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Summary:

We propose double/debiased machine learning approaches to infer a parametric component of a 

logistic partially linear model. Our framework is based on a Neyman orthogonal score equation 

consisting of two nuisance models for the nonparametric component of the logistic model and 

conditional mean of the exposure with the control group. To estimate the nuisance models, we 

separately consider the use of high dimensional (HD) sparse regression and (nonparametric) 

machine learning (ML) methods. In the HD case, we derive certain moment equations to calibrate 

the first order bias of the nuisance models, which preserves the model double robustness property. 

In the ML case, we handle the nonlinearity of the logit link through a novel and easy-to-implement 

‘full model refitting’ procedure. We evaluate our methods through simulation and apply them in 

assessing the effect of the emergency contraceptive pill on early gestation and new births based on 

a 2008 policy reform in Chile.
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1. INTRODUCTION

Consider a logistic partially linear model. Let Y i, Ai, Xi : i = 1, 2, …, n  be independent and 

identically distributed samples of Y ∈ 0, 1 , A ∈ ℝ, and X ∈ ℝp. Assume that
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ℙ(Y = 1 ∣ A, X) = expit β0A + r0(X) ,

(1.1)

where expit( ⋅ ) = logit−1( ⋅ ), logit(a) = log a/(1 − a) , and r0( ⋅ ) are unknown nuisance 

functions of X. In an experimental or observational study with A taken as the exposure 

variable, Y  being the binary response of interest and X representing the observed 

confounding variables, parameter β0 is of particular interest as it measures the conditional 

effect of A on Y  on the scale of the logarithmic odds ratio. As the most common and natural 

way to characterise the conditional model of a binary outcome against some exposure, 

model (1.1) has been extensively used in economics and policy science studies.

Our goal is to estimate and asymptotically infer β0 at the rate n−1/2. When X is a 

scalar and r0( ⋅ ) is smooth, classic semiparametric kernel or sieve regression work well 

for this purpose (see Severini and Staniswalis, 1994; Lin and Carroll, 2006). When X is 

of high dimensionality, these approaches can have poor performance due to the curse of 

dimensionality. Accordingly, it would be more desirable to estimate r0( ⋅ ) with modern high 

dimensional (HD) (parametric) or machine learning (ML) (nonparametric)1 methods that are 

much more resistant to the growing dimensionality and complexity of X. However, unlike 

the partially linear model scenario (see Chernozhukov, Chetverikov, et al., 2018; Dukes and 

Vansteelandt, 2020), robust and efficient inference of β0 in (1.1) with HD or ML nuisance 

models has not yet been extensively studied.

In recent literature, Tan (2019a) proposed a simple and flexible doubly robust estimator 

to enhance the robustness to the potential misspecification of r(x) specified as a 

fixed-dimensional parametric function: r(x) = x⊤γ. The authors introduced a parametric 

model m(x) = g x⊤α  with a (known) link function g( ⋅ ) for the conditional mean model 

m0(x) = E(A ∣ Y = 0, X = x) and proposed a doubly robust estimating equation:

1
n ∑

i = 1

n
ϕ Xi Y ie−βAi − Xi

⊤γ − 1 − Y i Ai − g Xi
⊤α = 0,

(1.2)

where ϕ(x) is an estimation of some scalar nuisance function ϕ(x) affecting the 

asymptotic efficiency of the estimator, α and γ are two fixed-dimensional nuisance 

model estimators. Estimator β  solved from (1.2) is doubly robust in the sense that it is 

valid when either r(x) = x⊤γ is correctly specified for the logistic model nonparametric 

component, or when m(x) = g x⊤α  is correctly specified for the conditional mean model 

m0(x) = E(A ∣ Y = 0, X = x). Prior to this, the doubly robust semiparametric estimation of the 

1Our HD setting refers to the HD parametric (linear or generalised linear) model and the ML setting refers to ML models of 
conditional mean estimation (prediction/classification) that is black box and usually nonparametric.
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odds ratio was built on p(A ∣ X, Y = 0), the conditional density of A given X and Y = 0 (e.g., 

Chen, 2007; Tchetgen Tchetgen et al., 2010).2

Nevertheless, Tan (2019a) focused on fixed-dimensional parametric nuisance models that 

were still prone to model misspecification. Their proposed approach is not readily applicable 

to the recently developed and exploited HD (p ≫ n and the two nuisance components are 

specified as parametric models with sparse coefficients) or ML (the nuisance functions 

are estimated by arbitrary black box learning algorithm of condition mean) approaches. 

For the HD framework, this is because simply using regularised nuisance estimators in 

(1.2) would typically incur excessive bias and would not guarantee the parametric rate of 

convergence. In this paper, we realise bias reduction with respect to the regularisation errors 

by constructing certain Dantzig moment equations to estimate the nuisance parameters. With 

ultra-sparse nuisance parameters, i.e., sparsity level is o n1/2/logp , our proposed estimator 

preserves the model double robustness property such that it approaches β0 at the rate 

Op n−1/2  when either r( ⋅ ) or m( ⋅ ) is correctly specified. Under the ML framework, the 

nonlinearity and unextractability of the logit link makes it impossible to naturally estimater 

r0( ⋅ ) with a learning algorithm of conditional mean as the partially linear setting. We handle 

this challenge through an easy-to-implement ‘full model refitting’ (FMR) procedure that 

facilitates flexible implementation of arbitrary learning algorithms in our framework. Our 

double machine learning (DML) estimator for β0 is rated doubly robust in the same sense as 

Chernozhukov, Chetverikov, et al. (2018), i.e., asymptotically normal at rate n−1/2 when the 

two nuisance ML estimators are consistent for the true models and their root mean squared 

errors are controlled by op n−1/4 .

In recent years, there has been a large body of literature developed for semiparametric 

inference with HD and ML nuisance models, which has garnered increased attention and 

applications in economics and policy sciences (e.g., Athey and Imbens, 2017; Knaus, 2018, 

2020; Yang et al., 2020. As reflected in the organisation of our paper, there are two 

different frameworks in the literature, the HD and ML settings, both often referred to as 

‘machine learning’ approaches. The main difference between them is that the HD setting 

imposes parametric assumptions on the nuisance models and may allow for their potential 

misspecification, while the ML setting uses nonparametric ML nuisance estimators that are 

supposed to approach the true functions at a certain geometric rate.

To estimate low dimensional parameters such as the average treatment effect (ATE) 

and conditional treatment effect in linear or log-linear models in the HD setting with 

potentially misspecified nuisance models, recent studies, including Smucler et al.(2019),Tan 

(2020a,2020b), Ning et al. (2020), and Dukes and Vansteelandt (2020), constructed 

ℓ1-regularised estimating equations with certain ℓ∞-constraints to simultaneously estimate 

the nuisance parameters and calibrate their first order bias. In comparison, Bradic et 

al. (2019) proposed a more sparsity-rate robust ATE estimator that requires substantially 

weaker sparsity assumptions but needs both HD parametric nuisance models to be correctly 

2Chen (2007) and Tchetgen Tchetgen et al. (2010) estimate the conditional distribution of A given X while Tan (2019a) only needs to 
specify a conditional mean model of A.
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specified. Our work is the first to consider the logistic partially linear model under a 

similar HD model robustness regime. Existing approaches including debiased (desparsified) 

LASSO (see Van de Geer et al., 2014; Janková and Van de Geer, 2016) and regularised 

Riesz representer (see Chernozhukov, Newey and Robins, 2018; Belloni et al., 2018) used 

the empirical inverse of the information matrix obtained with ℓ1-regularised regression to 

correct for the bias of the logistic LASSO estimator. They imposed a technical ultra-sparsity 

condition on the inverse of the information matrix, an approach which has been criticised 

as unreasonable and unverifiable (Xia et al., 2020). In contrast, our sparsity assumption is 

model-specific and therefore more reasonable and explainable.

We note that near the end of finalizing our paper, a parallel paper by Ghosh and Tan 

(2020) was published on arXiv.org. Our HD framework studies the same problem but 

uses a different doubly robust estimating equation and calibrated procedures for the 

nuisance models. While the two proposals have similar theoretical properties and numerical 

implementation strategies (see Sections 3.1, 4.1, and Appendix A4), our method under the 

ML setting introduced below has no overlap with their work. In parallel, Nekipelov et al. 

(2018) published a preprint (the latest version in October 2020) about DML estimation 

of the generalised partially linear model using an adjusted Neyman orthogonal estimating 

equation different from ours. As a comparison, their approach works for more general target 

models with arbitrary (smooth) link functions and types of outcome while our method is 

restricted to the logit link and binary outcome.3 However, their construction cannot achieve 

the model double robustness property as we can with either fixed or high dimensional 

parametric nuisance models. In particular, when the nuisance model r0(x) is misspecified, 

their estimator is invalid while ours is still valid as long as m0(x) is correctly specified. This is 

due to them using E(A ∣ X = x) as the nuisance model while we use E(A ∣ Y = 0, X = x). See 

Tan (2019a) for more discussion on this.

Under the nonparametric ML setting, Chernozhukov, Chetverikov, et al. (2018) established 

a DML framework utilising Neyman orthogonal scores and cross-fitting to construct 

a parametrically efficient ML-based casual estimator. Their framework has played a 

central role in semiparametric inference with ML. To complement their approach, recent 

work, including Chernozhukov, Newey, Robins and Singh (2018), Zimmert and Lechner 

(2019), and Colangelo and Lee (2020), localised the orthogonal score function to estimate 

conditional average treatment effect; Semenova and Chernozhukov (2020) constructed the 

best linear approximation of a structural function with ML; Farrell et al. (2018) used deep 

neural networks for DML estimation; Wager and Athey (2018) and Oprescu et al. (2019) 

proposed and studied the tree-based ML approaches for causal inference; and Cui and 

Tchetgen Tchetgen (2019) proposed a minimax data-driven model selection approach to 

choose the ML nuisance models with the lowest bias on the DML estimator. The above-

mentioned work elaborated on specific inference problems including partially linear models, 

ATE, and heterogeneous treatment effects with nuisance models which can be directly 

estimated with arbitrary (supervised) ML algorithms. As mentioned above, r0( ⋅ ) in our case 

cannot be estimated with general ML algorithms due to the nonlinear structure of (1.1). To 

3It is still an open problem to generalise our approach to general link functions in M-estimation.
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the best of our knowledge, this paper is the first to solve this nontrivial technical problem 

through our proposed FMR procedure.

The rest of this paper is organised as follows. In Section 2, we define the Neyman 

orthogonal (doubly robust) score equation for logistic partially linear models. In Section 

3, we introduce the realisation of debiased and DML inference for β0 under the HD and ML 

settings respectively. In Section 4, we present and justify the asymptotic property of our 

HD and ML estimators. In Sections 5 and 6, we conduct simulations to study the empirical 

performance of our method and apply it to assess the effects of the emergency contraceptive 

(EC) pill on early gestation fetal and new births.

2. NEYMAN ORTHOGONAL SCORE

Beforecomingtothespecificapproachesin Section 3,weintroduceaNeymanorthogonal(doubly 

robust)scorefunctionforlogisticpartiallylinearmodelsandderiveitsfirstorderbias,whichplays a 

central role in motivating and guiding our methods and theoretical analysis. Let observation 

Di = Y i, Ai, Xi  for i = 1, …, n and D = Y , A, X  be a realisation of Di. Motivated by equation 

(1.2) and Tan (2019a), we define the Neyman orthogonal score as

ℎ(D; β, η) = ψ(X) Y e−βA − (1 − Y )er(X) A − m(X) ,

where η = r( ⋅ ), m( ⋅ ), ψ( ⋅ )  represents the whole set of nuisance functions. Similar to 

(1.2), r( ⋅ ) and m( ⋅ ) correspond to the nonparametric component r0( ⋅ ) defined in (1.1) and 

m0(x) = E(A Y = 0, X = x), respectively. ψ(x) is a nuisance function affecting the asymptotic 

variance of the estimator that may depend on r(x) and m(x) and actually corresponds to 

ϕ(x)e−r(x) with ϕ(x) defined by (1.2).4

REMARK 2.1.

The score function ℎ(D; β, η) is doubly robust in the sense that when r( ⋅ ) = r0( ⋅ ) or 

m( ⋅ ) = m0( ⋅ ), β0 solves Eℎ(D; β, η) = 0. We shortly demonstrate this as follows. When either 

r( ⋅ ) = r0( ⋅ ) or m( ⋅ ) = m0( ⋅ ) holds, we have

Eψ(X)(1 − Y ) er(X) − er0(X) A − m(X)
= E ψ(X) er(X) − er0(X) A − m(X) ∣ Y = 0, X = 0,

which combined with (1.1) leads to that

Eℎ D; β0, η = Eψ(X) Y e−β0A − (1 − Y )er(X) A − m(X)
= Eψ(X)er0(X) Y e−β0A − r0(X) − (1 − Y ) A − m(X)
= Eψ(X)er0(X) A − m(X) Y − ℙ(Y = 1 ∣ A, X)

ℙ(Y = 1 ∣ A, X) = 0.

4We rewrite (1.2) with ψ(x) = ϕ(x)e−r(x) to form the score function so that one could find both its partial derivatives on r and ψ
are Neyman orthogonal in a more explicit way.
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Suppose the nuisance models r0(x) and m0(x) are estimated by r (x) and m(x) converging to 

r(x) and m(x) respectively, and let ψ(x) represent the estimator for ψ(x) approaching ψ(x). 
Denote by η = r( ⋅ ), m( ⋅ ), ψ( ⋅ ) , and η = r ( ⋅ ), m( ⋅ ), ψ( ⋅ ) . We then write the Gateaux 

(partial) derivative of the score function ℎ D; β0, η  as

∂ηℎ D; β0, η [η − η]
= ∂ψℎ D; β0, η [ψ − ψ] + ∂rℎ D; β0, η [r − r] + ∂mℎ D; β0, η [m − m]
= : Y e−β0A − (1 − Y )er(X) A − m(X) ψ(X) − ψ(X)

− (1 − Y )ψ(X)er(X) A − m(X) r(X) − r(X)
− ψ(X) Y e−β0A − (1 − Y )er(X) m(X) − m(X) .

(2.1)

REMARK 2.2.

We evaluate the Neyman orthogonal score on some limiting parameters r( ⋅ ) and m( ⋅ )
instead of on r0( ⋅ ) and m0( ⋅ ) as in Chernozhukov, Chetverikov, et al.(2018). This is because, 

different from their ML framework (and ours), assuming both nuisance estimators converge 

to the true models, i.e., r( ⋅ ) = r0( ⋅ ) and m( ⋅ ) = m0( ⋅ ), our HD realisation allows at most one 

nuisance model to be wrongly specified.

Inspired by our deduction in Remark 2.1, E∂ψℎ D; β0, η [ψ − ψ] = 0 for any ψ whenever 

r( ⋅ ) = r0( ⋅ ) or m( ⋅ ) = m0( ⋅ ). Also, E∂rℎ D; β0, η [r − r] = 0 when m( ⋅ ) = m0( ⋅ ) and 

E∂mℎ D; β0, η [m − m] = 0 when r( ⋅ ) = r0( ⋅ ). Thus, under the ML setting, ℎ D; β0, η  satisfies 

the Neyman orthogonality condition, ∂ηℎ D; β0, η [η − η] = 0, as defined in Chernozhukov, 

Chetverikov, et al. (2018) and the first order (over-fitting) bias of n−1∑i = 1
n ℎ Di; β, η ) can 

be removed through cross-fitting (introduced in Section 3.2) and concentration. While under 

the HD parametric setting with r( ⋅ ) ≠ r0( ⋅ ) or m( ⋅ ) ≠ m0( ⋅ ), the moment equations for r( ⋅ )
and m( ⋅ ) must be carefully constructed to ensure the orthogonality conditions. Similar 

to existing literature, such as Chernozhukov, Chetverikov, et al. (2018) and Tan (2020a), 

removal of the second order (and beyond) bias relies on the assumption on quality of the 

nuisance estimators r ( ⋅ ) and m( ⋅ ) (see Section 4).

3. METHOD

In this section, we separately present our specific construction procedures for HD parametric 

and ML nonparametric realisation of the debiased/DML estimator for β0, based on the 

derivation and discussion in Section 2.

3.1. High dimensional parametric model realisation

Consider the setting with p ≫ n, where each Xi has its first element being 1, and r(x) = x⊤γ
and m(x) = g x⊤α , where g( ⋅ ) is a monotone and smooth link function with derivative 

g′( ⋅ ). Inspired by Smucler et al. (2019), Tan (2020a), and Dukes and Vansteelandt (2020), 

we construct Dantzig moment equations to ensure the Neyman orthogonality empirically: 

∂rℎ D; β0, η [r − r] = 0 and ∂mℎ D; β0, η [m − m] = 0, under potential misspecification of one the 

nuisance models.
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First, we obtain γ as some initial estimator for γ that converges to some limiting parameter 

γ∗ equal to the true model parameter γ0 when r(x) is correctly specified as r0(x) = x⊤γ0. 

Let ψ(x) be some estimator of the nuisance function ψ(x) depending on γ with its limiting 

function being ψ(x), whose choice will be discussed in Section 3.3. According to (2.1), we 

obtain α through the Dantzig moment equation:

minα ∈ ℝp ∥ α ∥1 s.t n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ Ai − g Xi
⊤α Xi

∞

≤ λα,

(3.1)

where λα is a tuning parameter controlling the regularisation bias. Finally, we obtain the 

nuisance estimator γ and the targeted HD estimator β HD simultaneously from:

minβ ∈ ℝ, γ ∈ ℝp ∥ γ ∥1 s.t n−1 ∑
i = 1

n
ψ Xi Y ie−βAi − 1 − Y i eXi

⊤γ g′ Xi
⊤α Xi

∞

≤ λγ;

n−1 ∑
i = 1

n
ψ Xi Y ie−βAi − 1 − Y i eXi

⊤γ Ai − g Xi
⊤α = 0.

(3.2)

Let the limits of α, γ  be α, γ  and η = r( ⋅ ), m( ⋅ ), ψ( ⋅ )  where r(x) = x⊤γ, m(x) = g x⊤α
and ψ(x) as given in Section 3.3. We will comment on the orthogonality (moment) 

conditions of our proposal in Remark 3.1, compare our method with Dukes and Vansteelandt 

(2020) in Remark 3.2, and discuss its numerical implementation with a weighted LASSO 

formation in Remark 3.3.

REMARK 3.1.—Neglect the second order error terms for now. When r(x) is correct (see 

Assumption HD1), i.e., r0(x) = x⊤γ0, it naturally holds that E∂mℎ D; β0, η m − m0 = 0 and 

γ∗ = γ = γ0. Then the ℓ∞-constraint in (3.1) imposes that

E∂rℎ D; β0, η r − r0 ≈ E(1 − Y )ψ(X)eX⊤γ0 A − g X⊤α X⊤ γ − γ0 = 0⊤ γ − γ0 .

When m(x) = m0(x) = g x⊤α0 , we have E∂rℎ D; β0, η r − r0  and α = α0 in turn. And the 

ℓ∞-constraint of (3.2) results in

E∂mℎ D; β0, η m − m0 ≈
matℎbbEψ(X) Y e−β0A − (1 − Y )eX⊤γ g′ Xi

⊤α0 X⊤ α − α0

= 0⊤ α − α0

Thus, the Neyman orthogonality condition ∂ηℎ D; β0, η [η − η] = 0 as introduced in Section 2 

is satisfied under our construction when either r( ⋅ ) or m( ⋅ ) is correctly specified.
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REMARK 3.2.—Similar to the HD partially linear (or log-linear) setting studied in Dukes 

and Vansteelandt (2020), estimating an equation for the nuisance parameter γ involves the 

unknown β. Unlike their construction procedure that plugs in β0 as every β ∈ ℝ to estimate 

γ and invert the resulted score-test p-values for interval estimation of β0, we solve for β  and 

γ jointly from (3.2), the Dukes and Vansteelandt method, our approach is more friendly in 

terms of computation and with a doubly robust moment equation for β, as demonstrated 

in Remark 2.1. Compared with implementation, directly provides a point estimator, and 

preserves a similar theoretical guarantee (see Section 4.1).

REMARK 3.3.—As is detailed in Appendix A4, one can construct LASSO problems with 

the same Karus–Kuhn–Tucker (KKT) conditions as the ℓ∞-norm constraints in (3.1) and 

(3.2) to obtain the estimators α and γ, which have equivalent theoretical properties as (3.2), 

numerical solution of the LASSO counterpart of (3.2) cannot be obtained with existing 

software, such as the R packages ‘glmnet’ (Friedman et al., 2010) and ‘RCAL’ (Tan, 

2019b). A direct solution to this is programming an optimisation procedure such as the 

Fisher scoring descent algorithm used by Tan (2020b). We also found a convenient way to 

moderately modify the construction procedure to make the regularised estimating equations 

solvable with R package ‘RCAL’, and use it for numerical implementation. In Appendix A4, 

we outline this modification and demonstrate its theoretical guarantee.

3.2. Machine learning realisation

We turn now to a (nonparametric) ML setting under which any learning algorithms of 

conditional mean could potentially be applied to estimate the nuisance functions. Similar 

to Chernozhukov, Chetverikov, et al. (2018), we randomly split the n samples into K folds: 

ℐ1, ℐ2, …, ℐK of equal size, to assist with removing the first order (over-fitting) bias through 

concentration. Then the cross-fitted estimating equation for β is constructed as

n−1 ∑
k = 1

K
∑

i ∈ ℐk

ℎ Di; β, η[ − k] = 0,

(3.3)

where η[ − k] = r [ − k]( ⋅ ), m[ − k]( ⋅ ), ψ[ − k]( ⋅ ) , representing ML estimators converging to 

r( ⋅ ) = r0( ⋅ ), m( ⋅ ) = m0( ⋅ ), and ψ( ⋅ ) obtained with the samples in ℐ−k = 1, …, n ∖ ℐk and 

independent of the samples in ℐk. Now we present the specific construction procedures for 

r [ − k]( ⋅ ) and m[ − k]( ⋅ ) with the choice of ψ[ − k]( ⋅ ) again discussed in Section 3.3.

Suppose there is a black box learning algorithm ℒ Ri, Ci; ℐ  that inputs samples 

ℐ ⊆ 1, 2, …, n  with some response Ri and covariates Ci, and outputs an estimation 

of E Ri ∣ Ci, i ∈ ℐ . We outline our approach utilising ℒ to estimate the nuisance 

functions. Corresponding to the definition of m0( ⋅ ), it can be estimated by: 

m[ − k]( ⋅ ) = ℒ Ai, Xi; ℐ−k ∩ i:Y i = 0 . Compared to the partially linear setting in 

Chernozhukov, Chetverikov, et al. (2018), estimation of r0( ⋅ ) with ℒ is more sophisticated 
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as it is defined through a nonlinear form: ℙ(Y = 1 ∣ A, X) = expit β0A + r0(X) . One could 

modify some ML approaches, e.g., neural network5 to accommodate this form. However, 

such modification is not readily available in general and typically requires additional human 

efforts for its implementation and validation. So, alternatively, we propose a ‘full model 

refitting’ (FMR) procedure that can use an arbitrary ℒ to estimate r0( ⋅ ). Our method is 

motivated by a simple proposition:

PROPOSITION 3.1.—Let M0(A, X) = ℙ(Y = 1 ∣ A, X) = expit β0A + r0(X) . We have:

β0 = argminβ ∈ ℝE logit M0(A, X) − β(A − E[A ∣ X]) 2 .

Proof.: For any β ∈ ℝ, we have

E logit M0(A, X) − β(A − E[A ∣ X]) 2 = E β0A + r0(X) − β(A − E[A ∣ X]) 2

= E β0 − β (A − E[A ∣ X]) + τ(X) 2 = β0 − β 2E(A − E[A ∣ X])2 + E τ(X) 2,

where τ(X) = r0(X) + β0E[A ∣ X]. Thus, β0 minimises

E logit M0(A, X) − β(A − E[A ∣ X]) 2 .

□

Further, randomly split ℐ−k into K folds ℐ−k, 1, …ℐ−k, K, of equal size and denote by 

ℐ−k, − j = ℐ−k ∖ ℐ−k, j. Motivated by Proposition 3.1, we first estimate the ‘full’ model 

M0(A, X) with ℐ−k, − j as:

M[ − k, − j]( ⋅ ) = ℒ Y i, Ai, Xi
⊤ ⊤; ℐ−k, − j ,

and learn a0(x) = E[A ∣ X = x] by a[ − k, − j]( ⋅ ) = ℒ Ai, Xi; ℐ−k, − j . Then we fit the (cross-

fitted) least square regression to obtain:

β̆[ − k] = argminβ ∈ ℝ
1

ℐ−k
∑

j = 1

K
∑

i ∈ ℐ−k, j

logit M[ − k, − j] Ai, Xi − β Ai − a[ − k, − j] Xi
2
,

(3.4)

as an estimator approaching β0 at certain rate typically larger than n−1/2. Then r0( ⋅ ) could 

be identified through r0 Xi = logit M0 Ai, Xi − β0Ai. Note that the empirically estimated 

version of logit M0 Ai, Xi − β0Ai typically involves Ai due to the discrepancy of β0 and 

M0( ⋅ ) from their empirical estimation. This can essentially impede removal of the over-

5By setting the last layer of the neural network to be the combination of a complex network of X and a linear function of A and 
linking it with the outcome through an expit link.
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fitting bias given that ∂rℎ D; β0, η  is not orthogonal to the error functions depending on A. 

So we further estimate the conditional mean of logit M0(A, X) − β0A on X to obtain the 

final estimator for r0( ⋅ ). Denote by W i = logit M[ − k, − j] Ai, Xi  for each i ∈ ℐ−k, j and get 

t [ − k]( ⋅ ) = ℒ W i, Xi; ℐ−k  to estimate t0(x) = :E logit M0(A, X) ∣ X = x . Then the estimator 

of r0( ⋅ ) is given by:

r [ − k](x) = t [ − k](x) − β̆[ − k]a[ − k](x), where a[ − k](x) = 1
K ∑

j = 1

K
a[ − k, − j](x) .

(3.5)

Alternatively, one can estimate r0( ⋅ ) through

r [ − k]( ⋅ ) = log
ℒ e−β̆[ − k]Ai, Xi; ℐ−k ∩ i:Y i = 1

ℒ 1 − Y i, Xi; ℐ−k
,

motivated by the moment condition that is sufficient to identify r0( ⋅ ):

E Y e−β0A − (1 − Y )er0(X) ∣ X = E e−β0A ∣ X, Y = 1 − er0(X)E[(1 − Y ) ∣ X] = 0.

We refer to the estimation step for β̆[ − k] and r [ − k]( ⋅ ) introduced above as ‘refitting’, and 

the whole procedure as FMR considering that we ‘refit’ the least square problem (3.4) and 

ML models ℒ to estimate r0( ⋅ ) with the initially estimated full model logit M0 Ai, Xi  as a 

pseudo-outcome. Finally, we solve (3.3) based on η[ − k] to obtain the DML estimator β ML.

REMARK 3.4.—We further use cross-fitting in FMR to avoid over-fitting of the models 

M[ − k, − j]( ⋅ ) and a[ − k, − j]( ⋅ ) when they are used to obtain the estimators β̆[ − k], t [ − k](x)
and r [ − k](x). This is supposed to show empirical improvement of the FMR procedure.

REMARK 3.5.—The FMR implicitly assumes that ℒ should perform similarly well 

on different learning objects with the covariates set as either X or A, X⊤ ⊤
. Classic 

nonparametric approaches like kernel smoothing or sieve may not satisfy this assumption 

whereas including one more covariate A in addition to the very low dimensional X can 

have substantial impact on estimation performance. Thus, we recommend using more 

dimensionality-robust modern ML approaches, such as random forest and neural networks, 

in our ML framework. The classic ‘plug-in’ sieve or kernel method has been well-studied in 

existing literature (e.g., Severini and Staniswalis (1994); Lin and Carroll (2006).
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3.3. Efficiency considerations

The nuisance function ψ( ⋅ ) in our framework is included and chosen in consideration of 

estimation efficiency. Tan (2019a) proposed and studied two options for ϕ( ⋅ ) used and 

defined in (1.2), with the corresponding function ψ( ⋅ ) taken as:

ψopt(x) =
e−r(x)E A − m(X) 2 ∣ X = x, Y = 0

E A − m(X) 2/expit β0A + r(X) ∣ X = x, Y = 0
,

and ψsimp(x) = expit − r(x) .

REMARK 3.6.—It was shown in Tan (2019a) that when both nuisance models are correctly 

specified, the estimator solved with the weight ψopt( ⋅ ) achieves the minimum asymptotic 

variance among all the doubly robust estimators obtained through our estimating equation. 

Given that the weighting function ψ( ⋅ ) is independent of the exposure A, our estimating 

equations form a strict subset of all the score equations for the logistic partial model defined 

by (1.1). Thus, our estimator is generally less efficient than the semiparametric efficient 

estimator obtained through the maximum likelihood approach like Tchetgen Tchetgen et al. 

(2010).

Though ψopt( ⋅ ) is the optimal choice in consideration of the efficiency under 

our construction, computation of ψopt( ⋅ ) involves numerical integration with respect 

to X given Y = 0, making it sometimes inconvenient to implement. So Tan 

(2019a) proposed a simplified but reasonable choice ψsimp(x) obtained by evaluating 

ψopt(x) at β0 = 0. In the following theoretical and numerical studies, we stick to 

ψ(x) = ψsimp(x), ψ(x) = expit −x⊤γ  and correspondingly ψ(x) = expit −x⊤γ∗  under the HD 

setting, and ψ[ − k](x) = expit −r [ − k](x)  and ψ(x) = expit −r0(x)  under the ML setting. Our 

theoretical framework allows for other choices on ψ( ⋅ ) as will be discussed in Section 4.2.

4. ASYMPTOTIC ANALYSIS

Let o αn , O αn , ω αn , Ω αn , and Θ αn  represent the sequences growing at a smaller, equal/

smaller, larger, equal/larger, and equal rate of αn, respectively. Let oℙ, Oℙ, ωℙ, Ωℙ, and Θℙ

be the corresponding rates with probability approaching 1 as n ∞. Let X ⊆ ℝp be the 

domain of X. First, we introduce the regularity condition for β and its estimating equation 

used under both HD and ML settings as Assumption REG, which is standard and can be 

commonly found in literature of the asymptotic analysis of M-estimator (see Van der Vaart, 

2000, ch. 5). We will then study the asymptotic properties of β HD and β ML in Sections 4.1 and 

4.2.
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ASSUMPTION REG (REGULARITY OF ESTIMATING EQUATION).

Parameter β belongs to a compact set ℬ ⊆ ℝ and there exists δn = Ω n−1/2logn
such that β0 − δn, β0 + δn ⊆ ℬ. Exposure A belongs to a compact set A and 

supx ∈ X |E[A ∣ X = x, Y = y] | = O(1) for y = 0, 1. In addition, 6

Eψ(X)Y e−β0AA A − m(X) = Θ(1) and Eℎ2 D; β0, η = Θ(1) .

4.1. High dimensional (parametric) setting

Let expit′( ⋅ ) be the derivative function of expit( ⋅ ), ∥ ⋅ ∥0 represents the number of 

nonzero elements in a vector and s = max γ∗
0, ∥ γ ∥0 , ∥ α ∥0 . We introduce the following 

assumptions to regularise the covariates and nuisance estimators.

ASSUMPTION HD1 (MODEL DOUBLE ROBUSTNESS).—At least one of the following conditions 

hold: (a) there exists γ0 ∈ ℝp such that r0(x) = x⊤γ0 and γ∗ = γ = γ0; (b) there exists α0 ∈ ℝp

such that m0(x) = g x⊤α0  and α = α0.

ASSUMPTION HD2 (CONCENTRATION RATE).—It holds that

n−1 ∑
i = 1

n
1 − Y i expit −Xi

⊤γ∗ eXi
⊤γ Ai − g Xi

⊤α Xi
∞

= Oℙ (logp/n)1/2 ;

n−1 ∑
i = 1

n
expit −Xi

⊤γ∗ g′ Xi
⊤α ΨiXi

∞

= Oℙ (logp/n)1/2 ;

n−1 ∑
i = 1

n
expit′ −Xi

⊤γ∗ Ai − g Xi
⊤α ΨiXi

∞

= Oℙ (logp/n)1/2 ,

where Ψi = Y ie−β0Ai − 1 − Y i eXi
⊤γ.

ASSUMPTION HD3 (SMOOTH LINK FUNCTION).—There exists L = Θ(1) that for any u, v ∈ ℝ,

g′(u) − g′(v) ≤ L u − v .

ASSUMPTION HD4 (RISK OF THE L1-REGULARISED ESTIMATORS).1-REGULARISED ESTIMATORS).—

There exists tuning parameters λα, λγ = Θ (logp/n)1/2  such that (3.1) and (3.2) have feasible 

solutions with probability approaching 1 and

sup
i ∈ 1, …, n

g Xi
⊤α = Oℙ(1); γ − γ∗

1 + ∥ γ − γ ∥1 + ∥ α − α ∥1 = Oℙ s(logp/n)1/2 ;

6To accommodate the notations of both HD and ML, we use m( ⋅ ) and r( ⋅ ) to represent the limiting models defined as g x⊤α  and 

x⊤γ under the HD setting and just the true models m0( ⋅ ) and r0( ⋅ ) under ML.

LIU et al. Page 12

Econom J. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



n−1 ∑
i = 1

n
1 + eXi

⊤γ Xi
⊤(γ − γ) 2 + Xi

⊤ γ − γ∗ 2 + β HD − β0
2 = Oℙ(slogp/n);

n−1 ∑
i = 1

n
1 + eXi

⊤γ Xi
⊤(α − α) 2 + g Xi

⊤α − g Xi
⊤α 2 = Oℙ(slogp/n) .

ASSUMPTION HD5 (ULTRA-SPARSITY).—It holds that s = o n1/2/logp .

REMARK 4.1.—Under Assumption HD1 and our constructions (3.1) and (3.2) (or the one 

introduced in Appendix A4), the expectations of the terms to be concentrated in Assumption 

HD2 are 0 by Remark 3.1. Then their maximum norms can be controlled by Oℙ (logp/n)1/2

as assumed in HD2, when the covariates Xi are bounded, sub-exponential, or beyond 

(Kuchibhotla and Chakrabortty, 2018), using the concentration results derived from the 

existing literature (Giné and Nickl, 2016).

REMARK 4.2.—Rates of the prediction and estimation risk of the nuisance estimators 

in Assumption HD4 can be derived following the general theoretical framework for 

ℓ1-regularised estimation introduced in Candes et al. (2007), Bickel et al. (2009), Bühlmann 

and Van de Geer (2011), and Negahban et al. (2012). The same rate properties have been 

used for analysing doubly robust estimators with HD nuisance models in existing literature 

(Smucler et al., 2019; Tan, 2020a; Dukes and Vansteelandt, 2020). Note that (3.1) and (3.2) 

involve the estimators γ or α being obtained beforehand. This will require some additional 

effort on removing the ‘plug-in’ errors of γ or α when deriving the risk rates for α or γ
compared to the standard analysis procedures. See Tan (2020a) for a similar issue and the 

relevant technical details used to handle it. In addition, supi ∈ 1…, n g Xi
⊤α = Oℙ(1) imposed in 

HD4 is not a standard assumption but is rather mild. This is because supx ∈ X g x⊤α = O(1)

by Assumption REG and we only need g x⊤α − g x⊤α  to be Oℙ(1) uniformly.

REMARK 4.3.—The ultra-sparsity assumption HD5 was also imposed in existing 

literature, including Tan (2020a) and Dukes and Vansteelandt (2020), to 

control the rate of bias incurred by the HD estimators: Oℙ(slogp/n) below 

the parametric rate. For the linear nuisance model, existingworklikeZhuetal.

(2018)andDukesandVansteelandt(2020)suggestedtoaddadditional moment (KKT) constraints 

to relax the ultra-sparsity assumption. However, their approach has not yet been shown to be 

feasible for nonlinear models, so, while promising, remains unclear for our framework.

We present the asymptotic property of β HD in Theorem 4.2 and its proof in Appendix A2.

THEOREM 4.1.—Denote by I = Eψ(X)Y e−β0AA A − m(X)  and σ2 = I−2Eℎ2 D; β0, η . Under 

Assumptions REG and HD1–HD5, we have
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nσ−1 β HD − β0 = 1
n ∑

i = 1

n
(σI)−1ℎ Di; β0, η + oℙ(1),

which weakly converge to N(0, 1).

As an earlier proposed and commonly used approach, logistic debiased LASSO (Van de 

Geer et al., 2014; Jankova and Van de Geer,´ 2016) has been criticised because its sparse 

inverse information matrix condition is not explainable and justifiable, leading to a subpar 

performance theoretically and numerically (see Xia et al., 2020). Interestingly, we find the 

model sparsity assumption of our method is more reasonable than debiased LASSO and 

present a simple comparison of these two approaches in Remark 4.4.

REMARK 4.4.—Assume ℙ(Y = 1 ∣ A, X) = expit β0A + X⊤γ0  is correctly specified. As is 

argued by Xia et al. (2020), assuming the information matrix of the logistic model has an 

ultra-sparse7 inverse, it is crucial to ensure the desirable properties of the debiased LASSO 

estimator for β0. However, this assumption is not explainable or convincing for the common 

Gaussian design with sparse precision matrix, due to the presence of the logistic canonical 

link. In comparison, we require that E(A ∣ Y = 0, X = x) = g Xi
⊤α0  with α0 0 = o n1/2/logp , 

which has two advantages over debiased LASSO. First, it accommodates nonlinear link 

function g( ⋅ ) and can be more reasonable for a categorical A. Second, it is imposed on a 

conditional model directly and is thus more explainable. For example, consider a conditional 

Gaussian model: A, X⊤ ⊤ ∣ Y = j ∼ N μj, Σ  for j = 0, 1. Then we have r0(x) = x⊤γ0 where 

β0, γ0
⊤ ⊤ = Σ−1 μ1 − μ0 , and A ∣ X, Y = 0 follows a Gaussian linear model with the coefficient 

α0 determined by Σ−1. Therefore, our sparsity assumptions on α0 and γ0 actually assume the 

data generation parameters Σ−1 and μ1 − μ0 to be sparse, which seems more explainable and 

verifiable in practice.

4.2. Machine learning (nonparametric) setting

Define ∥ f( ⋅ ) ∥Q, q = : ∥ f(U) ∥Q, q = : ∫ |f(u) |qdQ(u) 1/q
 for any real number q > 0, function 

f( ⋅ ), random variables U and probability measure Q. Let P  denote the probability measure 

of the observed D. We assume that K = Θ(1) and introduce the following assumption.

ASSUMPTION ML1 (QUALITY OF THE ML NUISANCE ESTIMATORS).—For each k,

sup
x ∈ X

r [ − k](x) − r0(x) + m[ − k](x) − m0(x) = oℙ(1);

r−k]( ⋅ ) − r0( ⋅ ) P , 2 + m[ − k]( ⋅ ) − m0( ⋅ ) P , 2 = oℙ n−1/4 .

7Or approximately sparse (see recent work, e.g., Belloni et al., 2018; Ma et al., 2020; Liu et al., 2020).
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REMARK 4.5.—Similar to Assumptions 3.2 and 3.4 of Chernozhukov, Chetverikov, et al. 

(2018), our Assumption ML1 requires that the ML estimators for r0( ⋅ ) and m0( ⋅ ) are 

uniformly consistent and their mean squared errors (MSE) achieve the rate Oℙ n−1/4 . This 

assumption is also referred to as rate double robustness in Smucler et al. (2019) as it requires 

production of the MSEs of r [ − k]( ⋅ ) and m[ − k]( ⋅ ) to be oℙ n−1/2 . In Appendix A1, we 

provide justification for our proposed FMR procedure to derive that the resulted r [ − k]( ⋅ )
satisfies Assumption ML1 as long as the learning algorithm ℒ satisfies the same strong 

convergence properties as assumed in ML1 on all the learning tasks in FMR. Thus, FMR 

does not actually clip the wings of the ML algorithms being used in our framework.

We present the asymptotic property of β ML in Theorem 4.2 with its proof found in Appendix 

A3.

THEOREM 4.2.—Denote by I0 = Eψ(X)Y e−β0AA A − m0(X) ; σ0
2 = I0

−2Eℎ2 D; β0, η0 . Under 

Assumptions REG and ML1, we have

nσ0
−1 β ML − β0 = 1

n ∑
i = 1

n
σ0I0

−1ℎ Di; β0, η0 + oℙ(1),

which weakly converge to N(0, 1).

REMARK 4.6.—Given that ψ(x) = expit −r0(x)  and ψ[ − k](x) = expit −r [ − k](x)  in our 

ML case, one could show that ψ[ − k](x) achieves the same strong convergence and 

rate properties as r [ − k]( ⋅ ) under Assumption ML1. While generally speaking, uniform 

consistency of ψ[ − k]( ⋅ ) is sufficient for the desirable conclusion in Theorem 4.2 so our 

framework accommodates more flexible choices on ψ(x), for example, ψopt(x) as introduced 

in Section 3.3. We demonstrate this point during the proof of Theorem 4.2 in Appendix A3.

5. SIMULATION STUDY

We conduct simulation studies for our HD and ML settings separately in Sections 5.1 and 

5.2, to study the point and interval estimation performance of our method.

5.1. High dimensional (parametric) setting

For the HD parametric setting, we design three data generation configurations introduced as 

follows to simulate different scenarios of model specification:

i. First, generate Y  following P (Y = 1) = 1/2. Then generate 

A, X⊤ ⊤ ∣ Y = j ∼ N μj, Σ  for j = 0, 1. Specification of μj and Σ are presented 

in Appendix A5 such that β0 = 0.5, r0(X) = − 0.22 X1 + X2 + 0.08 X3 + X4 , and 

m0(X) = − 0.13 X1 + X2 + X3 + X4 .
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ii. Generate Y  following P (Y = 1) = 1/2 and A, X⊤ ⊤ ∣ Y = j ∼ N μj, Σ  for 

j = 0, 1. Specification of μj and Σj are presented in Appendix A5 such that 

β0 = 0.5, r0(X) = − 0.22 X1 + X2 + 0.08 X3 + X4 − 0.15 X1X2 + X1X3 + X2X3 , and 

m0(X) = − 0.13 X1 + X2 + X3 + X4 .

iii. First generate X ∼ N(0, Σ) with Σ ∈ ℝp × p given in Appendix A5. Then we 

generate A given X from a Gaussian linear model with unit variance and 

conditional mean

E(A ∣ X) = 0.15 X1 + X2 + X3 + X4 + 0.075 X1X2 + X1X3 + X2X3 .

Finally, generate Y by

ℙ(Y = 1 ∣ A, X) = expit 0.5A + 0.25X1 + 0.25X2 + 0.1X3 + 0.1X4 .

We realise configurations (i)–(iii) with the sample size n = 1, 000, 1, 500 or 2, 000 separately 

and the dimension of X fixed as p = 200. Under all these settings, we specify the nuisance 

models as: r(X) = X⊤γ and m(X) = X⊤α. Then both nuisance models are correctly specified 

under (i), only m(X) is correctly specified under (ii), and only r(X) is correct under (iii). 

Note that we cannot extract the explicit form of m0(x) under (iii) because A is generated 

conditional on X without fixing Y = 0. But we still expect the linear model m(X) = X⊤α
to be misspecified under (iii) due to the nonlinear terms in E(A ∣ X). Implementing 

details of our HD approach are presented in Appendix A4. Specifically, all the tuning 

parameters in ℓ1-regularised regression are selected using cross-validation among the range 

0.2(logp/n)1/2, 2(logp/n)1/2 . We conducted the regression in each setting with 300 repeated 

simulations.

Table 1 evaluates the performance of our estimator β HD under all settings on its mean square 

error (MSE), absolute bias, and coverage probability (CP) of the 95% confidence interval 

(CI) estimated using bootstrap. Under all the settings, our method outputs low root-MSE 

and bias respectively being at most 18% and 7% of the magnitude of the true β0( = 0.5)
when n = 1, 000, and at most 12% and 4% of the β0 when n = 2, 000. As the sample size n
grows, one could see a trend of decaying on the MSEs and bias of our estimator. In addition, 

under all the settings, our interval estimation has proper CP locating in ±0.03 range of the 

nominal level 0.95. Thus, our HD estimator performs steadily well under different model 

specification scenarios as long as at least one nuisance model is correctly specified.

5.2. Machine learning (nonparametric) setting

To study our proposed method under the ML setting, welet Σ ∈ Rp × p with Σii = 1, Σij = 0.2
for i ≠ j, and truncate the randomly generated N(0, Σ) vectors by ( − 2, 2) to obtain the 

covariates X. We then generate A from the Gaussian model given X with unit variance and 

conditional mean a0(X) = ζa
⊤fa(X) where fa(x) is a nonlinear basis function of x including 

various types of effects (interaction, indicator, and trigonometric function, etc.), as defined 
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in Appendix A5 and ζa represents its loading coefficients also given in Appendix A5. Then 

A = a0(x) + e where e is a standard normal variable truncated into ( − 2, 2). Finally, we set 

β0 = 1, r0(X) = ζr
⊤fr(X) with the nonlinear basis fr(X) (see Appendix A5) and generate Y

following model (1.1). We fix p = 20 and set n = 1, 000 and 2, 000 separately.

To estimate the nuisance function r0(x), we use the FMR procedure with its last step being 

(3.5). The number of fold for cross-fitting is set as K = 5. For choice of the learning 

algorithms ℒ, we consider four ML methods and a hybrid method of the ML estimators 

introduced as follows.

a. Gradient boosted machines (GBM): an ensemble approach of classification and 

regressiontree (CART) using gradient boosting. Implemented by R package 

‘gbm’ (Greenwell et al., 2020).

b. Random forest (RF): ensemble of CART with bagging. Implemented with R
package ‘RandomForest’ (Liaw and Wiener, 2002).

c. Support vector machine (SVM): with linear kernel and implemented using R
package ‘e1071’ (Dimitriadou et al., 2004).

d. Neural network (NN): single hidden layer neural network implemented with R
package ‘nnet’ (Ripley and Venables, 2016).

e. Best nuisance models (Best): similar to Chernozhukov, Chetverikov, et al. 

(2018), for each nuisance component, we use a simple hybrid method choosing 

the ML estimator among (a)–(d) as the one with best prediction performance 

evaluated by the cross-validated sum-squared loss.

All the above-mentioned ML algorithms have been commonly used in recent years and 

considered in the literature of DML; for example, see Chernozhukov, Chetverikov, et al. 

(2018) and Cui and Tchetgen Tchetgen (2019). Tuning parameters of the ML models 

including the number of trees of GBM and RF, the margin of SVM, and the number of 

units and the weight decay of NN are selected using the resampling approach of R package 

‘caret’ (Kuhn et al., 2020). We conducted the regression in each setting with 300 repeated 

simulations.

Table 2 presents the resulted average MSE, absolute bias and CP of 95% CI of β ML obtained 

with the five ML modelling strategies for n = 1, 000 and n = 2, 000 separately. The five 

approaches have relatively consistent performance in terms of MSE, bias, and CP under 

both settings, with the variation of their MSEs smaller than 0.015. This demonstrates that 

performance of our framework is robust to the choice of ML algorithms. While, to a certain 

degree, ‘NN’ has the best performance (with the lowest bias and MSE) when n = 1, 000 and 

‘GBM’ and ‘Best’ have the best performance when n = 2, 000. Also, interval estimations of 

all the approaches achieve proper coverage rates, all of which are between 0.90 and 0.95.
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6. A REAL EXAMPLE: EFFECT OF EC PILL ON EARLY FETAL GESTATION

In this section, we implement our proposed HD and ML methods to study the effect of 

the emergency contraceptive (EC) pill on the rate of new birth and early gestation fetal 

death (abortion), by revisiting and exploring the data of a quasi-experimental study based 

on the policy reform on the EC pill in Chile (Bentancor and Clarke, 2017). In the original 

study, the authors collected all records of birth and fetal deaths in Chile, as well as a 

number of municipality-level features (education, salary, and healthcare, etc.) of women 

at the reproductive age (15–34), in the years around 2008, during which the country was 

experiencing a reform relating to the legislation of EC pills. As a consequence of this, 

about half of the municipalities in Chile started to provide EC pill freely in 2009, while 

in the remaining half, the EC pill was not available or extremely restricted in use during 

that period. This policy was mostly dependent on the political, economic, and public health 

factors characterised by a total of 16 features (denoted as Z) such as education spending, 

public health spending, condom use, and political conservativeness. Thus, the treatment of 

EC pill (A = 1 for EC pill accessible; A = 0 for EC pill not accessible) can be regarded as 

exogenous for the individuals.

Let Y (1) denote the indicator for the status of early gestation fetal death of each individual 

record and Y (2) indicate new births (pregnant and did not incur fetal death). Assume that

ℙ Y (1) = 1 ∣ A, Z = expit β0
(1)A + r0

(1)(Z) ;

ℙ Y (2) = 1 ∣ A, Z = expit β0
(2)A + r0

(2)(Z) ,

where r0
(1)( ⋅ ) and r0

(2)( ⋅ ) are two unknown functions. We are interested in inferring the two 

parameters β0
(1) and β0

(2) characterising the log odd ratios (log-OR) of abortion (among the 

pregnant individuals) and birth (among all individuals) to the treatment of the EC pill 

respectively. To investigate β0
(1) as the effect of the EC pill on abortion, we follow a similar 

strategy as Bentancor and Clarke (2017) that focuses on the individual records at the stage 

between 15 and 25, on which early gestation fetal death can be viewed as a reasonable 

proxy for illegal abortion. Note that the prevalence of Y (1) and Y (2) in their corresponding 

populations are both less than 5%, which could cause the logistic model to be unstable to fit. 

We randomly downsample the zeros in both analysis to make the prevalence of Y (1) and Y (2)

0.25 and 0.4, respectively. This procedure only changes intercepts of the logistic models and 

does not affect the target parameters. We find our results are not sensitive to the prevalence 

set for Y (1) and Y (2) as long as they are in a proper range, say 0.2 to 0.5. The resulting data 

set for analysing β0
(1) (abortion) has n(1) = 5, 824 samples. We take a subset with n(2) = 10, 000

samples for β0
(2) so that our algorithms will not require excessive computation time.

For our HD approach, we let X be the p = 175 dimensional basis joining Z, all the 

interaction terms of Z and the three-dimensional natural splines of all the continuous 
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variables in Z. We specify the nuisance functions as m(x) = expit x⊤α(ℓ) , and r(x) = x⊤γ(ℓ)

for ℓ = 1, 2. For the ML approach, we take X = Z as the input covariates of the nuisance 

models. The choice and implementation of the ML algorithms are the same as in Section 

5.2, except that we also use dropout8 to avoid over-fitting due to the fact that most covariates 

are at the municipality level while the records are at the individual level.

Tables 3 and 4 present the point estimation, 95% CI and (two-side) p-values of our 

approaches β0
(1) and β0

(2), respectively. For β0
(1), point estimations of all methods are negative 

and around −0.18 ± 0.04. Their interval estimations are also internally consistent except 

that SVM outputs a relatively narrow CI and NN includes 0 near its CI upper bound. 

Correspondingly, all methods but NN reject the null ‘β0
(1) = 0’ at level 0.05. We note that 

NN outputs a slightly worse prediction model for A ∣ X, Y = 0, which causes it to produce 

a relatively wider CI. The result of our hybrid method ‘Best’ is very consistent with HD, 

indicating that our methods under both settings lead to basically the same conclusion. A 

similar situation occurs to the estimators of β0
(2). All methods reject ‘β0

(2) = 0’ at level 0.05 and 

their estimations are all negative values, and internally consistent on the magnitudes and CIs 

(SVM shows a moderate variation from other methods).

Our results reveal that distribution of the EC pill could significantly reduce the rate of illegal 

abortion (in the age group 15–25) and new births. This is consistent with the results of 

Bentancor and Clarke (2017) obtained through their municipality-level analysis. Although 

the estimated effect sizes are at different scales9 and thus incomparable between the two 

studies, our p-values appear to show more significance in that nearly all of them are below 

0.05 while their estimated p-values are between 0.05 and 0.1. This is because we use more 

complex and robust nuisance models to adjust for the confounding effects of Z and perform 

our analysis at the individual level, which enables us to have larger sample sizes.
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APPENDIX A1.: JUSTIFICATION OF THE FMR PROCEDURE

In this section, we derive error rates for the ML estimator r [ − k]( ⋅ ). obtained with the FMR 

procedure introduced in Section 3.2. Assume that the learning algorithm ℒ attains the same 

strong convergence and rate properties as those for m[ − k]( ⋅ ) in Assumption ML1, i.e., for 

each j ∈ 1, 2, …, K  and k ∈ 1, 2, …, K :

8A common and flexible technique in ML research used for regularisation and avoiding overfitting. Here we randomly and 
independently set each entry of the training covariates matrix as N(0, 1) variable with probability 0.4 and 0.3, for the first and 
second study, respectively.
9Their effect is defined in a partially linear model of the abortion/birth rate against the treatment and control variables. While we are 
measuring the effect of the EC pill in a logistic model at the individual level.
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sup
x ∈ X, a ∈ A

M[ − k, − j](a, x) − M0(a, x) = oℙ(1); M[ − k, − j]( ⋅ ) − M0( ⋅ ) P , 2 = oℙ n−1/4 ;

sup
x ∈ X

a[ − k, − j](x) − a0(x) = oℙ(1); a[ − k, − j]( ⋅ ) − a0( ⋅ ) P , 2 = oℙ n−1/4 ;

sup
x ∈ X

t [ − k](x) − t†
[ − k, − j](x) ∣ = oℙ(1); t [ − k]( ⋅ ) − t†

[ − k, − j]( ⋅ ) P , 2 = oℙ n−1/4 .

where t†
[ − k, − j](x) = :E logit M[ − k, − j](a, x) ∣ X = x, M[ − k, − j]( ⋅ ) . We justify as follows 

that

sup
x ∈ X

r [ − k](x) − r0(x) = oℙ(1); r [ − k]( ⋅ ) − r0( ⋅ ) P , 2 = oℙ n−1/4 .

First, given that logit is a smooth function, it is not hard to show that

sup
x ∈ X, a ∈ A

logit M[ − k, − j](a, x) − logit M0(a, x) = oℙ(1);

logit M[ − k, − j]( ⋅ ) − logit M0( ⋅ )
P , 2

= oℙ n−1/4 ,

under some mild regularity conditions. Then derive the error rate of β̆[ − k] as follows.

ℐ−k
−1 ∑

j = 1

K
∑

i ∈ ℐ−k, j

logit M[ − k, − j] Ai, Xi Ai − a[ − k, − j] Xi

= ℐ−k
−1 ∑

j = 1

K
∑

i ∈ ℐ−k, j

logit M0 Ai, Xi Ai − a0 Xi

+ logit M[ − k, − j] Ai, Xi − logit M0 Ai, Xi Ai − a0 Xi

+logit M0 Ai, Xi a0 Xi − a[ − k, − j] Xi

+ logit M[ − k, − j] Ai, Xi − logit M0 Ai, Xi a0 Xi − a[ − k, − j] Xi

= ℐ−k
−1 ∑

j = 1

K
∑

i ∈ ℐ−k, j

logit M0 Ai, Xi Ai − a0 Xi

+ a[ − k, − j]( ⋅ ) − a0( ⋅ ) P , 2 + logit M[ − k, − j]( ⋅ ) − logit M0( ⋅ )
P , 2

+ Oℙ n−1/2

= ℐ−k
−1 ∑

j = 1

K
∑

i ∈ ℐ−k, j

logit M0 Ai, Xi Ai − a0 Xi + oℙ n−1/4 + Oℙ n−1/2 ,

under some mild regularity conditions. Similarly, we have

ℐ−k
−1 ∑

j = 1

K
∑

i ∈ ℐ−k, j

Ai − a[ − k, − j] Xi
2

= ℐ−k
−1 ∑

j = 1

K
∑

i ∈ ℐ−k, j

Ai − a0 Xi
2 + oℙ n−1/4 + Oℙ n−1/2 .

And consequently, by Proposition 3.1 and
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β̆[ − k] =
∑i ∈ ℐ−k logit M0 Ai, Xi Ai − a0 Xi

∑i ∈ ℐ−k Ai − a0 Xi
2 + oℙ n−1/4 = β0 + oℙ n−1/4 .

Then by Assumption REG that β0 and a0(x)  are bounded and recall that

a[ − k](x) = K−1 ∑
j = 1

K
a[ − k, − j](x),

the estimator r [ − k]( ⋅ ) given by equation (3.5) satisfies that:

sup
x ∈ X

r [ − k](x) − r0(x)

≤ sup
x ∈ X

t [ − k](x) − t0(x) + β̆[ − k] − β0 a0(x) + β̆[ − k] a[ − k](x) − a0(x)

≤ sup
x ∈ X, j

t [ − k](x) − t†
[ − k, − j](x) + t†

[ − k, − j](x) − t0(x) + oℙ(1) = oℙ(1),

where sup
x ∈ X, j

t†
[ − k, − j](x) − t0(x) = oℙ(1) is a consequence of

sup
x ∈ X, a ∈ A

logit M[ − k, − j](a, x) − logit M0(a, x) = oℙ(1) .

And then

r [ − k]( ⋅ ) − r0( ⋅ ) P , 2

≤ t [ − k]( ⋅ ) − t0( ⋅ ) P , 2 + β̆[ − k] − β0 a0(x) P , 2 + β̆[ − k] a[ − k](x) − a0(x) P , 2

= max
j ∈ 1, …, K

t†
[ − k, − j]( ⋅ ) − t0( ⋅ ) P , 2 + oℙ n−1/4

= max
j ∈ 1, …, K

E logit M[ − k, − j](A, X) ∣ X = x − E logit M0(A, X) ∣ X = x
P , 2

+oℙ n−1/4

≤ max
j ∈ 1, …, K

logit M[ − k, − j]( ⋅ ) − logit M0( ⋅ )
P , 2

+ oℙ n−1/4 = oℙ n−1/4 .

Thus, r [ − k](x) satisfies Assumption ML1.

APPENDIX A2.: PROOF OF THEOREM 4.1

Proof.

By (3.2), we have

n−1 ∑
i = 1

n
ℎ Di; β HD, η = n−1 ∑

i = 1

n
ψ Xi Y ie−β HDAi − 1 − Y i eXi

⊤γ Ai − g Xi
⊤α = 0.
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Our main involvement is to remove the approximation error 

n−1∑i = 1
n ℎ Di; β HD, η − ℎ Di; β HD, η , asymptotically. Note that

n−1 ∑
i = 1

n
ℎ Di; β HD, η − ℎ Di; β HD, η

= n−1 ∑
i = 1

n
ψ Xi 1 − Y i eXi

⊤γ − eXi
⊤γ Ai − g Xi

⊤α

+n−1 ∑
i = 1

n
ψ Xi Y ie−β HDAi − 1 − Y i eXi

⊤γ g Xi
⊤α − g Xi

⊤α

+n−1 ∑
i = 1

n
expit −Xi

⊤γ − expit −Xi
⊤γ∗

× Y ie−β HDAi − 1 − Y i eXi
⊤γ Ai − g Xi

⊤α
= :Δ1 + Δ2 + Δ3 .

We handle the terms Δ1, Δ2 and Δ3 separately as follows. First, we have

Δ1 = n−1 ∑
i = 1

n
1 − Y i ψ Xi − ψ Xi eXi

⊤γ 1 − eXi
⊤(γ − γ) Ai − g Xi

⊤α

+n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ 1 − eXi
⊤(γ − γ) g Xi

⊤α − g Xi
⊤α

+n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ 1 − eXi
⊤(γ − γ) − Xi

⊤(γ − γ) Ai − g Xi
⊤α

+n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ g Xi
⊤α − g Xi

⊤α Xi
⊤(γ − γ)

+n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ Ai − g Xi
⊤α Xi

⊤(γ − γ)

= :Δ11 + Δ12 + Δ13 + Δ14 + Δ15

As supi ∈ 1, …, n Xi
⊤(γ − γ) = Oℙ(1) by Assumption HD4, there exists M1 = O(1) such that with 

probability approaching 1,

1 − eXi
⊤(γ − γ) ≤ M1 Xi

⊤(γ − γ) , 1 − eXi
⊤(γ − γ) − Xi

⊤(γ − γ) ≤ M1 Xi
⊤(γ − γ) 2;

(A1)

ψ Xi − ψ Xi =
eXi

⊤γ∗ 1 − eXi
⊤ γ − γ∗

1 + eXi
⊤γ∗ 1 + eXi

⊤γ
≤ M1 Xi

⊤ γ − γ∗ .

(A2)

And by Assumptions REG and HD4, there exists M2 = Θ(1) that 

supi ∈ 1, …, n Ai − g Xi
⊤α + ∣ Ai − g Xi

⊤α ∣ ≤ M2. Consequently, by Assumptions HD4 and 

boundness of ψ( ⋅ ), we have

LIU et al. Page 22

Econom J. Author manuscript; available in PMC 2024 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Δ11 ≤ n−1 ∑
i = 1

n
M1

2M2eXi
⊤γ Xi

⊤ γ − γ∗ Xi
⊤(γ − γ)

≤ M1
2M2 n−2 ∑

i = 1

n
eXi

⊤γ Xi
⊤ γ − γ∗ 2 ∑

i = 1

n
eXi

⊤γ Xi
⊤(γ − γ) 2

1/2

= Oℙ
slogp

n ;

Δ12 ≤ n−1 ∑
i = 1

n
M1eXi

⊤γ Xi
⊤(γ − γ) g Xi

⊤α − g Xi
⊤α

≤ M1 n−2 ∑
i = 1

n
eXi

⊤γ Xi
⊤(γ − γ) 2 ∑

i = 1

n
eXi

⊤γ g Xi
⊤α − g Xi

⊤α 2
1/2

= Oℙ
slogp

n ;

Δ13 ≤ n−1 ∑
i = 1

n
M1M2eXi

⊤γ Xi
⊤(γ − γ) 2 = Oℙ

slogp
n ;

Δ14 ≤ n−1 ∑
i = 1

n
eXi

⊤γ Xi
⊤(γ − γ) g Xi

⊤α − g Xi
⊤α = Oℙ

slogp
n , similar to Δ12 .

By Assumptions HD2 and HD4,

Δ15 ≤ n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ Ai − g Xi
⊤α Xi

∞

⋅ ∥ γ − γ ∥1 = Oℙ
slogp

n .

Thus, we have Δ1 = Oℙ(slogp/n), For Δ2, we have

Δ2 = n−1 ∑
i = 1

n
ψ Xi Y i e−βHDAi − e−β0Ai g Xi

⊤α − g Xi
⊤α

+n−1 ∑
i = 1

n
ψ Xi − ψ Xi Y ie−β0Ai − 1 − Y i eXi

⊤γ g Xi
⊤α − g Xi

⊤α

+n−1 ∑
i = 1

n
ψ Xi Y ie−β0Ai − 1 − Y i eXi

⊤γ

× g Xi
⊤α − g Xi

⊤α − g′ Xi
⊤α Xi

⊤(α − α)

+n−1 ∑
i = 1

n
ψ Xi Y ie−β0Ai − 1 − Y i eXi

⊤γ g′ Xi
⊤α Xi

⊤(α − α)

= :Δ21 + Δ22 + Δ23 + Δ24 .

Again using Assumptions REG and HD4, there exists M3 = Θ(1) such that

e−β HDAi − e−β0Ai ≤ M3 β HD − β0 .

(A3)

And by Assumption HD3 and the mean value theorem, for each i, there exits ti lying between 

Xi
⊤α and Xi

⊤α such that
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g Xi
⊤α − g Xi

⊤α − g′ Xi
⊤α Xi

⊤(α − α)
≤ g′ Xi

⊤α − g′ ti Xi
⊤(α − α) ≤ L Xi

⊤(α − α) 2 .

(A4)

These combined with (A1), (A2) and Assumptions REG and HD4 lead to that

Δ21 = O β HD − β0 n−1 ∑
i = 1

n
g Xi

⊤α − g Xi
⊤α 2

1/2
= Oℙ

slogp
n ;

Δ22 = O n−1 ∑
i = 1

n
1 + eXiγ ψ Xi − ψ Xi

2

× n−1 ∑
i = 1

n
1 + eXiγ g Xi

⊤α − g Xi
⊤α 2

1/2
= Oℙ

slogp
n ;

Δ23 = O n−1 ∑
i = 1

n
1 + eXiγ Xi

⊤(α − α) 2 = Oℙ
slogp

n .

And by Assumptions HD2 and HD4,

Δ24 ≤ n−1 ∑
i = 1

n
ψ Xi Y ie−β0Ai − 1 − Y i eXi

⊤γ g′ Xi
⊤α Xi

∞

⋅ ∥ α − α ∥1

= Oℙ
slogp

n .

So we also have Δ2 = Oℙ(slogp/n). For Δ3, we have

Δ3 = n−1 ∑
i = 1

n
expit −Xi

⊤γ − expit −Xi
⊤γ∗ Y i e−β HDAi − e−β0Ai Ai − g Xi

⊤α

+n−1 ∑
i = 1

n
expit −Xi

⊤γ − expit −Xi
⊤γ∗ − expit′ −Xi

⊤γ∗ Xi
⊤ γ∗ − γ

× Y ie−β0Ai − 1 − Y i eXi
⊤γ Ai − g Xi

⊤α

+n−1 ∑
i = 1

n
expit′ −Xi

⊤γ∗ Xi
⊤ γ∗ − γ Y ie−β0Ai − 1 − Y i eXi

⊤γ Ai − g Xi
⊤α

= :Δ31 + Δ32 + Δ33 .

Again using the mean value theorem and the fact that expit′(u) − expit′(v) ≤ |u − v| for any 

u, v ∈ ℝ (by expit′′( ⋅ ) ≤ 1), we have

expit −Xi
⊤γ − expit −Xi

⊤γ∗ − expit′ −Xi
⊤γ∗ Xi

⊤ γ∗ − γ ≤ Xi
⊤ γ∗ − γ 2 .

Then by (A2), (A3), and Assumptions REG and HD4, we have
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Δ31 = O β HD − β0 n−1 ∑
i = 1

n
Xi

⊤ γ − γ∗ 2
1/2

= Oℙ
slogp

n ;

Δ32 = O n−1 ∑
i = 1

n
1 + eXiγ Xi

⊤ γ − γ∗ 2 = Oℙ
slogp

n .

And by Assumptions HD2 and HD4,

Δ33 ≤ n−1 ∑
i = 1

n
expit′ −Xi

⊤γ∗ Y ie−β0Ai − 1 − Y i eXi
⊤γ Ai − g Xi

⊤α Xi
∞

× γ∗ − γ 1 = Oℙ
slogp

n .

Thus, we have Δ3 = Oℙ(slogp/n), and by Assumption HD5,

n−1 ∑
i = 1

n
ℎ Di; β HD, η − ℎ Di; β HD, η = Oℙ

slogp
n = oℙ

1
n ,

which leads to that

n−1 ∑
i = 1

n
ℎ Di; β HD, η + oℙ

1
n = 0.

This combined with Remark 2.1 that Eℎ D; β0, η = 0 under Assumption HD1, the regularity 

Assumption REG, and Theorem 5.21 of Van der Vaart (2000), comes to the conclusion of 

Theorem 4.1. □

APPENDIX A3.: PROOF OF THEOREM 4.2

Following the general results of the DML estimator with nonlinear Neyman orthogonal 

score presented in Section 3.3 and Theorem 3.3 of Chernozhukov, Chetverikov, et al. (2018), 

we only need to verify their Assumptions 3.3 and 3.4 on our score function ℎ(D; β, η), 
specifically, Assumptions A1 and A2 presented as follows.

ASSUMPTION A1 (MOMENT CONDITION WITH NEYMAN ORTHOGONALITY).

It holds: (a) Eℎ D; β0, η0 = 0 and ℬ contains an interval of length Θ n−1/2logn  centred 

at β0; (b) the map (β, η) Eℎ D; β0, η0  is twice continuously Gateaux-differentiable; 

(c) Eℎ D; β, η0 ≥ min ∣ J0(β − β0 ∣ , c0  where the parameters η0 = r0( ⋅ ), m0( ⋅ ), ψ , 

c0 = Θ(1) and J0 = ∂βEℎ D; β, η0 β = β0 = Θ(1); (d) ℎ D; β0, η0  obeys Neyman orthogonality, 

i.e., ∂ηEℎ D; β0, η0 η − η0 = 0 for all η ∈ ℰ where the parameter space of 

η:ℰ ⊆ η:E ℎ D; β0, η0 η − η0 < ∞ .
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ASSUMPTION A2 (QUALITY OF THE NUISANCE ESTIMATORS).

It holds: (a) η[ − k] belongs to the realisation set Tn for each k ∈ 1, 2, …, K , with probability 

approaching 1 where Tn satisfies η0 ∈ Tn and conditions given as follows; (b) The space 

of β, ℬ is bounded and for each η ∈ Tn, the functional space ℱη = ℎ( ⋅ ; β, η):β ∈ ℬ  is 

measurable and its uniform covering number satisfies: there exists positive constant R = Θ(1)
and v = Θ(1) such that

sup
Q

logN ϵ Fη( ⋅ ) Q, 2, ℱη, ∥ ⋅ ∥Q, 2 ≤ νlog(R/ϵ), ∀ϵ ∈ (0, 1],

where Fη( ⋅ ) is a measurable envelope function for ℱη:Fη(D) ≥ |ℎ(D; β, η)| for all D and 

β ∈ ℬ, and there exists q > 2 such that Fη( ⋅ ) P , q = O(1); (c) there exists sequence τn:

sup
η = r, m, ψ ∈ Tn, β ∈ ℬ

Eℎ(D; β, η) − Eℎ D; β, r0, m0, ψ = o τn ,

sup
η ∈ Tn, β − β0 ≤ τn

E ℎ(D; β, η) − ℎ D; β0, r0, m0, ψ 2

+E ℎ D; β0, r0, m0, ψ − ℎ D; β0, η0
2 = o(1),

sup
r ∈ (0, 1), η ∈ Tn, β − β0 ≤ τn

∂r
2Eℎ D; β0 + r β − β0 , η0 + r η − r0( ⋅ ), m0( ⋅ ), ψ = o n−1/2 ;

and (d) Eℎ2 D; β0, η0 = Θ(1).

We simplified and adapted the original assumptions in Chernozhukov, Chetverikov, et al. 

(2018) to form Assumptions A1–A2, according to our own setting. The only nontrivial 

change made here is that in Assumption A2 (c), we require

sup
η = r, m, ψ ∈ Tn, β ∈ ℬ

Eℎ(D; β, η) − Eℎ D; β, r0, m0, ψ = o τn ,

sup
r ∈ (0, 1), η ∈ Tn, β − β0 ≤ τn

∂r
2Eℎ D; β0 + r β − β0 , η0 + r η − r0( ⋅ ), m0( ⋅ ), ψ = o n−1/2 ;

(A5)

instead of:

sup
η ∈ Tn, β ∈ ℬ

Eℎ(D; β, η) − Eℎ D; β, η0 = o τn ,

sup
r ∈ (0, 1), η ∈ Tn, β − β0 ≤ τn

∂r
2Eℎ D; β0 + r β − β0 , η0 + r η − η0 = o n−1/2 ,

as used in Assumption 3.4 (c) of Chernozhukov, Chetverikov, et al. (2018). The first 

inequality of (A5) is used by Chernozhukov, Chetverikov, et al. (2018) to derive a 

preliminary rate for the DML estimator: β ML − β0 = oℙ τn (see their Step 1 of the proof of 

Lemma 6.3), and the second inequality of (A5) is used in their Step 3 the proof of Lemma 

6.3 to process the second order error of
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n−1 ∑
k = 1

K
∑

i ∈ ℐk

ℎ Di; β0, η0 − ℎ Di; β, η[ − k]

uniformly for β satisfying β − β0 ≤ τn.

Note that our modified two assumptions are still sufficient for deriving these results. Given 

that Eℎ D; β0, r0, m0, ψ = 0 holds for all ψ (see Remark 2.1), there is actually no need to 

consider Eℎ D; β, r0, m0, ψ − Eℎ D; β, r0, m0, ψ0  when deriving β ML − β0 = oℙ τn . While for 

the Step 3 of Chernozhukov, Chetverikov, et al. (2018), one can instead handle the second 

order error of

n−1 ∑
k = 1

K
∑

i ∈ ℐk

ℎ Di; β0, r0, m0, ψ[ − k] − ℎ Di; β, η[ − k] ,

again using that Eℎ D; β0, r0, m0, ψ = 0 holds for all ψ, and then remove the remaining error:

n−1 ∑
k = 1

K
∑

i ∈ ℐk

ℎ Di; β0, r0, m0, ψ0 − ℎ Di; β0, r0, m0, ψ[ − k] ,

through concentration based on ∂ψEℎ D; β0, η0 ψ − ψ0 = 0 and the second inequality of 

Assumption A2 (c): supη ∈ Tn, β − β0 ≤ τnE ℎ D; β0, r0, m0, ψ − ℎ D; β0, η0
2 = o(1).

Alternatively, this modification essentially reduces our requirement on the quality of 

ψ[ − k]( ⋅ ), as mentioned in Remark 4.6. As will be seen from the proof below, to fulfil the 

modified Assumption A2 (c), we do not require ψ[ − k]( ⋅ ) − ψ( ⋅ ) P , 2 = oℙ τn  as will happen 

when following the original version of Chernozhukov, Chetverikov, et al. (2018), but only 

needs ψ[ − k]( ⋅ ) to be uniformly consistent (though the former one may still be justifiable 

in our case because we take ψ(x) = expit − r(x) ). We now verify Assumptions A1 and A2 

based on our Assumptions REG and ML1.

Proof.

Assumption A1 (a) is directly given by our logistic partial model assumption 1.1. 

Assumption A1 (b) is naturally satisfied as ℎ D; β, η0 + r η − η0 ) and is a twice continuously 

differentiable in (β, r). Assumption A1 (c) is directly given by Assumption REG. And 

Assumption A1 (d) holds by equation (2.1), combined with the model assumptions (1.1) and 

E[A ∣ X = x, Y = 0] = m0(x).

By Assumption ML1 and ψ(x) = expit( − r(x)), there exists ζ1, n = o 1  and ζ2, n = o n−1/4  such 

that η[ − k] belongs to
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Tn = : η = (r, m, ψ): sup
x ∈ X

ψ(x) − ψ(x) + r(x) − r0(x) + m(x) − m0(x) ≤ ζ1, n,

and r( ⋅ ) − r0( ⋅ ) P , 2 + m( ⋅ ) − m0( ⋅ ) P , 2 ≤ ζ2, n ,

with probability approaching 1, for each k ∈ 1, …, K . We define Tn of Assumption A2 in 

this way such that A2 (a) is satisfied. Now we validate Assumption A2 (b). By Assumption 

REG that A and β belong to compact sets, and |m(x) | ≤ m0(x) + o(1) is uniformly bounded for 

η = r, m, ψ ∈ Tn, there exists positive C1 = Θ(1) (1) such that for η = r, m, ψ ∈ Tn,

ℎ(D; β, η) = ψ(X) Y e−βA − (1 − Y )er(X) A − m(X)
≤ ψ(X)Y e−βA A − m(X) + ψ(X)er(X)(1 − Y ) A − m(X)
≤ C1 ψ(X) + ψ(X)er(X) = C1 expit( − ψ(X)) + expit(ψ(X))
≤ C1 + 1;

∂βℎ(D; β, η)P , 2
2 = E ψ(X)Y e−βAA A − m(X) 2 ≤ C1 .

Then by Example 19.7 of Van der Vaart (2000), Assumption A2 (b) holds with v = 1 and R
being the diameter of ℬ. Note that Assumption A2 (d) is again directly given by Assumption 

REG. It remains to verify Assumption A2 (c). For each η = r, m, ψ ∈ Tn and β ∈ ℬ, using 

the boundness of β, A, m0(x)ψ(x) and ψ(x)er(x), there exists C2 = Θ(1) such that

Eℎ(D; β, η) − Eℎ D; β, r0, m0, ψ
≤ Eψ(X)Y e−βA m0(X) − m(X) + Eψ(X)(1 − Y )er(X) m0(X) − m(X)

+ Eψ(X)er(X)(1 − Y ) 1 − er0(X) − r(X) A − m X0

≤ C2 m0(X) − m(X) P , 2 + r0(X) − r(X) P , 2 + r0(X) − r(X) P , 2
2 ≤ 3C2ζ2, n .

So we take τn = n−1/4 and by ζ2, n = o n−1/4 , the first inequality of Assumption A2 (c) is 

satisfied. Again by the boundness of β, A, m0(x)ψ(x) and ψ(x)er(x); and ζ1, n, τn = o(1), there 

exists C3 = Θ(1) such that

E ℎ(D; β, η) − ℎ D; β0, r0, m0, ψ 2 + E ℎ D; β0, r0, m0, ψ − ℎ D; β0, η0
2

≤ E ℎ(D; β, η) − ℎ D; β0, η 2 + E ℎ D; β0, η − ℎ D; β0, r0, m0, ψ 2

+E ℎ D; β0, r0, m0, ψ − ℎ D; β0, η0
2

≤ E ψ(X)e−β0A e β0 − β A − 1 A − m(X) 2

+E ψ(X)e−β0A m0(X) − m(X) 2 + E ψ(X)er(X) m0(X) − m(X) 2

+E ψ(X)er(X)(1 − Y ) 1 − er0(X) − r(X) A − m0(X) 2

+E ψ(X) − ψ(X) e−β0A + er0(X) A − m0(X) 2

≤ C3 sup
a ∈ A

e β0 − β a − 1 + C3 sup
x ∈ X

1 + er(x) [ψ(x) − ψ(x)]

+ m(x) − m0(x) + er(x) − r0(x) − 1

≤ C3 sup
a ∈ A

e β0 − β a − 1 + C3 sup
x ∈ X

ψ(x) − ψ(x)

+ m(x) − m0(x) + expit r0(x) + 1 er(x) − r0(x) − 1
≤ C3 eτnC3 − 1 + 2ζ1, n + 2 eζ1, n − 1 = o(1),
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which validates the second inequality of Assumption A2 (c). At last, for each r ∈ (0, 1), 
denote by β∗ = β0 + r β − β0 , η∗ = r∗, m∗, ψ = r0( ⋅ ), m0( ⋅ ), ψ + r η − r0( ⋅ ), m0( ⋅ ), ψ . 

Similar as the above deduction, we have that there exists C4 = Θ(1),

∂r
2Eℎ D; β0 + r β − β0 , η0 + r η − r0( ⋅ ), m0( ⋅ ), ψ

= Eψ(X)Y e−β∗AA β − β0 m0(X) − m(X)
+Eψ(X)(1 − Y )er∗(X) r0(X) − r(X) m0(X) − m(X)

≤ C4 β − β0 ⋅ E m0(X) − m(X) + C4E r0(X) − r(X) ⋅ E m0(X) − m(X)
= O m( ⋅ ) − m0( ⋅ ) P , 2

2 + O β − β0
2 + O r( ⋅ ) − r0( ⋅ ) P , 2

2

= O ζ2, n
2 + o τn

2 = o n−1/4 .

□

Using the verified Assumptions A1 and A2, one can follow nearly the same proof 

procedures as those of Theorem 3.3 and Lemma 6.3 in Chernozhukov, Chetverikov, 

et al. (2018) to prove our Theorem 4.2. The only minor difference concerning the 

processing of ψ[ − k] has been presented as above. As we point out, one can handle this 

smoothly by first considering n−1∑k = 1
K ∑i ∈ ℐk ℎ Di; β0, r0, m0, ψ[ − k]  when deriving the as 

initial rate and asymptotic expansion of β ML as E ℎ Di; β0, r0, m0, ψ[ − k] ∣ ψ[ − k] = 0, and 

finally concentrate n−1∑k = 1
K ∑i ∈ ℐk ℎ Di; β0, r0, m0, ψ0 − ℎ Di; β0, r0, m0, ψ[ − k]  using that 

∂ψEℎ D; β0, η0 ψ − ψ0 = 0 and ψ[ − k]( ⋅ ) is uniformly consistent.

APPENDIX A4.: NUMERICAL IMPLEMENTATION OF THE HD APPROACH

We present and demonstrate the implementation procedure of our HD approach mentioned 

in Remark 3.3 that uses LASSO instead of the Dantzig equation and modifies the 

construction procedures to make it solvable using the R packages glmnet and RCAL. Let 

G(u) = ∫ g(u)du, and recall that γ is some initial estimator obtained through ℓ1-regularised 

logistic regression for Y  versus A, X  and ψ(x) = expit −x⊤γ . Then we fit

min
α ∈ ℝp

n−1 ∑
i = 1

n
1 − Y i ψ Xi eXi

⊤γ −AiXi
⊤α + G Xi

⊤α + λα ∥ α ∥1 ,

(A6)

to obtain α. It is not hard to see that the KKT (or subgradient) condition of (A6) is 

equivalent to the ℓ∞-constraint in (3.1). When the link function of g( ⋅ ) is identity (liner 

model) or expit( ⋅ ) (logistic model), can be solved using the R package glmnet with proper 

specification of the sample weights, i.e., 1 − Y i ψ Xi eXi
⊤γ. Then we solve

n−1 ∑
i = 1

n
ψ Xi Y ie−βAi − 1 − Y i eXi

⊤γ Ai − g Xi
⊤α = 0,
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to obtain a preliminary estimator β. It can be shown that when either r(x) or m(x) is correctly 

specified, the estimator β should approach β0 at the rate Oℙ (slogp/n)1/2 , i.e., the ℓ2 errors 

of γ and α. So β provides a good enough approximation of β0 that can be used for the 

ℓ1-regularised (weighted) calibration regression (Tan, 2020b) to estimate γ:

minβ ∈ ℝ, η ∈ ℝpn−1 ∑
i = 1

n
ψ Xi eXi

⊤γg′ Xi
⊤α Y ie−βAi − Xi

⊤γ + 1 − Y i βAi + Xi
⊤γ + λγ ∥ γ ∥1 .

(A7)

Similarly, the KKT condition of (A7) corresponds to the ℓ∞-constraints in (3.2), though they 

are not always imposing the same moment conditions: when the nuisance model r(x) is 

misspecified, γ and γ typically have different limits. We use R package RCAL to solve (A7) 

with the response taken as Y i, regressors as Xi, sample weight ψ Xi eXi
⊤γg′ Xi

⊤α  and offset 

βAi for each i. Denoting the solution of (A7) as γ, we finally obtain the estimator β HD by 

solving

n−1 ∑
i = 1

n
ψ Xi eXi

⊤(γ − γ) Y ie−βAi − 1 − Y i eXi
⊤γ Ai − g Xi

⊤α = 0.

(A8)

Here the final estimating equation is asymptotically equivalent to the second row of (3.2) 

only when r(x) is correctly specified γ and γ have the same limiting values). When r(x)
is misspecified, the orthogonal score function used in (A8), denoted by ℎ′ D, β0, η , is not 

the same as the ℎ D, β0, η  used in the main text. We will point out that this does not 

hurt the Neyman orthogonality of ℎ′ D, β0, η . It is because when r(x) is misspecified but 

m(x) is correct (by our model Assumption HD1, at least one nuisance model need to 

be correct), ∂rℎ′ D; β0, η [r − r] is naturally satisfied due to the correctness of m(x), and 

∂mℎ′ D; β0, η [m − m] is satisfied according to the KKT (moment) condition of (A7). When 

m(x) is misspecified but r(x) is correct, ∂mℎ′ D; β0, η [m − m] is naturally satisfied and (A8) is 

asymptotically equivalent with

n−1 ∑
i = 1

n
ψ Xi Y ie−βAi − 1 − Y i eXi

⊤γ Ai − g Xi
⊤α = 0,

as γ and γ approach the true γ0 and the second order errors is asymptotically negligible. So 

∂rℎ′ D; β0, η [r − r] is satisfied by (A7). Thus, our modified construction procedure does not 

break the theoretical guarantee of β HD.

APPENDIX A5.: ADDITIONAL DETAILS OF NUMERICAL EXPERIMENTS

First, we present the mean vector and covariance matrix used to generate A and X in Section 

5.1:
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i. Take μ1 = (0.4, − 0.25, − 0.25, 0, …, 0), μ0 = 0, and

Σ−1
ij

=

1.5 i = j = 1
1.2 i = j ≥ 2
0.2 i = 1, 2 ≤ j ≤ 5 or 2 ≤ i ≤ 5, j = 1
0 else

ii. Take μ1 = (0.4, − 0.25, − 0.25, 0, …, 0), μ0 = 0,

Σ−1
ij

=

1.5 i = j = 1
1.2 i = j ≥ 2
0.2 i = 1, 2 ≤ j ≤ 5 or 2 ≤ i ≤ 5, j = 1
0 else

and

Σ0
−1

ij =

1.5 i = j = 1
1.2 i = j ≥ 2
0.2 i = 1, 2 ≤ j ≤ 5 or 2 ≤ i ≤ 5, j = 1
0.075 i = 3, 4, j = 2 or i = 2, j = 3, 4 or i = 3, j = 4 or i = 4, j = 3
0 else

iii. Take the covariance of X as

Σij =
0.5 i = j
0.15 i ≤ 4, j ≤ 4, i ≠ j
0 else

.

Then we present the specific choice on the basis functions for data generation in Section 5.2. 

In specific, we take

fa(x) = 1
1 + ex1

, 1
1 + ex2

, sin x3 , cos x4 , I x5 > 0 , I x6 > 0 , x7x8, x9x10
⊤

;

ζa = (1, − 1, 0.5, 0.5, 0.25, − 0.25, 0.1, 0.1)⊤,

for a0(x), the conditional mean of A given X = x. And that

fr(x) = x1x2x3, x4x5, x6
3, sin2 x7 , cos x8 , 1

1 + x9
2 , 1

1 + ex10
, I x11 > 0 , I x12 > 0

⊤
;

ζr = (0.1, 0.1, 0.1, − 0.5, 0.5, 1, − 1, 0.25, − 0.25)⊤,

to specify r0(x).
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Table 1.

Average mean square error (MSE), average absolute bias (Bias), and average coverage probability (CP) of 

95% CI of our HD estimator with the sample size set as 1,000, 1,500 and 2,000, under configurations (i)–(iii) 

described in Section 5.1. Number of repetition for each setting is 300.

Configuration (i) Configuration (ii) Configuration (iii)

n 1,000 1,500 2,000 1,000 1,500 2,000 1,000 1,500 2,000

MSE 0.008 0.006 0.004 0.007 0.005 0.004 0.007 0.004 0.003

Bias 0.021 0.021 0.018 0.020 0.022 0.018 0.030 0.016 0.013

CP 0.91 0.92 0.96 0.94 0.92 0.94 0.94 0.93 0.96

Econom J. Author manuscript; available in PMC 2024 January 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

LIU et al. Page 35

Table 2.

Average mean square error (MSE), average absolute bias (Bias), and average coverage probability (CP) of 

95% CI of our ML estimator with sample sizes set as 1,000 and 2,000, which the nuisance models estimated 

using the four ML algorithms as well as the ‘Best’ approach described in Section 5.2. The number of 

repetitions for each setting is 300.

n = 1,000 n = 2,000

GBM RF SVM NN Best GBM RF SVM NN Best

MSE 0.013 0.014 0.013 0.012 0.013 0.007 0.008 0.008 0.007 0.007

Bias 0.037 0.046 0.048 0.015 0.037 0.039 0.051 0.049 0.042 0.039

CP 0.92 0.95 0.93 0.94 0.93 0.90 0.92 0.90 0.91 0.91
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Table 3.

Point estimations, 95% CI lower/upper bounds (LB/UB) and two-side p-values for β0
(1) (log odds ratio of early 

gestation fetal death to the treatment of the EC pill) of our HD and ML (with the five different realisations 

described in Section 5.2) approaches.

Method HD GBM SVM RF NN Best

β0 −0.171 −0.220 −0.153 −0.215 −0.177 −0.190

CI LB −0.310 −0.355 −0.279 −0.378 −0.391 −0.324

CI UB −0.028 −0.085 −0.027 −0.052 0.038 −0.057

p-value 0.018 0.000 0.016 0.007 0.088 0.003
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Table 4.

Point estimations, 95% CI lower/upper bounds (LB/UB) and two-side p-values for β0
(2) (log odds ratio of new 

birth to the treatment of the EC pill) of our HD and ML (with the five different realisation described in Section 

5.2) approaches.

Method HD GBM SVM RF NN Best

β0 −0.186 −0.135 −0.124 −0.112 −0.148 −0.125

CI LB −0.287 −0.235 −0.217 −0.224 −0.259 −0.222

CI UB −0.089 −0.035 −0.030 0.000 −0.036 −0.029

p-value 0.000 0.007 0.009 0.033 0.010 0.009
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