increase in T2D risk1 associated with the use of statins, but this association is 

no longer significant after including the results from the WOSCOPS trial (Packard et al. 

1998)—the first study investigating the association between T2D and statins. Recent studies 

also suggest that the effect of statins on T2D risk might be heterogeneous across different 

sub-populations and be more pronounced in certain subgroups defined by sex and baseline 

T2D genetic risk (Mora et al. 2010; Goodarzi et al. 2013). Nevertheless, existing studies 

may not lead to trustworthy findings in subgroups, because their statistical analyses either 

are conducted under randomized controlled trials (RCTs) with limited sample sizes whose 

results might not be generalizable beyond study population(Mora and Ridker 2006; Mora et 

al. 2010), or do not adjust for multiple comparisons issue when several candidate subgroups 

are under consideration (Waters et al. 2013).

In this case study, leveraging Partner Health System (PHS) biobank and electronic health 

record (EHR) data, we conduct subgroup analysis and assess the most vulnerable subgroup 

to T2D associated with statin usage from a novel biological perspective. We focus on 

the most vulnerable subgroup not only because pursuing the subgroup with the largest 

(adverse) treatment effect is a conventional practice in clinical studies (Naggara et al. 2011; 

Kubota et al. 2014), but also because a comprehensive understanding of the most vulnerable 

subgroup to T2D risk associated with statin usage could support precise clinical decisions 

and effective actions concerning the prescription of statins (Mora et al. 2010; Bornkamp 

et al. 2017; Guo and He 2020). Concretely, our study consists of three objectives: (i) 

designing a rigorous causal framework that systematically examines the causal effects of 

statin usage on T2D risk from observational data, (ii) uncovering which patient subgroup is 

most vulnerable for developing T2D after taking statins, and (iii) assessing the replicability 

and statistical significance of the most vulnerable subgroup via a bootstrap calibration 

procedure.

1Relative risk (RR): 1.13, 95% CI [1.03, 1.23]
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1.2. Overview of Research Methods and Findings

To systematically examine the causal effect of statin usage on T2D risk from observational 

data, we propose a novel study design which not only circumvent common issues in RCTs 

but also alleviate the concern of unmeasured confounding bias.

On the one hand, while existing studies often investigate the adverse effects of stains on T2D 

risk in RCTs with limited sample sizes, our study design leverages the large PHS biobank 

with linked EHR data, providing robust evidence for assessing the adverse effect of statin 

usage. We extract and link genotype information together with diagnostics from consented 

subjects in the Partner Health System(PHS) biobank and EHR data, respectively. This leads 

to an EHR virtual cohort of 17,023 subjects, a much larger cohort than those from usual 

clinical trials, and 337 features; see Section 2.3 for detailed descriptions. Compared to study 

cohorts enrolled in RCTs, our study cohort can be a more representative sample of the 

general population (see Table 1 for the demographics of our study cohort).

On the other hand, while causal conclusions derived from observational studies can be 

susceptible to unmeasured confounding and reverse causation bias, our study design adopts 

a randomly inherited single nucleotide polymorphism (SNP), rs12916-T, as a surrogate 
treatment variable of statin usage to alleviate the concerns of those issues. rs12916-T is 

a reliable surrogate treatment variable because it resides in the HMGCR gene encoding 

the drug target of statins, and has been recently used as an unbiased, unconfounded proxy 

for pharmacological action on the target of statins (i.e., HMG-CoA reductase inhibition) 

(Swerdlow et al. 2015). Furthermore, adopting a randomly inherited genetic variant at 

conception as a surrogate for statin usage in EHRs allows us to establish a clear temporal 

precedence between the treatment and T2D onset (which is a prerequisite to concluding 

causality, see, e.g., Holland 1986). This avoids potential reverse causation issues. Lastly, 

because the surrogate treatment variable is naturally inherited, variables observed after birth 

are independent of rs12916-T and can at most be mediators that belong to a different causal 

pathway. We shall discuss the reasoning of using rs12916-T in more detail in Section 2.1.

Leveraging the above study design, we further conduct subgroup analysis and assess if 

subjects in different subgroups carrying the rs12916-T allele (i.e., taking statins) have 

heterogeneous risks at developing T2D, and to what extent the most vulnerable subgroup 

suffers from the side effect of statin usage. Inspired by study designs adopted in Mora et al. 

(2010) and Wang and Ware (2013), we divide our study cohort into six predefined candidate 

subgroups based on sex and baseline T2D genetic risk profiles (measured by the number 

of risk alleles of variants rs35011184-A and rs1800961-T each individual carries), and aim 

to uncover the most vulnerable patient subgroup to statin usage and assess the statistical 

significance of the most vulnerable subgroup. While numerous methods have been proposed 

in subgroup analysis for identifying subgroups (Lipkovich et al. 2011; Ma and Huang 2017) 

and testing subgroup homogeneity (Shen and He 2015; Fan, Song, and Lu 2017), in our 

case study, the primary objective is to make valid post-hoc inference on the most vulnerable 

subgroup.

The limitation of usual post-hoc inference on the most vulnerable subgroup is well 

recognized. Due to the winner’s curse bias induced by multiple comparisons (Efron 2011), 
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post-hoc inference often leads to false positive results (Thomas and Bornkamp 2017). 

Although several attempts have been made to address the winner’s curse bias issue, existing 

procedures are either poorly grounded (Stallard, Todd, and Whitehead 2008; Rosenkranz 

2016) or tend to be conservative (Hall and Miller 2010; Fuentes, Casella, and Wells 2018), 

as the latter is typically built on simultaneous inference aiming to control the family-wise 

error rate for all candidate subgroups. These conservative simultaneous inference procedures 

are usually undesirable in subgroup analysis, because they yield false negative discoveries 

and have inadequate power to confirm the most vulnerable subgroup (Magnusson and 

Turnbull 2013; Burke et al. 2015). In our context, because subgroup analysis needs to be 

conducted in observational studies (Lu et al. 2018; Yang et al. 2020), the problem becomes 

even more challenging as we need to take possibly high-dimensional confounders into 

account in assessing subgroup treatment effects. To address the above-mentioned issues, we 

provide new post-hoc inferential tools to help assess the efficacy of the most vulnerable 

subgroups from observational studies without having to resort to simultaneous inference 

methods, which are often too conservative to start with.

By applying the proposed method to our study cohort, we find that, although the overall 

adverse effect of statin usage on developing T2D is not significant, the female subgroup 

with high-genetic baseline T2D risk (more than two T2D risk alleles) is identified as the 

most vulnerable subgroup, meaning that with statin usage, this subgroup has the highest 

risk of developing T2D. The statistical significance of such a finding is also confirmed by 

the proposed bootstrap calibration method. In sum, our case study not only provides new 

evidence supporting the adverse effect of statin usage from a biological perspective, but 

also suggests that more caution should be taken when statins are prescribed, especially for 

females who are already at higher risk of developing T2D. The specific actions may include 

preventive treatments for diabetes and recommendations on lifestyle changes.

2. Data Description and Model Setup

2.1. Study Design

In our case study, since patients’ statin use information is not available, we adopt the genetic 

variant (rs12916-T) as the surrogate treatment variable of statin usage. When the treatment 

indicator variable t = 1, this means that “the subject carries the variant rs12916-T.” When 

t = 0, this means that “the subject does not carry the variant rs12916-T.” We adopt this 

genetic variant as a surrogate treatment variable not only because statin usage information 

is not available in our EHR data, but also because carrying rs12916-T is a proxy for statin 

usage. The reason for adopting this proxy is due to the fact that rs12916-T, which resides 

in the HMGCR gene encoding the drug target of statins, has been recently adopted as an 

unbiased, unconfounded proxy for pharmacological action on the target of statins (Swerdlow 

et al. 2015). In other words, rs12916-T allele and statins are functionally equivalent in that 

they both lower LDL cholesterol level through HMG-CoA reductase inhibition. Concretely, 

Würtz et al. (2016) show that the metabolic changes (e.g., decreased LDL cholesterol 

level) associated with statin usage have been found to resemble the association between 

rs12916-T and the metabolic changes with R2 = 0 . 94. Therefore, we believe that rs12916-T 

is a credible surrogate treatment variable of statin usage.
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Furthermore, besides the absence of statin usage information in our EHR data, we shall 

argue that adopting rs12916-T as the surrogate treatment variable of statin usage invests our 

framework with two other key benefits.

First, because our study design ensures the temporal precedence between inheriting the 

variant rs12916-T (surrogate of statin use) and T2D onset, this lifts the concern of reverse 

causation in conducting causal inference from observational data. In particular, when 

studying the causal effect of statin use on T2D risk from observational data, one normally 

assumes that statin use causes the change in T2D risk (Pan et al. 2020). This suggests that 

only data collected from subjects who have recorded statin use status before T2D onsets 

can be used for credible casual analyses. Unfortunately, in our EHR data, it is impossible to 

establish the temporal precedence between statin use and T2D onset. Using a genetic variant 

(rs12916-T) as the surrogate treatment variable circumvents the above-mentioned issue. 

Because genetic variants are randomly inherited at conception, our study design guarantees 

that the cause (carrying rs12916-T [proxy for pharmacological action of statin use] or not) 

must occur before T2D onset. This clear temporal precedence makes the established causal 

relationships more plausible (see Figure 1).

Second, adopting rs12916-T as a surrogate treatment variable attenuates the concern 

of unmeasured confounding biases in observational data. Given rs12916-T is naturally 

inherited, variables observed after birth can at most be mediators that belong to a different 

causal pathway. Since we work with the causal pathway between the treatment and the 

outcome, that is, ti yi, conditional on such (unmeasured) mediators is not necessary. 

Thus, the unmeasured confounding bias issue is alleviated under our study design. To 

further robustify our causal conclusion and improve statistical estimation efficiency of the 

underlying causal effect, we include additional potential confounders that are obtained 

before birth, such as genetic variants associated with T2D and potentially associated with 

rs12916-T. We provide more discussions on causal pathways in Section H, supplementary 

materials.

Our outcome of interest is T2D status. We defer the technical details on defining T2D 

status from EHR data to Section 2.3. Given that the existing literature (Mora et al. 2010; 

Waters et al. 2013) has suggested that the treatment effect of statin usage on T2D risk 

could be heterogeneous, we conduct subgroup analysis to investigate the causal effect of 

T2D associated with statin usage in subgroups and the most vulnerable one in particular. 

Inspired by the study designs in Mora et al. (2010) and Waters et al. (2013) in which 

patient population is divided based on sex in the former and the number of T2D baseline 

risk factors in the latter, we divide our PHS study cohorts into six pre-defined candidate 

subgroups based on sex and baseline T2D genetic risk profiles. The baseline T2D genetic 

risk is measured by the number of copies of T2D risk allele of variants rs35011184-A 

and rs1800961-T each subject has. The more T2D risk alleles the subject has, the higher 

baseline genetic T2D risk the subject bears (Lango et al. 2008). We define “low-risk” as the 

total number of alleles = 0, “mid-risk” as the total number of alleles = 1, and “high-risk” 

as the total number of alleles ≥ 2. The six subgroups are thereby divided as (a) high-risk 

female; (b) mid-risk female; (c) low-risk female; (d) high-risk male; (e) mid-risk male, and 

(f) low-risk male.

Guo et al. Page 5

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, we consider pre-defined subgroups instead of post-hoc identified subgroups because 

pre-defined subgroups usually have clearer interpretability and could avoid the bias induced 

by data-adaptive subgroup identification procedure, while post-hoc identified subgroups are 

often adopted when there is no prior information on the segregation of study population 

(Lipkovich et al. 2011; Ma and Huang 2017). In our setting, because previous studies 

(Mora et al. 2010; Waters et al. 2013) suggest that T2D risk might have differential effects 

across sex and baseline T2D genetic profiles, pre-defined subgroups are more suitable for 

the present case study. In Section G, supplementary materials, we compare the pre-defined 

subgroups and post-hoc identified subgroups based on our EHR data, and we find that the 

post-hoc identified subgroups resemble the pre-defined subgroups adopted in our case study.

2.2. Model Setup

We work with the following sparse logistic regression model:

logit ℙ(y = 1 ∣ z, x) = z⊤β + x⊤γ, γ 0 ≪ p .

(1)

Here, y is the observed binary outcome representing the T2D status. z ∈ ℝp1 × n includes 

variables representing interactions between the treatment variable and all the six subgroup 

indicator variables. x ∈ ℝp2 × n contains 336 covariates and an intercept (hence, p2 = 337). 

The 336 covariates contain five subgroup indicator variables (the sixth subgroup, low-risk 

male, indicator variable is dropped to avoid collinearity) and 331 potential confounders 

(including race and age as baseline characteristics, and 329 SNPs associated with T2D 

related factors accounting for potential confounding issues). Note that we do not include the 

treatment variable as a covariate because including it causes collinearity issues. All observed 

covariates are obtained from Partner Health System biobank.

Following the above setup, β ∈ ℝp1 represents subgroup causal effects on the scale of log 

odds ratio (OR) (hence, p1 = 6). More concretely, under Model (1), β = logα1, …, logα6

with logα1 representing the log odds ratio of subgroup j, for j = 1, …, 6. Following the 

Neyman-Rubin causal model and our current study design, we provide rigorous causal 

identification results to justify why the model parameterization in (1) enables us to estimate 

the heterogeneous causal effects in the pre-defined subgroups. This theoretical justification 

is provided in Section E, supplementary materials. We further assume that γ ∈ ℝp2 is a sparse 

vector with the support set M0. The sparsity assumption not only provides a parsimonious 

explanation of the data but also carries our prior belief that not every genetic variant is 

predictive of the outcome as demonstrated in Section 2.3.

2.3. Data Description and Exploration

Following our study design described in the previous section, we extract and link genotype 

information and diagnostics from consented subjects in the PHS biobank and EHR data 

respectively. Our data involve a much larger cohort than those from usual clinical trials, 

n = 17, 023 subjects each with p = 337 features; see Table 1 for data summary.
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Recall that the covariates contain age, race, subgroup indicators, and genetic variants 

associated with T2D related factors (including LDL, high density lipoprotein and obesity). 

As for the definition of the outcome, since the diagnostic billing code for T2D has limited 

specificity in classifying the true T2D status, we define the T2D status based on a previously 

validated multimodal automated phenotyping (MAP) algorithm (Liao et al. 2019). The area 

under the ROC curve (AUC) of MAP’s risk prediction score for classifying true T2D status 

is 0.99, and the specificity and sensitivity of its classifier are 0.97 and 0.92, respectively. 

These suggest that the MAP classifier of T2D can be reliably used to define the T2D 

outcome. Among our study cohort, MAP classifies 2565 subjects having T2D. There is 

no missing data issue in our case study for two reasons. First, we leverage the large 

PHS biobank with linked EHR data, thus, the genetic profiles and baseline covariates are 

non-missing. Second, we adopt surrogate outcomes, thus, we do not encounter any missing 

outcomes.

To explore the association between statin usage and T2D risk, we report preliminary data 

exploration results from a “full” logistic regression model for y against the treatment t 

and the covariates x in Table 2; that is, y t + x. There, although a modest association is 

found between carrying the rs12916-T variant and T2D status in the overall study cohort, 

unlike the results in Swerdlow et al. (2015), this association is not statistically significant. 

Moreover, our analysis reports only 16 regression coefficients having p-values < 0.05, 

suggesting that the logistic regression coefficient vector for the covariates is likely to be 

sparse. Because the overall treatment effect is marginal (estimated marginal treatment effect 

equals 0.04 with p-value 0.35), this motivates us to conduct subgroup analysis to further 

investigate the subgroup causal effect of statin usage on T2D risk.

2.4. Challenges in Statistical Inference

Because our goal is to assess the patient subgroup most vulnerable for developing T2D, 

our methodological development, hence, centers around delivering valid inference (accurate 

point estimate and valid confidence interval) on the effect size of maximal regression 

coefficient βmax = maxj ∈ 1, …, p1 βj in Model (1). We focus on βmax instead of |β|max for the 

following reason. The logistic regression coefficient β represents the log odds ratio, thus, 

each regression coefficient is a number ranging from −∞ to ∞. A larger β indicates a higher 

T2D risk associated with statin usage. If we use |β|, a larger |β| might no longer measure the 

adverse effect of statin usage on T2D risk, implying that |β|max represents the adverse effect 

of either the most vulnerable subgroup or the least vulnerable subgroup to statin usage. 

Because βmax has clearer interpretation than |β|max, we focus on βmax instead of |β|max in this 

article.

In the presence of high-dimensional covariates as described in Section 2.3, finding an 

accurate point estimate and conducting inference on βmax can be a challenging task, due 

to the presence of regularization and winner’s curse biases. The regularization bias occurs 

whenever penalization approaches are adopted to select a smaller working model to enhance 

the estimation efficiency of β in the presence of sparsity (Hong, Kuffner, and Martin 2018; 

Wang, He, and Xu 2019). The winner’s curse bias occurs whenever we use a simple 
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sample-analogue β max = max
j ∈ 1, …, p1

β j to estimate the true maximum effect βmax. A sample 

average estimate for βmax overestimates the parameter because, even if β . follows normal 

distribution centering at β, β max will follow a skewed-normal distribution and will not center 

at βmax (Nadarajah and Kotz 2008; Guo and He 2020). Such an overestimation phenomenon is 

well-recognized in post-hoc subgroup analysis (see, e.g., Zöllner and Pritchard 2007; Cook 

et al. 2014). While several approaches have been proposed to address the regularization 

bias issue (Zhang and Zhang 2014; Li 2020), and provide valid inference on a single 

regression coefficient, these methods cannot account for the winner’s curse bias. As for 

the winner’s curse bias, existing methods are mostly made for low-dimensional data and 

are not directly applicable to observational data with high dimensional covariates in this 

case study (Bornkamp et al. 2017; Guo and He 2020). While Guo et al. (2021) proposes 

bootstrap-based approaches to simultaneously address the regularization and winner’s curse 

bias issues in high dimensional linear models, we broaden its validity by providing a 

bootstrap procedure that is asymptotically valid for high dimensional logistic regression 

estimators with rigorous statistical guarantees. To our knowledge, debiasing procedures that 

simultaneously remove the regularization bias and winner’s curse bias in high dimensional 

nonlinear models have been lacking. Technical discussions on these bias issues are deferred 

to the Section A, supplementary materials, and we demonstrate the winner’s curse bias and 

regularization bias in estimating βmax within a simple simulated example.

Example 1 (Winner’s curse bias and regularization bias in estimating βmax).—

We use two widely adopted procedures to estimate β: (a) Lasso for generalized linear 

models (GLM) (Park and Hastie 2007), which estimates β with β GLasso
⊤ , γ GLasso

⊤ ⊤
 obtained 

from the ℓ1-penalized logistic regression program without any adjustments, and (b) 

Refitted GLM Lasso, which estimates β by refitting the logistic regression model based 

on the covariates in the support set of β GLasso
⊤ , γ GLasso

⊤ ⊤
. As a benchmark, we also report 

the performance of the oracle estimator β Oracle
⊤ , γ Oracle

⊤ ⊤
 which pretends the true support 

set of γ is known and is estimated by refitting the logistic regression model with the 

true support set. βmax is then estimated in a two-step procedure: One first obtains an 

estimate β  and then estimates βmax by taking the maximum, that is max β 1, …, β p1 . To 

mimic the causal relationship in this case study, we generate Monte Carlo samples 

with ti Bernoulli(0 . 5) independent of the covariate wi N(0, Σ), where Σ = Σjk j, k = 1
p − 6  and 

Σjk = 0 . 5|j − k| for i = 1, …, n. We then generate xij = 1 wij > 0  for 1 1 ≤ j ≤ p − 6, and 

zil = tixil, l = 1, …, 6. yi is generated following Model (1). We set the sample size n = 1000
and the dimension p = 200, and set γ = (1, 1, 0, …) ∈ ℝp − 6. For the first simulation, we set 

the coefficients β = (0 . 5, 0 . 5, 0, 0, 0, 0)⊤ and vary the value of tuning parameter λ to illustrate 

how the winner’s curse bias could invalidate the inference as the winner’s curse bias is the 

most severe when the two largest β’s are equal (Nadarajah and Kotz 2008; Guo and He 

2020). The results are shown in Figure 2(A). For the second simulation, to demonstrate 

how the winner’s curse bias changes with respect to the distance between the largest and 

the second largest components in β, that is, β(1) − β(2), we fix logλ = − 2 . 5 for illustration, set 
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the coefficients β = βmax, 0 . 5, 0, 0, 0, 0 ⊤, where βmax ∈ 0 . 5, 0 . 61, 0 . 72, …, 1 . 5 , and plot the 

n-scaled bias with respect to various β(1) − β(2) values, where β(1) is equivalent to βmax. The 

results are presented in Figure 2(B). In Figure 2, we report the root-n scaled bias based on 

500 Monte Carlo samples under the two settings respectively.

From the results in Figure 2, we observe that all three estimators are biased. Although 

β Oracle is a consistent estimator of β, its maximum is not centered around βmax. Following 

some explicit evidence given in Nadarajah and Kotz (2008), β max is usually biased upward 

for estimating βmax, we thus conjecture that the residual bias in the maximal of the oracle 

estimator β Oracle,max is caused by the winner’s curse bias issue. We further observe that the 

magnitude of the winner’s curse bias decreases as the distance between β(1) and β(2) increases 

(as seen in Figure 2(B)), suggesting that the winner’s curse bias might not be a severe 

concern if β(1) and β(2) are far apart. As β is unknown a priori, inference procedure without 

adjusting for the winner’s curse bias may not be valid in practice. On the top of the winner’s 

curse bias issues, the GLM Lasso and the refitted estimators suffer from the regularization 

bias and hence are also not correctly centered around βmax, unless in some special cases 

where the regularization bias and the winner’s curse bias cancel out.

To simultaneously adjust for the winner’s curse bias and the regularization bias without 

knowing the underlying true parameters, in what follows, we propose an inferential 

framework that produces a bias-reduced estimate as well as a valid confidence interval 

of βmax.

3. Methodology

We start with describing an estimation strategy of β that resolves the regularization bias 

induced by model selection and helps addressing our research objectives (ii) and (iii) 

discussed in Section 1.1. Regularization bias arises when the selected model is either 

over-fitted or under-fitted; see detailed discussion provided in Section A, supplementary 

materials. While the risk of under-fitting can be mitigated by aiming for a larger model 

for parameter estimation, we resolve the issue of over-fitting by sample splitting. Sample 

splitting divides a sample into two parts: The first part of the sample is used for model 

selection and the remaining part is used for estimation based on the selected model. When 

γ is sparse and a larger model is selected based on the first half of the sample, we expect 

refitted GLM estimator on the second part of the sample to be free of significant bias. 

Nevertheless, sample splitting provides debiased estimator of β at a cost of increased 

variability, because only a part of the sample is used for estimation. To minimize this 

efficiency loss due to sample splitting, we consider the method of repeated sample splitting 

(R-Split) that averages different estimates of β across different splits. Our strategy, in a 

spirit similar to bagging and ensemble algorithms in machine learning, helps to stabilize and 

improve the accuracy of the estimated β in a subsample.

Step 1 (Repeated sample splitting that accounts for the regularization bias) For b 1 to B1: 

(1) Randomly split the sample yi, xi, zi i = 1
n  into two subsamples: a subsample T1 of size n1

Guo et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and a subsample T2 of size n2 = n − n1; (2) select a model Mb to predict y based on T1; (3) refit 

the selected model with the data in T2 to estimate βb and γb via logistic regression:

β b
⊤, γ b

⊤ ⊤ = argmin ∑
l ∈ T2

yl ⋅ zl
⊤β + xl, Mb

⊤ γ

−log 1 + exp zl
⊤β + xl, Mb

⊤ γ .

(4) obtain the R-Split estimate: β = 1
B1

∑b = 1
B1 β b.

In this step, any reasonable model selection procedures may be used and the choice of model 

size is subjective, but the selected model needs to be large enough for the under-fitting 

bias to be negligible. In our simulation and case study, we use GLM Lasso for model 

selection (Friedman et al. 2017) and choose the model size from cross-validation (see 

Section B, supplementary materials for detailed description). The choice of splits B1 needs 

to be sufficiently large so that the R-Split estimator β has a tractable asymptotic distribution. 

Under appropriate regularity conditions, we show that β converges to a normal distribution 

centered around β at a root-n rate (statistical justification is provided in the Section C.2, 

supplementary materials).

As β provides an accurate estimate of β we use β to address our research objectives (ii) and 

(iii). In particular, the subgroup with the largest coefficient, argmaxj ∈ p1 βj, is most vulnerable 

for developing T2D after taking statins. However, due to the winner’s curse bias, simply 

relying on β will not lead to valid inference on βmax, and we need a second step to address 

objective (iii). Built upon an accurate estimate of β, we store an inverse Hessian matrix for 

the later bootstrap calibration to adjust for the winner’s curse bias:

Γ n = 1
B1

∑
b = 1

B1
Iz

1
n1

∑
i ∈ T2, b

fi, b
zi

xi, Mb
zi

⊤, xi, Mb
⊤ ⊤

−1
IMb,

where fi, b = expit′ zi
⊤β b + xi, Mb

⊤ γ b . Its benefits will be apparent in the following step:

Step 2 (Calibrated bootstrap that accounts for the winner’s curse bias) For b 1 to B2: 

generate bootstrap replicate β* from:

β* = β + Γ n ⋅ 1
n ∑

i = 1

n zi

xi
vi

*,

(2)

where vi
* = uiv i is the permuted GLasso residual, v i = yi − expit zi

⊤β GLasso + xi
⊤γ GLasso  Then 

recalibrate bootstrap statistics via
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Tb
* = maxj ∈ p1 βj

* + cj(r) − βmax,

cj(r) = 1 − nr − 0 . 5 βmax − βj , wherer ∈ (0, 0 . 5) .

In this step, rather than adopting the simple bootstrap statistics maxj ∈ p1 βj
* − βmax to make 

inference on βmax, we make an adjustment to each coordinate of β* by the amount cj(r). 
This is because just as βmax is a biased estimator of βmax, the simple bootstrap statistics 

maxj ∈ p1 βj
* − βmax is also not centered at βmax. The amount of adjustment cj(r) is large when 

βj is small, and is small when βj is large. By adding the correction term cj(r), under 

certain regularity conditions, the distributions of n βmodified;max
* − βmax  and n βmax − βmax  are 

asymptotically equivalent, implying that our proposed method adjusts for the winner’s 

curse bias and the regularization bias simultaneously, where βmodified;max
* = maxj ∈ p1 βj

* + cj(r) . 

We relegate the theoretical details of this bootstrap calibration procedure in Section C, 

supplementary materials. Note that r ∈ (0, 0 . 5) is a positive tuning parameter (see Section B, 

supplementary materials for its data adaptive choice).

At this point, we note that our procedure adopts wild bootstrap to construct bootstrapped 

statistics of the R-Split estimate β. The wild bootstrap procedure adopted here is not only 

computationally efficient in high dimensions, as the Hessian matrix remains unchanged 

across different bootstrap samples, but also provably consistent in our problem setup. 

Furthermore, Dezeure, Bühlmann, and Zhang (2017) shows that wild bootstrap can be more 

versatile than other residual bootstrap methods because it correctly captures the asymptotic 

variance for various settings. With the help of a valid bootstrap calibration procedure in 

replicating βmax, we are now ready to propose our final step that constructs confidence 

intervals and debiased estimate for βmax:

Step 3 (Bias-reduced βmax and sharp confidence interval) The level-α two-sided confidence 

interval for βmax − QTb*(α/2), βmax + QTb*(α/2) , and a bias-reduced estimate for β̇max is 

βmax − 1
B2

∑b = 1
B2 T b

*.

4. Theoretical and Empirical Justification

In this section, we provide theoretical justifications of the proposed bootstrap-assisted R-

Split estimator along with a simple power analysis, where we demonstrate that our approach 

not only has rigorous theoretical guarantee but also shows high statistical detection power. 

We then examine the performance of the proposed method through simulation studies.

4.1. Theoretical Investigation and a Power Analysis

The following theorem confirms that the asymptotic distribution of n βmodified;max − βmax

converges to n βmax − βmax . This suggests that the proposed confidence interval constructed 

in Step 3 of Section 3 is “asymptotically sharp,” meaning that it achieves the exact 

nominal level as the sample size goes to infinity. This distinguishes the proposed procedure 

from other conservative methods made for subgroup analysis (e.g., Hall and Miller 2010; 
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Fuentes, Casella, and Wells 2018). The proof of Theorem 1 is provided in the Section C.3, 

supplementary materials. To simplify presentation, we relegate regularity assumptions to the 

Section C.1, supplementary materials.

Theorem 1.—Under Assumptions 1–9 given in Section C.1, supplementary materials, 

when p1 is a fixed number, the modified bootstrap maximum treatment effect estimator, 

βmodified;max
* = maxj ∈ p1 βj

* + cj(r) , satisfies:

sup
c ∈ ℝ

∣ ℙ n βmax − βmax ≤ c

−ℙ* n βmodified;max
* − βmax ≤ c ∣ = op(1) .

The above theoretical result has two direct implications. On the one hand, as the proposed 

bootstrap calibration strategy successfully replicates the distribution of n βmax − βmax , our 

bias-reduced estimator discussed in the Step 3 of Section 3 simultaneously removes the 

regularization bias and the winner’s curse bias in βmax. On the other hand, although 

simultaneous inference also delivers valid inference on βmax with strict Type-I error rate 

control, our proposal delivers valid inference on βmax without sacrificing the statistical power. 

This property is more desirable in our problem setup as we aim to look for the subgroup 

with the most severe side effect of statin usage while simultaneous methods often lead to 

overly conservative conclusions for this purpose.

To further demonstrate the merit of constructing an asymptotically sharp confidence interval 

for βmax and the benefit of conducting variable selection in finite samples, we compare 

statistical power for testing the null hypothesis H0: βmax = 0 for four procedures: (a) the 

proposed bootstrap-assisted R-Split, (b) R-Split with simultaneous confidence intervals, (c) 

the proposed bootstrap-assisted logistic regression, and (d) the desparsified Lasso estimator 

discussed in Zhang and Zhang (2014) with simultaneous confidence interval (Dezeure, 

Bühlmann, and Zhang 2017; Fuentes, Casella, and Wells 2018). We follow the same 

simulation setup as the first simulation setup in Example 1. The tuning parameter is fixed 

at r = 0 . 15 for simplicity. For R-Split, we choose the model size via cross-validation (see, 

Section B, supplementary materials) with a minimal model size equals 3 and a maximal 

model size equals 10.

From Figure 3, we observe that all considered approaches control the Type-I error rate at 

the nominal level when βmax = 0. The bootstrap-assisted R-Split has the highest detection 

power over a range of βmax among all considered procedures. The bootstrap-assisted logistic 

regression has the lowest detection power, which demonstrates the necessity of conducting 

variable selection to screen out irrelevant predictors. As we have expected, both the R-Split 

method with simultaneous confidence interval and the desparsified Lasso with simultaneous 

confidence interval do not retain sufficient statistical power to detect subgroup treatment 

effect heterogeneity.
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4.2. Simulation Studies

In this section, we consider various simulation designs to demonstrate the merit of our 

proposal. There are three main takeaways from this simulation. First, our proposed bootstrap 

calibration procedure provides confidence intervals with nominal coverage probabilities of 

βmax in finite samples. Second, R-Split based methods provide more accurate point estimates 

and shorter confidence intervals than the logistic regression based approaches without 

variable selection. Third, the bootstrap-assisted methods have higher statistical efficiency 

(shorter confidence intervals) compared to the simultaneous methods.

We generate Monte Carlo samples from the following model:

logit ℙ yi = 1 ∣ zi, xi = zi
⊤β + xi

⊤γ, i = 1, …, n,

with n = 2000. We consider two cases for β: (a) heterogeneous case with 

β = (0, …, 0, 1)⊤ ∈ ℝp1, meaning that there exists subgroup treatment effect heterogeneity 

and only one subgroup singles out; and (b) spurious heterogeneous case with 

β = (0, …, 0, 0) ∈ ℝp1, meaning that there is no subgroup with significant treatment effect 

in the population. We set γ = (1, 1, 1, 1, 0, …, 0) ∈ ℝp2. In all considered simulation designs, 

we set p1 ∈ 4, 10 . We consider the case with n, p2 = (2,000,150) for logistic regression, 

R-Split, and the desparsified Lasso (Zhang and Zhang 2014), and consider the case with 

n, p2 = (2000, 500) for R-Split and the desparsified Lasso, since logistic regression tends to 

provide inconsistent estimates in moderately high dimensions (Sur and Candès 2019). In 

each simulation design, we first take the maximum of estimated subgroup treatment effects, 

that is, β max = maxj = 1, …, p1β j, in each Monte Carlo sample to mimic the subgroup selection 

procedure adopted in practice, and then we take the average across different Monte Carlo 

samples to calculate the winner’s curse bias.

As for the covariates design, we generate zi and xi from

zij Bernoulli exp xi, 2j − 1 + xi, 2j
1 + exp xi, 2j − 1 + xi, 2j

, j = 1, …, p1,

where xi N(0, Σ) with Σij = 0 . 5|i − j|. We compare the finite sample performance of the 

proposed bootstrap-assisted R-Split and the bootstrap-assisted logistic regression with two 

benchmark methods: (a) a naive method with no bootstrap calibration, which directly uses 

the estimated maximum coefficient to estimate βmax and (b) the simultaneous method as 

discussed in Dezeure, Bühlmann, and Zhang (2017) and Fuentes, Casella, and Wells (2018). 

For the desparsified Lasso (Zhang and Zhang 2014), we only consider the above-mentioned 

two benchmark methods: the naïve method and the simultaneous method (without bootstrap 

calibration). For the R-Split method, we choose the model size via cross-validated GLM 

Lasso with a minimal model size equals 3. We report the coverage probability, the n scaled 

confidence interval length and the n scaled Monte Carlo bias along with their standard 

errors based on 1000 Monte Carlo samples in Table 3.
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Comparing the bootstrap-assisted methods with the naive methods, we observe that the 

bootstrap-assisted methods have nominal-level coverage, while the naive methods are biased 

and under-covered. This comparison verifies the theoretical results in Section 4.1 that the 

proposed bootstrap calibration successfully reduces the winner’s curse bias.

Comparing the bootstrap-assisted methods with the simultaneous methods, we find that 

although simultaneous methods have higher coverage probabilities, the confidence intervals 

are rather long, implying that simultaneous methods are overly conservative. While our 

proposed inferential framework reaches the nominal-level coverage probabilities and has 

shorter confidence intervals leading to asymptotically sharp inference.

The comparison between the bootstrap-assisted R-Split with the bootstrap-assisted logistic 

regression shows that the latter has larger biases and lower coverage probabilities. 

The bootstrap-assisted logistic regression has undesirable performance because logistic 

regression yields biased estimates in moderately high dimensions (Sur and Candès 2019). 

This comparison reveals the benefit of conducting variable selection when γ is sparse and 

the dimension of covariates is large, and it confirms that R-Split alleviates the regularization 

bias issue. Comparing R-Split with the desparsified Lasso, in line with our earlier conjecture 

in Section 4.1, we observe that the desparsified Lasso approach has wider confidence 

intervals than those obtained by R-Split and tends to provide conservative inference.

This simulation study verifies that our proposed inferential framework not only achieves 

nominal coverage probabilities, but also mitigates the regularization and winner’s curse 

biases. Thus, the proposed inferential framework is sensible to consider for our case study.

5. Case Study

5.1. Case Study Results

In this section, we investigate the adverse effect of statin usage in our pre-specified six 

subgroups divided by sex and T2D genetic risk using the data introduced in Section 

2.3. We compare the results from three methods: (a) repeated sample splitting (R-Split) 

without bootstrap calibration, (b) R-Split based on the simultaneous method discussed in 

Dezeure, Bühlmann, and Zhang (2017), and (c) the proposed bootstrap-assisted R-Split. 

We summarize our real data analyses results in Table 4, in which we have reported the 

estimated subgroup treatment effects from R-Split along with their p-values and two-sided 

confidence intervals, adjusted p-values to account for the multiple comparisons issue with 

simultaneous method and Bonferroni correction, and bootstrap calibrated p-values for the 

subgroup with the largest treatment effect. The results with one-sided confidence lower 

bounds are summarized in Section F, supplementary materials.

From Table 4, the results of the R-Split estimator without bootstrap calibration not only 

indicate that the treatment effect of statins tends to vary across different subgroups, but 

also suggest that the high-genetic-risk female subgroup is the most vulnerable group for 

developing T2D with estimated log-odds ratio 0.41, 95% two-sided confidence interval 

0.04–0.78 (OR = 1 . 04 – 2 . 18) with p-value 0.030. For males with various genetic risk 

levels and females with lower T2D genetic risk, the adverse effects of statin usage are not 
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significant based on R-Split without bootstrap calibration. The treatment effect in the overall 

study cohort is slightly positive but is not significant, which is in-line with our expectation 

from the preliminary analysis in Section 2.3.

Although the estimates and confidence intervals from the R-Split without bootstrap 

calibration suggest that taking statins causes the increased risk of developing T2D 

for the most vulnerable subgroup, the statistical significance of this finding is unclear 

since R-Split is implemented without bootstrap calibration and can not address the 

multiple comparisons issue as illustrated in Section 4.2. After accounting for the multiple 

comparisons issue through conservative procedures including the simultaneous method or 

Bonferroni correction, the p-values for the female high-risk group are no longer significant, 

seemingly suggesting that our data do not provide enough evidence to claim the existence 

of the adverse effect of statin usage in the female high-risk subgroup. This might be due to 

the fact that both the simultaneous method and Bonferroni correction are rather conservative 

and tend to provide false negative discoveries. Fortunately, our proposed bootstrap assisted 

R-Split procedure directly conducts inference on the most vulnerable group, and our results 

suggest that among high-genetic-risk female patients, the odds of developing T2D after 

taking statins are 1.42 times the odds of developing T2D for the patients without taking 

statins (p-value 0.037 for two-sided test).

Our findings are in-line with reported results in existing clinical studies. For example, Mora 

et al. (2010) suggest that statin usage incurs a larger T2D risk increment on females than 

on males, and Waters et al. (2013) suggest that statins only significantly increase the risk 

of T2D on those with at least three out of four common T2D risk factors at baseline.2 

Compared with the existing studies, our findings provide more robust evidence with the 

new data analysis pipeline built under the causal inference framework. Our data analysis 

pipeline addresses several limitations of existing studies; in particular, limited sample 

size and multiple comparisons issue. Moreover, compared to existing studies, our findings 

provide a more biologically driven depiction of statins’ heterogeneous adverse effect, which 

can further support effective and precise clinical decisions and actions concerning the 

prescription of statins. Our study further demonstrates that in practice, the genetic profiles 

could assist T2D prevention of statin receivers to improve the quality of clinical practices.

5.2. Sensitivity Analysis

A major concern in observational studies is the bias induced by unmeasured confounding, 

meaning that some unmeasured factors that are associated with both the treatment and the 

outcome may explain away the estimated causal effects (Robins, Rotnitzky, and Scharfstein 

2000). To evaluate the validity of causal conclusions derived from our real data analyses, 

we conduct sensitivity analyses with the E-value method. The E-value method computes the 

minimal strength of an unmeasured confounder needed to explain away the estimated causal 

effect (VanderWeele and Ding 2017). Practitioners could then evaluate if there exists such 

an unmeasured confounder with the strength quantified by the E-value. A larger E-value 

implies that the unmeasured confounder needs to have a stronger association with the 

2The risk factors used by Waters et al. (2013) include high fasting blood glucose, history of hypertension, high body mass index, and 
high fasting triglycerides.
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outcome and the treatment in order to explain away the causal evidence. The E-values for 

our estimated subgroup causal effects are summarized in Table 5. Table 5 shows that the 

E-value in the high-risk female group is 2.38, which implies that only when an unmeasured 

confounder is associated with both the treatment and the outcome 2.38 times stronger than 

the measured confounders could the estimated causal effect be explained away. According 

to a meta-study on E-value applications, most computed E-values from existing literature 

are below 2.0 (Ioannidis et al. 2019). In sum, the results from Table 5 imply that the causal 

evidence collected from our data is reasonably robust against the unmeasured confounding 

issues.

Given that our outcome is an error-prone surrogate of the true disease status, we also 

conduct a sensitivity analysis regarding the potential misspecification of the logistic 

regression model for the true EHR disease status against the covariates. Due to page limit, 

the design and results of this sensitivity analysis are deferred to Section I, supplementary 

materials.

6. Discussion

In this case study, we investigate the T2D risk associated with statin usage in the most 

vulnerable subgroup. To overcome the limitations of existing studies and to generate 

trustworthy evidence, we introduce a rigorous study design under the causal inference 

framework and based on the EHR and biobank data from the Partner Health System. Built 

on this study design, we find that although the adverse effect of statin usage for developing 

T2D is marginal for the overall study cohort, taking statins significantly increases the risk 

of developing T2D for female patients with high genetic predisposition to T2D. We also 

recognize that our study design has two limitations. First, as the treatment variable is defined 

as if the subject carries the rs12916-T allele or not, we can only investigate the causal effect 

of taking statins on T2D risk but not the dosage effect of statins. Second, the definition of 

T2D status is based on a previously validated Multimodal Automated Phenotyping (MAP) 

algorithm (Liao et al. 2019). Although the MAP classifier of T2D can be reliably used 

to define the T2D outcome, generalizing the current study findings still warrants further 

confirmation from clinical trials.

While the objective of this case study is to make inference on the most vulnerable subgroup, 

a natural question to ask is whether statin usage will significantly increase the T2D risk 

for other vulnerable subgroups. To answer this question, we need to develop appropriate 

statistical tools to mitigate the regularization bias and winner’s curse bias for other most 

vulnerable subgroups as well. Take the subgroup with the second largest treatment effect 

as an example, our proposed method might be extended to address the bias issues by 

appropriately modifying the correction term cj(r) to capture the distance between the second 

largest coefficient and the jth largest coefficient. We shall leave the rigorous methodology 

development for making valid inference on the other subgroups to future research.

This case study considers pre-defined candidate subgroups. While predefined subgroups are 

suitable in our case study (as discussed in Section 2.1), extending the proposed methodology 

to data-adaptively identified subgroups warrants future research. Data-adaptive subgroup 
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identification approaches include, for example, varying coefficient model based (Chen and 

He 2018), regression tree based (Lipkovich et al. 2011), and fused Lasso based (Ma and 

Huang 2017) methods. When working with data-adaptively identified subgroups, one needs 

to not only adjust for the regularization and winner’s curse bias, but also account for 

randomness induced by subgroup identification. We leave this possible extension of the 

proposed method for future research, as the primary objective of this article is to investigate 

the causal effect of statin usage on T2D risk in the most vulnerable subgroup.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The causal diagram under our study design.
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Figure 2. 
Root-n scaled bias for Example 1. The shaded areas are calculated based on Monte Carlo 

standard errors.
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Figure 3. 
Power comparison for bootstrap-assisted R-Split, bootstrap-assisted logistic regression, R-

Split with simultaneous confidence interval, and the desparsified Lasso with simultaneous 

confidence interval evaluated over 500 Monte Carlo samples.
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Table 1.

Demographics of 17,023 PHS subjects considered in our study.

Variable Frequency (percent)

Sex

 Female 7592 (45)

 Male 9431 (55)

Age (years)

 <40 2333 (14)

 40–50 1733 (10)

 50–60 2824 (17)

 60–70 3971 (23)

 70–80 4042 (24)

 ≥80 2120 (12)

Race

 European 15,048 (88)

 African American 1004 (6)

 Other/unknown 971 (6)

Ethnicity

 Hispanic or Latino 698 (4)

 Other/unknown 16,325 (96)

Number of rs12916-T allele

 2 6245 (37)

 1 8079 (47)

 0 2699 (16)

With T2D

 Yes 2565 (15)

 No 14,458 (85)
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Table 2.

The estimated treatment effect (Est), standard error (SE), Z- and (two-sided) p-values of statins’ usage on the 

overall PHS study cohort.

Treatment effect Est SE Z-value p-value # of significant coefficients

Full logistic regression 0.04 0.04 0.93 0.35 16

NOTE: We fit the “full” logistic regression model with 337 features (age, race and genetic information). “significant coefficients” are the estimated 
regression coefficients with p-values < 0.05.
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Table 5.

Sensitivity analysis of our causal evidence measured by the E-value.

Method Subgroup (prevalence; # of case) E-value

R-Split (without bootstrap calibration) High-risk female (0.14, 100) 2.38

Mid-risk female (0.12, 396) 1.45

Low-risk female (0.11, 630) 1.00

High-risk male (0.24, 139) 1.23

Mid-risk male (0.21, 561) 1.11

Low-risk male (0.17, 739) 1.14

Overall 1.23

Bootstrap-assisted R-Split High-risk female (0.14, 100) 2.19
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