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Abstract

In this paper, texture calculations are used to validate the realism of a physical anthropomorphic 

phantom for digital breast tomosynthesis. The texture features were compared against clinical 

mammography data. Three groups of features (grey-level histogram, co-occurrence, and run-

length) were considered. The features were analyzed over a broad range of technique settings (kV 

and mAs). These calculations were done in the central slice of the reconstruction as well as the 

synthetic 2D mammogram. For each feature, the clinical data were binned into strata based on 

the compressed breast thickness. It was demonstrated that the clinical features vary by thickness. 

To evaluate the realism of the phantom, each feature was compared against clinical data in the 

same thickness stratum. For the purpose of this paper, a feature was considered to be realistic if it 

was within the middle 95% of the statistical distribution of clinical values. In the reconstruction, 

most features were found to exhibit realism; specifically, all 12 grey-level histogram features, 

four out of seven co-occurrence features, and three out of seven run-length features. The realism 

of most features was robust to changes in the technique settings. However, in the synthetic 2D 

mammogram, fewer features were found to exhibit realism. In conclusion, this paper provides a 

validation of the textural realism of the phantom in the reconstruction, and shows that there is less 

realism in the synthetic 2D mammogram. We identify the features that should be considered to 

refine the design of the phantom in future work.
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1. INTRODUCTION

Many medical centers have adopted digital breast tomosynthesis (DBT), or “3D 

mammography”, for breast cancer screening exams. The DBT reconstruction is interpreted 

Raymond.Acciavatti@uphs.upenn.edu . 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 January 12.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2018 July ; 10718: . doi:10.1117/12.2318029.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in combination with either a standard 2D digital mammography (DM) image or a synthetic 

2D mammogram1–8 derived from the 3D data set. Studies have shown that the use of 3D/2D 

imaging in combination offers benefits over conventional DM.9–12 One benefit is an increase 

in the cancer detection rate, particularly among invasive cancers. In addition, Sharpe et al. 
found that there is a reduction in the recall rate for women of all breast densities, and that the 

reduction is most significant in women with heterogeneously dense breasts and extremely 

dense breasts.12

Zuckerman et al. analyzed how the cancer detection rate and the recall rate are impacted 

by replacing the DM image with a synthetic 2D mammogram.5,6 The authors demonstrated 

that these rates are effectively unaltered, and concluded that synthetic 2D imaging is an 

acceptable technique for minimizing the radiation dose of screening. Studies have shown 

that the appearance of a synthetic 2D image differs from a DM image.6,8 For example, some 

lesions such as spiculated masses and architectural distortions may be portrayed with better 

conspicuity in the synthetic 2D image. A drawback of synthetic 2D imaging is that there 

may be more pronounced blurring due to patient motion, since the scan time of DBT is 

longer than DM. Also, there are artifacts not seen in a DM image, such as streaking around 

metal clips and pseudocalcifications (e.g., random noise fluctuations that are portrayed as 

calcifications).

The purpose of this paper was to evaluate the texture features in a physical anthropomorphic 

phantom for DBT. There were 26 features considered in this study, including grey-level 

histogram, co-occurrence, and run-length features. These calculations were done in both the 

reconstruction and the synthetic 2D mammogram. To validate the clinical realism of the 

phantom, the features were compared against clinical data. We also analyzed whether the 

features are sensitive to varying the acquisition parameters that control the x-ray energy (kV) 

and the amount of radiation emitted (mAs).

2. METHODS

2.1 Anthropomorphic Phantom and Image Acquisition

The anthropomorphic phantom analyzed in this paper was manufactured by Computerized 

Imaging Reference Systems, Inc. (Norfolk, VA) under license from the University of 

Pennsylvania (Penn). The phantom is based on a computational model of glandular and 

adipose tissue developed by Penn.13–16 As described in previous work, clusters of calcium 

oxalate, which are surrogates for calcifications, have also been inserted within the thickness 

of the phantom.17

The phantom was imaged with a clinical DBT system (Selenia Dimensions, Hologic, 

Inc., Bedford, MA) at Penn (Philadelphia, PA). Multiple images of the phantom were 

consecutively acquired by varying the technique settings (kV and mAs). First, the kV was 

varied (27 to 34 kV), and the mAs was determined by auto-timing. At high kV, fewer x-ray 

photons are needed for the image, and the mAs is reduced as expected (Figure 1). Second, 

the kV was fixed (31 kV), and the mAs was varied to study the effect of radiation dose. 

The mAs increments varied by factors of 21/2 (1.4). Since the system supports discrete 

mAs values, the closest mAs setting was selected. Each acquisition was repeated twice. 
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All acquisitions were done with the phantom in the same positioning under compression. 

The views were left cranial-caudal (CC). The reconstruction was prepared with the Selenia 

Dimensions algorithm with 1.0 mm slice spacing.

2.2. Texture Feature Analysis

A set of 26 established texture descriptors, including grey-level histogram, co-occurrence, 

and run-length features, were calculated in each image using a lattice-based texture pipeline 

previously developed and validated.18–20 Briefly, a regular lattice was overlaid on the image, 

and texture descriptors were computed on local square windows centered on each lattice 

point within the breast. The use of a lattice-based approach is motivated by previous work by 

Zheng et al., which generated receiver operating characteristic (ROC) curves for classifying 

cases (cancers) and controls (negatives) based on texture features.18 That work found that 

the lattice-based approach resulted in higher area under the ROC curve than using single 

regions-of-interest (ROIs).

The texture calculations are averaged over all the windows. First, the texture pipeline was 

applied to the slice corresponding to the mid-thickness in the reconstruction. Given that 

the phantom was 51.0 mm thick under compression, slice 25 was considered. Second, the 

texture pipeline was applied to the synthetic 2D mammogram (C-View™) derived from the 

reconstruction.

To analyze each texture feature, the mean of the 16 auto-timed measurements was calculated 

(eight kV settings repeated twice). To identify features which are robust to changes in 

the technique settings, the coefficient of variation (ratio of the standard deviation to the 

absolute value of the mean) was also determined. For the purpose of this paper, a feature is 

considered to be reproducible over multiple acquisitions if the coefficient of variation is less 

than 0.05.

Texture features in the phantom were then compared against clinical data. The collection of 

clinical data was approved by the institutional review board at Penn, and was compliant with 

the Health Insurance Portability and Accountability Act. Similar to the phantom, texture 

features were analyzed in the central slice of the reconstruction.

There were two different groups of subjects for analysis of the reconstruction and the 

synthetic 2D images. For the reconstruction, there were 396 subjects between October 

2011 and February 2013. The images were drawn from screening exams with an overall 

assessment of 0 (incomplete), 1 (negative), or 2 (benign) using the Breast Imaging-

Reporting and Data System (BI-RADS®). All views for each subject were considered (1,581 

total images), including CC and mediolateral oblique (MLO) views as well as additional 

mediolateral (ML) and lateromedial (LM) views for one subject. By contrast, for the 

synthetic 2D images, there were 3,799 subjects between September 2014 and December 

2014. The images were drawn from screening exams with an overall BI-RADS® assessment 

of 1 or 2. Only MLO views were considered (7,593 total images). For both groups of 

subjects, the negative routine screening studies were confirmed at one-year follow-up.
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The lattice-based texture pipeline has two main adjustable parameters; one is the size of the 

window (w) and the other is the distance (d) between adjacent windows. The clinical data 

were analyzed with lattice parameters w = d = 6.3 mm. These parameters are motivated by 

the work of Zheng et al., which found that these values result in better ROC performance for 

distinguishing between cases and controls when compared with larger values of w and d.18 

The mean of the 16 auto-timed measurements in the phantom was then compared against the 

statistical distribution of the feature in the clinical population. We determined the percentile 

rank of the mean relative to the clinical distribution; this is equivalent to the percentage of 

clinical data points below the mean. For the purpose of this paper, a feature is considered 

clinically realistic if the percentile rank is between 2.5% and 97.5% (corresponding to the 

middle 95% of the distribution). Otherwise, the feature is not considered realistic.

3. RESULTS

To illustrate the effect of the technique settings, Figure 2(a)–(b) shows the central slice of the 

reconstruction at 31 kV and two mAs values (9 and 120 mAs). Reducing the mAs clearly 

affects the image quality, resulting in more noise. The calcifications are not in focus in this 

slice at either mAs setting. Figure 2(c)–(d) shows the synthetic 2D images for the same 

settings. Since these images are projections through the entire volume, the calcifications are 

more clearly visualized (arrows). To calculate texture features, a lattice is overlaid on the 

image, as illustrated in Figure 2(e).

For the central slice of the reconstruction, Figure 3 illustrates how a clinical feature (inertia) 

varies with the thickness of the breast under compression, as shown by the boxplots at 

different thickness strata. There is an overall decreasing trend with thickness. This figure 

illustrates why the texture in the phantom needs to be compared against clinical data in the 

appropriate thickness stratum (45.0 to 55.0 mm); the boxplot corresponding to this stratum is 

highlighted in Figure 3(c). In this stratum, there were 177 subjects (386 images) for analysis 

of texture in the reconstruction and 805 subjects (1,246 images) for analysis of texture in the 

synthetic 2D image.

For the same feature, Figure 3 also provides the phantom results for five window parameters 

(w and d). As shown, this feature (inertia) is sensitive to the choice of window parameters. 

To assess the realism of the phantom, only the data points corresponding to the clinical 

window parameters (w = d = 6.3 mm) are considered. For these window parameters, 

the mean of the 16 auto-timed measurements is 3.29 × 102 with a standard deviation 

of 4.00 (Table 1). The coefficient of variation is less than 0.05 (0.0122), demonstrating 

reproducibility over the 16 auto-timed measurements.

Table 1 shows the summary statistics for all 26 features calculated in the phantom. For 23 

out of 26 features (88.5%), the coefficient of variation is less than 0.05, which indicates 

reproducibility over the 16 auto-timed measurements. There are three features (mean, sum, 

and low grey-level run emphasis) for which the coefficient of variation exceeds 0.05.

In addition, the percentile rank of the mean was calculated relative to the clinical 

distribution. Out of 26 features calculated in the phantom, 19 features (73.1%) are clinically 
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realistic in the reconstruction, since the percentile rank is between 2.5% and 97.5%. The 

feature illustrated in Figure 3 (inertia) is an example of one that it is clinically realistic; the 

percentile rank is 62.7%.

The feature shown in Figure 3 exhibits minimal variation over the kV and mAs settings 

considered. We found that the realism of most features was not sensitive to the technique 

settings. Figure 4 illustrates a feature (low grey-level run emphasis) which is more sensitive 

to these settings. There is a clear increasing trend as the mAs is increased. The data points 

for the phantom at high mAs [Figure 4(b)] are outliers relative to the clinical distribution 

[Figure 4(c)]. It should be noted that in the clinical distribution, some outlier points are not 

shown, as the vertical axis limits were truncated.

Similar to Table 1, the summary statistics for the synthetic 2D image are shown in Table 

2. Compared against the reconstruction, slightly fewer features (22 out of 26 or 84.6%) are 

reproducible with a coefficient of variation below 0.05 for the auto-timed acquisitions. Table 

2 shows that there is less realism in the synthetic 2D image. Out of 26 features, 11 (42.3%) 

are clinically realistic. An example of a feature that is realistic in the reconstruction but not 

in the synthetic 2D image is inertia, for which the percentile rank relative to the clinical 

distribution is greater than 99.9% (Figure 5).

4. DISCUSSION AND CONCLUSION

In this paper, texture features are calculated in an anthropomorphic phantom for DBT. The 

mean from repeated auto-timed measurements was compared against the distribution of 

values in clinical data. To assess the realism of each feature, we analyzed whether the mean 

is within the middle 95% of the clinical distribution. Most features exhibited realism in 

the reconstruction; however, fewer features exhibited realism in the synthetic 2D image. A 

potential limitation of this study is that there were different groups of subjects for analysis of 

the reconstruction and the synthetic 2D images.

The phantom was created from a compartment-based model of glandular and adipose 

tissue.13–16 In future work, a phantom with finer textural detail can be created by increasing 

the number of compartments (thus reducing their size). Future work should investigate 

whether the textural realism can be improved by changing the number of compartments used 

to create the phantom.

In this paper, the clinical data were binned into strata corresponding to different thicknesses 

under compression. The phantom texture was compared against clinical data in the same 

thickness stratum (45.0 to 55.0 mm). One limitation of this paper is that we have not 

quantified whether some features are more strongly dependent on thickness than others. An 

additional limitation of this paper is that we have not analyzed how texture features differ 

between CC and MLO views. Future work should calculate the texture features separately in 

each view. For the purpose of this paper, all views for each subject were included in the data 

set for the reconstruction, yet only MLO views were included in the data set for the synthetic 

2D images.
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In addition to the 26 features considered in this paper, other features such as fractal 

dimension should be analyzed in future work. Also, additional slices in the reconstruction 

should be considered, not simply the central slice. As the vertical coordinate of the slice 

increases, there is greater magnification and hence loss of resolution due to focal spot 

blurring.21
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Figure 1. 
The mAs settings for the phantom were determined by auto-timing. The mAs decreases with 

increasing kV.
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Figure 2. 
Reducing the mAs results in more pronounced noise. The lattice-based approach for 

calculating texture is illustrated in (e).
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Figure 3. 
These plots provide an example of a texture feature (inertia) that is reproducible in 16 

auto-timed measurements (coefficient of variation of 0.0122). In addition, this feature shows 

clinical realism; the mean of the 16 auto-timed measurements has a percentile rank of 62.7% 

relative to the clinical distribution.
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Figure 4. 
Unlike the feature shown in Figure 3, this feature (low grey-level run emphasis) is an 

example of one that varies more strongly with mAs. As a result, the realism of this feature is 

dependent on the technique settings that are chosen.
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Figure 5. 
While this feature (inertia) exhibits clinical realism in the reconstruction (Figure 3), it 

does not show realism in the synthetic 2D image. The percentile rank of the mean of the 

auto-timed measurements is greater than 99.9% relative to clinical data.
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Table 1.

Summary statistics for phantom texture in the reconstruction assuming lattice parameters w = d = 6.3 mm.

CENTRAL SLICE OF RECONSTRUCTION

Groups of Features Individual Features Mean (Std Dev) of 16 Auto-
Timed Images

Coefficient of 
Variation

Percentile Rank 
of Mean Relative 

to Clinical 
Distribution

Group 1: Grey-level histogram Max 2.24 (0.0981) 0.0439 73.3%

Min −1.17 (0.0382) 0.0325 78.7%

Mean 0.0364 (0.0108) 0.297* 89.8%

Sum 1.27 × 102 (37.6) 0.297* 87.5%

Entropy 6.15 (0.00830) 0.00135 38.2%

Kurtosis 4.28 (0.0308) 0.00719 97.3%

Sigma 0.579 (0.0156) 0.0269 66.8%

Skewness 0.723 (0.0131) 0.0182 93.0%

5th Percentile −0.721 (0.0121) 0.0168 86.1%

5th Mean −0.847 (0.0162) 0.0191 81.7%

95th Percentile 1.15 (0.0421) 0.0367 86.7%

95th Mean 1.49 (0.0542) 0.0364 89.8%

Group 2: Co-occurrence Cluster shade 1.02 × 104 (2.78 × 102) 0.0273 92.4%

Energy 9.51 × 10−4 (4.22 × 10−5) 0.0444 99.0%**

Entropy 9.29 (0.0201) 0.00217 <0.1%**

Inertia 3.29 × 102 (4.00) 0.0122 62.7%

Correlation 1.66 × 10−3 (5.99 × 10−5) 0.0360 96.0%

Haralick correlation 1.42 × 107 (2.17 × 105) 0.0153 36.8%

Inverse difference 
moment

0.0971 (0.00223) 0.0230 99.8%**

Group 3: Run length Grey-level non-
uniformity

59.9 (0.371) 0.00619 45.8%

Run-length non-
uniformity

3.28 × 103 (12.3) 0.00374 <0.1%**

Run percentage 0.943 (0.00349) 0.00371 3.6%

High grey-level run 
emphasis

3.07 × 103 (28.2) 0.00921 78.5%

Long run emphasis 1.00 (6.19 × 10−5) 6.19 × 10−5 99.6%**

Low grey-level run 
emphasis

2.17 × 10−3 (1.26 × 10−4) 0.0580* 97.6%**

Short run emphasis 1.00 (1.54 × 10−5) 1.54 × 10−5 0.4%**

*
Coefficient of variation exceeds 0.05.

**
Phantom texture is unrealistic relative to clinical data.
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Table 2.

Summary statistics for phantom texture in the synthetic 2D mammogram assuming lattice parameters w = d = 

6.3 mm.

SYNTHETIC 2D MAMMOGRAM

Groups of Features Individual Features Mean (Std Dev) of 16 Auto-
Timed Images

Coefficient of 
Variation

Percentile Rank of 
Mean Relative to 

Clinical Distribution

Group 1: Grey-level histogram Max 2.98 (0.0241) 0.00811 92.1%

Min −1.26 (0.0238) 0.0188 65.8%

Mean 0.0371 (0.00588) 0.158* 55.4%

Sum 1.29 × 102 (20.5) 0.158* 51.4%

Entropy 5.96 (0.0266) 0.00446 1.40%**

Kurtosis 5.98 (0.175) 0.0292 99.0%**

Sigma 0.730 (0.00917) 0.0126 98.7%**

Skewness 1.35 (0.0438) 0.0324 99.7%**

5th Percentile −0.764 (0.0141) 0.0184 71.6%

5th Mean −0.883 (0.0168) 0.0191 72.4%

95th Percentile 1.59 (0.0201) 0.0127 >99.9%**

95th Mean 2.02 (0.0190) 0.00941 99.8%**

Group 2: Co-occurrence Cluster shade 1.99 × 104 (4.69 × 102) 0.0236 >99.9%**

Energy 1.28 × 10−3 (9.95 × 10−5) 0.0778* 99.6%**

Entropy 8.78 (0.0337) 0.00384 <0.1%**

Inertia 4.92 × 102 (6.35) 0.0129 >99.9%**

Correlation 9.28 × 10−4 (2.46 × 10−5) 0.0265 30.1%

Haralick correlation 9.49 × 106 (5.00 × 105) 0.0528* 1.50%**

Inverse difference 
moment

0.107 (0.00324) 0.0302 99.9%**

Group 3: Run length Grey-level non-
uniformity

72.0 (1.65) 0.0229 89.8%

Run-length non-
uniformity

3.25 × 103 (10.4) 0.00320 <0.1%**

Run percentage 0.934 (0.00295) 0.00316 0.5%**

High grey-level run 
emphasis

2.26 × 103 (40.7) 0.0180 11.5%

Long run emphasis 1.00 (6.79 × 10−5) 6.79 × 10−5 94.5%

Low grey-level run 
emphasis

2.94 × 10−3 (1.26 × 10−4) 0.0429 99.4%**

Short run emphasis 1.00 (1.70 × 10−5) 1.70 × 10−5 3.40%

*
Coefficient of variation exceeds 0.05.
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**
Phantom texture is unrealistic relative to clinical data.
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