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Here we present BridgePRS, a novel Bayesian polygenic risk score (PRS)
method that leverages shared genetic effects across ancestries to increase

PRS portability. We evaluate BridgePRS via simulations and real UK
Biobank data across 19 traitsinindividuals of African, South Asian and East
Asian ancestry, using both UK Biobank and Biobank Japan genome-wide
association study summary statistics; out-of-cohort validation is performed
in the Mount Sinai (New York) BioMe biobank. BridgePRS is compared with
the leading alternative, PRS-CSx, and two other PRS methods. Simulations
suggest that the performance of BridgePRS relative to PRS-CSx increases as
uncertainty increases: with lower trait heritability, higher polygenicity and
greater between-population genetic diversity; and when causal variants
are not presentin the data. In real data, BridgePRS has a 61% larger average
R*than PRS-CSx in out-of-cohort prediction of African ancestry samplesin
BioMe (P= 6 x107°). BridgePRS is a computationally efficient, user-friendly
and powerful approach for PRS analyses in non-European ancestries.

PRSs have typically been derived using European ancestry genome-wide
association study (GWAS) data, resulting in substantially lower predic-
tive power when applied to non-European samples, in particular those
of Africanancestry’”. The PRS trans-ancestry portability problem is well
established and is caused by marked differencesin linkage disequilib-
rium (LD), differences in allele frequency driven by genetic drift and
natural selection, and gene-environment interactions affecting causal
effectsizes’. Consequently, the etiological insights and clinical utility
provided by PRS derived in Europeans may have limited relevance to
individuals of non-European ancestries.

Increasing GWAS sample sizes for underrepresented populations
is of critical importance for improving their PRS. However, optimal
power will be achieved by using all GWASs available across ancestries
for PRS prediction in any one ancestry; this is because causal genetic
effect sizes are highly correlated globally, even between genetically
distant ancestries*. PRS-CSx’, developed to tackle the PRS portability

problem, makes cross-population inference on the inclusion of each
single-nucleotide polymorphism (SNP) across the genome (or, more
precisely, the degree of shrinkage of variant effect sizes to zero).
PRS-CSx uses Bayesian modeling with a prior that strongly shrinks
small effect sizes to zero, reducing the number of candidate SNPs to
aminimal set. This is analogous to fine-mapping of causal variants.
However, although the inclusion of causal variants in the PRS is ideal,
fine-mapping approaches may not be as effective when causal variants
are missing or when power is insufficient for them to be accurately
identified.

We introduce BridgePRS, a novel Bayesian PRS method that
also integrates trans-ancestry GWAS summary statistics. Unlike the
fine-mapping approach of PRS-CSx, BridgePRS retains all variants
within loci to best tag causal variants shared across ancestries. The
focusis on correctly estimating causal effect sizes, which is key when
the goal is prediction, rather than on estimating their location. This
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Bayesian ridge two-stage approach
to bridge the PRS between populations
Large N, discovery
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PRS are trained and optimized

BridgePRS uses base and target GWAS results to derive target-sample PRS via three models
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Fig.1|Flow diagram describing the modeling of BridgePRS. a, Two-stage
approach to combine GWASs from two populations. b, BridgePRS combining
three different PRS models to determine the final PRS. 8, SNP effect sizes;

A, shrinkage coefficients; 8,, allele frequency of SNP a; a, parameter for dependency
between effect size and allele frequency; 7, degree of shrinkage of population 2
effects, B, to those of population 1, B,,,,;; X;, genotypes at locus [, where alocus
is defined as aregion in which SNPs are correlated (> > 0.01) with each other; § ~,
posterior mean SNP effects at locus [, where subscripts denote prior parameters
used; Q,,,,,,, posterior precision matrix for population1using the best-fitting

prior parameters a and A (the Gaussian distribution is parameterized by its
precision matrix (inverse covariance matrix), throughout). S, is the set of loci
whose rank exceeds a threshold of k:in stage 1loci are ranked by the Pvalue of
their top SNP, whereas in stage 2 loci are ranked by the pseudo F statistic, which
measures the joint association of all SNPs at the locus in the target population;
iandjindex over prior parameters; and W are the weights obtained from
goodness-of-fit of the best-fitting ridge regression model that combines models
1-3. This figure simplifies the modeling for brevity (see Methods for details).

approachis less reliant on the inclusion and identification of causal
variants. BridgePRS is most applicable to combining the information
of a well-powered GWAS performed in a (discovery) population or
populations not matched to the ancestry of the target sample, with a
second GWAS of relatively limited power in a (target) population that
iswell-matched to the ancestry of the target sample.

We apply BridgePRS to simulated data and compare its perfor-
mance with that of PRS-CSx and two single-ancestry PRS methods
adapted to use GWAS data from multiple ancestries. The simula-
tions demonstrate the different scenarios in which BridgePRS and
PRS-CSx are optimal. We then use UK Biobank (UKB)® and Biobank
Japan (BBJ)”® GWAS data to construct PRS for African, South Asian
and East Asian ancestry samples. The resultant PRSs are validated in
unseen UKB samples andin the entirelyindependent New York-based
Mount Sinai BioMe biobank’, producing results consistent with
the simulations.

Results

Overview of BridgePRS method

An overview of the BridgePRS modeling employed here is shown in
Fig.1. The key modeling (modellin Fig.1; Methods) can be brokeninto
two stages: (1) aPRSis trained and optimized using datafrom alarge dis-
covery population (for example, European) GWAS, withazero-centered
Gaussian prior distribution for SNP effect sizes (analogous to ridge
regression) within putative loci; and (2) the SNP effect sizes of this PRS
aretreated as priorsand updated in a Bayesian framework by those of
the smaller target population (for example, African) GWAS. Thus, the

two-stage Bayesian ridge approach of BridgePRS ‘bridges’ the PRS
between the two populations.

The main causes of poor trans-ancestry PRS portability are dif-
ferences in LD and allele frequencies between populations®. Differ-
encesinLDresultinthebesttag foracausal variant differing between
populations. To account for the resultant uncertainty in the location
of causal variants, BridgePRS averages SNP effects across SNPs within
putative loci instead of selecting a single best SNP as performed by
standard clumping and thresholding (C+T) PRS™. BridgePRS is first
applied to the discovery population GWAS, using Bayesian modeling
with zero-centered Gaussian priors, equivalent to penalized likeli-
hood ridge regression, at putative loci. Given summary data from
large GWAS in Europeans, we find that this procedure alone improves
predictive accuracy in African and South Asian target data compared
with choosing single best SNPs at putative loci. Thus, whereas the main
BridgePRS method uses GWAS data from the discovery and target
GWAS, the option of using only discovery GWAS is available in the
BridgePRS software.

Stage 1 modeling results in multivariate Gaussian posterior dis-
tributions for SNP effect sizes at each locus. Stage 2 modeling inte-
grates the (smaller) target population GWAS datainto the PRS by using
this posterior distribution as a prior distribution for SNP effect sizes
of the target population. Stage 2 allows for different effect size esti-
mates between the populations, caused by differencesin LD, in allele
frequencies driven by drift or selection, and by differences in causal
effectsizes due to gene-environmentinteractions. Stages1and 2both
use conjugate prior—posterior updates, providing computationally
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efficient analytical solutions and enabling BridgePRS analyses to be
performed rapidly.

Variation in causal allele frequencies between populations can
mean that causal variants with relatively low minor allele frequency
inthe discovery population are estimated with large errors or missed
altogether. To ameliorate this problem, PRSs are derived by applying
BridgePRS stage 1modeling to the target population data alone (model
2inFig.1;Methods). Model1and model 2 PRSs are combined in model
3 (Fig.1and Methods).

Eachstage of the modeling s fit across a spectrum of prior param-
etersand criteriato selectlociforinclusionin the PRS calculation, with
each combination of parameters giving rise toaunique PRS. These PRSs
are then combinedin aridge regression fit using available genotype-
phenotype test data, choosing the optimal ridge penalty parameters
by cross-validation (Methods).

Benchmarking methods viasimulation

We used the HAPGEN2 software" to simulate HAPMAP3 variants for
100,000 European, 40,000 African and 40,000 East Asian ancestry
samples using 1000 Genomes Phase 3 (1000G) samples'*as areference.
Simulations were restricted to 1,295,289 variants with minor allele fre-
quency >1% in at least one of the three populations. Phenotypes were
subsequently simulated under three models of genetic architecturein
which causal variants were sampled from 1%, 5% and 10% of the avail-
able HAPMAP3 variants. Population-specific effect sizes were sampled
from a multivariate Gaussian distribution with between-population
correlation of 0.9. Genetic effects were combined assuming additiv-
ity, and Gaussian noise at two levels of variance was added to generate
phenotypes with 25% and 50% SNP heritability. For each of the six sce-
narios of polygenicity and heritability, ten independent phenotypes
were generated and analyses were run with and without inclusion of
the causal variants.

Dataweresplitinto training for GWAS (80,000 European, 20,000
non-European), with the remainder split equally into 10,000 samples
for model optimization (test data) and assessment of model perfor-
mance (validation data). The performance of BridgePRS was compared
with that of PRS-CSx, PRS-CS-mult and PRSice-meta. PRS-CS-mult
applies the single-ancestry PRS-CS method" to the populations under
study and combines them by estimating weightsin alinear regression
using the test data. PRSice-meta applies clumping and thresholding,
asimplemented in PRSice", to meta-analysis of the populations under
study, selecting the LD panel from the two populations under study
that optimizes prediction in the test data of the target population.

Polygenicity ranging from 1% to 10% (fraction of variants with
nonzero effect sizes) is consistent with the findings of a recent study
of 28 complex traits in the UKBY. Between-population correlation
of causal variant effect sizes of 0.9 is consistent with the results of a
multiancestry lipids GWAS in which causal variants were fine-mapped'
and witharecent study estimating a mean genetic correlation of 0.98
of causal variant effect sizes between ancestries across a range of con-
tinuous traits*. Approximately one-third to two-thirds of heritability
is captured by common SNPs; therefore, our simulation at 25% herit-
ability implies a total heritability of 37.5-75.0%. The power of GWAS,
and therefore PRS, is a function of sample size and heritability, such
that doubling heritability is equivalent to doubling sample size in terms
of power, asthe standard error of a GWAS regression coefficient is the
same if either the sample size or heritability is doubled (Methods).
Therefore, our simulations at 50% SNP heritability and GWAS with
80,000 European samples are equivalent to 25% SNP heritability and
GWAS with 160,000 European samples.

Figure 2 summarizes the results from PRS analyses performed
on simulated data. Both BridgePRS and PRS-CSx outperformed the
single-ancestry methods across all scenarios. BridgePRS performed
better than PRS-CSx in analyses of African samples with 5% and 10%
of variants assigned as causal. With 1% of variants causal, the methods

had similar accuracy when causal variants were not included and at
25% heritability, and PRS-CSx performed better with causal variants
included at 50% heritability. In analyses of East Asian samples, the
same relative pattern was observed, but the differences were less pro-
nounced, and PRS-CSx performed betterin all scenariosin which 1% of
variants were causal. Across the analyses, BridgePRS performed better
compared with PRS-CSx when the causal variants were notincludedin
the data (Extended DataFig.1). Overall, the simulations reveal that the
performance of BridgePRSrelative to that of PRS-CSxincreases as the
uncertainty increases: at lower heritability, higher polygenicity, greater
between-population genetic diversity and when causal variants are not
presentinthe data.

The theoretical proportion of heritability (h?) captured by a
PRS derived by C+T, assuming independent causal variants, is
r’/h? =1+ m/nhz)_l,whererzis the variance explained by the PRS, m
is the number of causal variants and n is the GWAS sample size'®".
Although BridgePRS and PRS-CSx are more sophisticated methods
than C+T, the factor nh’/min the equation, which isa measure of power
to detect individual causal variant effects, is useful in describing the
relative performance of the methods. Figure 2 shows resultsinrelation
tonh?*/m (up to a proportionality constant): lower values favor Bridge-
PRS, higher values favor PRS-CSx, and within the same target popula-
tion the relative performance of the methods is similar for constant
nh*/m. For example, results at 25% heritability and 5% causal variants
showed the same relative method performance as results at 50% herit-
ability and 10% causal variants, for both African and East Asian target
samples (Fig. 2a versus Fig. 2b), as expected.

Extended DataFig. 2 shows results for the same simulation settings
as those used in the main analysis (Fig. 2) but with the GWAS training
sample size halved (40,000 European, 10,000 non-European). Here,
the performance of BridgePRS relative to PRS-CSxincreased compared
withtheresults with the full GWAS samples sizes at 50% heritability, and
as predicted, the relative performance of the methods at 50% herit-
ability was similar to that at 25% heritability and the full GWAS sample
sizes. Extended Data Fig. 3 shows results at the original GWAS sample
size and 75% heritability (equivalent to 240,000 European, 60,000
non-European GWAS training sample sizes and 25% heritability). As
predicted, the performance of BridgePRS relative to PRS-CSx decreased
compared with the results at 25% and 50% heritability.

These simulation analyses used 1000G data as their reference
LD panel, that is, the correct LD panel. To assess the sensitivity of the
methods to misspecification of LD, analyses were rerun using UKB
datato estimate ancestry-specific LD. Extended Data Fig. 4 shows the
performance of BridgePRS and PRS-CSx using an LD reference panel
constructed from African and East Asian UKB samples relative to their
performance using the 1000G reference panel. Both methods exhib-
itedaminimallossin predictive accuracy using UKB reference panels.

Benchmarking methods viareal data
The four PRS methods were applied to UKB® samples of African and
South Asian ancestry across 19 continuous anthropometric and blood
measure traits (for East Asian ancestry, see below). These traits were
selected to maximize heritability and samples sizes of non-European
individuals and to minimize their pairwise correlation (maximum
r*<0.3; Methods). For each trait, UKB samples of European, African
and South Asian ancestry were split into training, test and validation
sets in proportions of 2/3,1/6 and 1/6, respectively. Sample sizes are
shownin Extended Data Table 1. The training data were used to gener-
ate GWAS summary statistics, and the test data were used to select
optimal model parameters. Results are shown for the resultant PRS in
the unseen UKB validation data. Inaddition, an entirely out-of-sample
validation study was performed by applying the PRS derived in the UKB
to BioMe’ for the nine traits also available in BioMe.

Within the UKB there were 2,472 East Asian samples, which was
toofewtosplitinto training (GWAS), test and validation sets asabove.
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simulations. Results are shown for BridgePRS, PRS-CSx, PRS-CS-mult and
PRSice-metaacross six simulation scenarios, with and without the causal variants
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proportion of causal variants and the relative power of the data used are shown,
measured by nh?/m up to proportionality, where nis the GWAS sample size, h*is
the heritability and m is the number of causal variants. The central rectangular
boxes show the interquartile range, horizontal lines inside the boxes show the
median, whiskers extend to the most extreme results and points show results for
each ofthe ten simulated phenotypes.

However, GWAS summary statistic data from BBJ were available for
download”®. We combined these data with the European UKB GWAS
summary statistics described above for 13 overlapping traits to esti-
mate PRS for East Asian ancestry (as above). BridgePRS combines SNP
effect size estimates across GWAS (as does the PRSice-meta method)
and therefore requires effect sizes to be on the same scale. However,
the BBJ summary statistics were generated after standardizing the
trait values to have a mean of zero and a standard deviation of one,
whereas the UKB GWASs were applied to raw trait data. Therefore,
before applying the methods, the BB]J effect estimates and standard
errors were transformed to the respective scale of the UKB measures,
assuming that the BBJ and UKB trait values had the same variance. UKB
East Asian samples were then split equally into test data for model
optimization and validation data to assess model performance, as
above. PRSs were also validated in East Asian BioMe samples across
eight overlapping traits.

Trait sample sizes for each ancestral population in the UKB and
BioMe cohorts are shownin Extended Data Tables1and 2. For all analy-
ses, imputed genotype data were used.

Figure 3 shows boxplots of the variance explained (R?) by Bridge-
PRS, PRS-CSx, PRS-CS-mult and PRSice-meta, for all traits analyzed,
for prediction of African, South Asian and East Asian ancestry samples
inthe UKB and BioMe cohorts. Also shown are Pvalues comparing the
differences in within trait R?, summed across all traits, between Bridge-
PRS, PRS-CSx and PRS-CS-mult (not PRSice-meta as it was universally
inferior across all comparisons). For prediction of African ancestry
samples, BridgePRS had the highest median R?in UKB (0.031 versus
0.025) and a 61% higher median R? than PRS-CSx (0.044 versus 0.027)

in the out-of-cohort BioMe samples (P= 6 x 107°). For prediction of
South Asian ancestry, there were no significant differences among
methods. For prediction of East Asian samples, BridgePRS was inferior
to both PRS-CSx and PRS-CS-mult in both UKB and BioMe, but these
differences did not reach statistical significance.

Figure 4 shows the individual results for each trait (R* with con-
fidence intervals) analyzed in the out-of-sample prediction into the
BioMe cohort. Although the methods showed similar results across
many of the traits, the relative performance of the methods was highly
variable, and for some traits there were distinct differences in the
accuracy of the methods, especially in African ancestry samples. For
example, in Africanancestry samples, BridgePRS performed markedly
better for mean corpuscular volume (MCV) and low-density lipoprotein
(LDL), but markedly worse for eosinophil count. In both African and
South Asian ancestry samples, the PRS-CSx prediction of height was
highly inaccurate, possibly owing to the impact of variant nonoverlap
between cohorts when applying PRS-CSx out of sample (‘Discussion’).
The corresponding trait-specific results for prediction into UKB are
showninExtended DataFig. 5, with asimilar pattern of results observed.
Ofnote, BridgePRS again performed markedly better for MCV and LDL
in African ancestry samples.

Discussion

Wehaveintroducedatrans-ancestry PRS method, BridgePRS, that lever-
ages shared genetic effects across ancestries toincrease theaccuracy of
PRSinnon-European populations. We benchmarked BridgePRS and the
leading trans-ancestry PRS method PRS-CSx, as well as single-ancestry
PRS methods PRS-CS and PRSice adapted for trans-ancestry prediction,
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Fig.3|Predictive accuracy of quantitative traits for different polygenic
prediction methods and target populations. a,b, Predictive accuracy, as
measured by variance explained (R?), of BridgePRS, PRS-CSx, PRS-CS-mult and
PRSice-meta for African, South Asian and East Asian ancestry samples in UKB (a)
and BioMe (b). Nineteen and nine traits were included for African and South Asian
ancestry samples in the UKB and BioMe cohorts, respectively, and 13 and eight
traits for East Asian samples in the UKB and BioMe cohorts, respectively. The
central rectangular boxes show the interquartile range, horizontal lines inside

the boxes show the median, whiskers extend to the most extreme results and
points show results for each trait. Pvalues comparing methods were calculated as
follows: for each trait, z statistics were calculated for the difference in R> between
each pair of methods (the standard error of each R? estimate was estimated via
bootstrapping using 10,000 replicates®?'). These z statistics were then summed
to give Gaussian test statistics of mean 0 and variance (number of traits), under
the null hypothesis of methods having the same R?, from which two-tailed
Pvalues were derived.

acrossarange of simulated and real data. Inall analyses, target popula-
tion PRS used GWAS summary statistics from Europeans and the target
population. Results from our simulated data suggest that BridgePRS
has higher performance relative to PRS-CSx when the uncertainty is
greater: for lower heritability traits, for lower GWAS sample sizes, when
the genetic signalis dispersed over more causal variants (higher poly-
genicity), for greater between-population diversity (for example, with
European base and African target rather than Asian target) and when
the causal variants are not included in the analyses. In all analyses of
simulated data, BridgePRS and PRS-CSx had superior performance
relative to the single-ancestry PRS methods.

Application of the methods to real GWAS summary statistics from
the UKB and BBJ cohorts and validation in independent samples of
African, South Asian and East Asian ancestry in the UKB and BioMe
Biobank (recruited in the New York City area of the USA) gave results
consistent with the simulations. Specifically, BridgePRS had superior
average R*across the traits analyzed for samples of African ancestry, in
which uncertainty was high owing to greater differencesin LD between
Africans and Europeans, and because of the relatively small African
GWAS used. Likewise, PRS-CSx had superior average R for samples
of East Asian ancestry, for which differencesin LD are smaller and the
contributing East Asian GWASs are much larger (90,000-160,000). For

prediction into South Asian ancestry, in which LD is relatively similar
but the South Asian GWASs used are small, the methods performed
similarly.

The stronger performance of PRS-CSx in the real data analysis of
East Asian samples may also have been due to PRS-CSx not requiring
GWAS to be onthe same scale and thus being unaffected by the rescal-
ing of the BBJ effect estimates. PRS-CSx is unaffected by GWAS scale as
itcombinesinformation across ancestries onthe shrinkage (to zero) of
the effect estimate of each SNP and does not combine information on
the effect sizes. The final PRS-CSx PRS estimate is derived by combin-
ing ancestry-specific PRS with relative weights estimated in a linear
regressionin the test data. Differences in scale between the base GWAS
areaccounted for by the linear regression weights. BridgePRS should
haveimproved performance when the GWASs used are performed on
thesamescale, asitsharesinformation on effect sizes across ancestries.

InUKB and BioMe data, we have demonstrated that BridgePRS has
superior out-of-cohort predictive accuracy in genetic prediction in
individuals of African ancestry. However, PRS-CSx has better accuracy
when using UKB European and BBJ East Asian summary statistics to
predictintoindividuals of East Asian ancestry. In general, in simulated
and real data, BridgePRS performs better than PRS-CSx when uncer-
tainty inmapping of causal variantsis higher. Given the complementary
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African target

South Asian target

East Asian target

Trait n Trait n Trait n
Neutro count 4,061 Neutro count 560 Neutro count 589
MCV 4,084 MCV 560
MCV 595
Height 1,998 Height 217
Height 220
Platelets 2,412 Platelets 360
Platelets 366
LDL 2,459 LDL 368
LDL 369
Mono count 2,229 Mono count 283
Mono count 310
BMI 2,226 BMI 284
RDW 2,204 BridgePRS RDW 268 BMI 309
PRS-CSx
PRS-CS-mult Eos count 306
Eos count 2,398 PRSice-meta Eos count 366
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) ° el )] ] © o O o L O N} O L O O O
v 2 \ v Q 3\ Hw O o O O \% 57 Q7 0 O
/Q'o o oV o /O»O & ¥ ¥ /0.0 0,0 oY oY Q(J' Or.‘/
R? R? R?

Fig. 4| Predictive accuracy of quantitative traits in BioMe samples. For each
trait, variance explained (R?), point estimates and 95% confidence intervals for
BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-meta are shown for African, South
Asian and East Asian ancestry samples. Confidence intervals were calculated

by bootstrapping using 10,000 replicates***. n, sample size; Neutro count,

neutrophil count; MCV, mean corpuscular volume; Platelets, platelet count;
Mono count, monocyte count; BMI, body mass index; RDW, red blood cell
distribution width; Eos count, eosinophil count.

nature of the two methods, either can be optimal depending on the
trait and study characteristics; therefore, we recommend applying
both methods until it is known which offers greater power in the
given setting.

BridgePRS is a fully dedicated PRS tool that performs the entire
PRS process, is computationally efficient based on conjugate prior-
posterior updates and offers a theoretical approach to tackling the
PRS portability problem, with particularly strong performance for
deriving PRS in populations of African and other underrepresented
ancestries.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41588-023-01583-9.
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Methods
The BridgePRS model
Allmodelingis performed at the locus-level, and eachlocusis assumed
tobeindependent ofall others. Alocusis defined asagenomicregion
that captures all variants with r* > 0.01 within 1Mb of a lead variant.
Withinloci, SNP effect sizes f are modeled by a multivariate Gaussian
distribution, and we assume that the trait y of individuals with geno-
type data X at the locus follows a Gaussian distribution y - N(XB, /).
Throughout, the Gaussian distribution is parameterized by its mean
and precision matrix (inverse covariance matrix).

Below, we describe the BridgePRS methodology used to derive a
PRS for a target population, population 2 (in our applications: African,
South Asian and East Asian) for which we have summary statistics from
arelatively underpowered GWAS, and GWAS summary statistics froma
well-powered GWAS from a different ancestral population, population1
(inourapplications: European). We also assume that we have small data-
sets of individual-level genotype-phenotype datafromboth populations.

Stage 1: PRS informed by a single population. In stage 1 modeling,
we train and optimize PRS using GWAS summary statistics and test
genotype-phenotype datafromasingle population. To determine the
PRS for population 2, this modeling stage is applied to populations 1
and 2 (model 1in Fig. 1). Application to population 1 determines the
prior distributions for population 2 SNP effect sizes used in stage
2 (see below). Application of stage 1 modeling to population 2 only
(model2inFig.1)is used toidentify effects specific to population2 that
are missed when using population1effects as a prior.

Instagel,azero-centered conjugate Gaussian prior is assigned for
the SNP effects at each locus B - N(O, ¢(diag(A))), where A is a vector
of SNP-specific shrinkage parameters. The use of a conjugate prior
allows the posterior distribution of SNP effects to be determined
analytically*

B~N ((diag()\) + XX XTy, p(diag\) +XTX)).

X"y can be calculated from the vector of maximum likelihood
marginal effects, 5, available from GWAS summary statistics by
(Xy), = 2n0;(1 — 0,)B;, where nis the sample size, @ is the vector of allele
frequencies and (X7y); is the ith element of X"y, with i indexing SNPs.
X"X=n®; here, ® is the pairwise genotypic covariance, which can be
estimated from areference panel representative of the population used
inthe GWAS. Thus, rescaling A by n, the posterior is estimated as

B ~ N ((diag\) + #)7'0(1 — 0)B, (diag\) + ¥))
B~ N(By).

Toaccommodate the effects of natural selection, we allow the prior on
SNP effects to be dependent on allele frequencies such that the prior
precision for the kthSNPis A® = A0 (0,(1 - 0,))" and a [0, 1] (ref. 23).
When a =0, allele frequencies and effect size are a prioriindependent.
a =1is the value implicitly assumed by many methods* and implies
a strong assumption of larger effects at SNPs of lower minor allele
frequency. Multiple models are fit at each locus under priors defined
by all combinations of a = (0, 0.25, 0.5, 0.75,1) and A = (0.05, 0.1, 0.2,
0.5,1,2,5).Lociareranked by the Pvalue of their most associated SNP
and assigned tosubset S,; if the top SNP Pvalueisless than107%, values
of k=1, ..., 8 are considered. Multiple genome-wide PRSs are
calculated foratestset of phenotype and genotype databy summing the
effects across all contributing loci for all combinations of a, A, and k:

~(0)
PRSji = Tes, XiByo,

O]
where X;is the genotype data at locus/, |3A50>% is the posterior mean at
locus /with prior defined by parameters y©and &;, and S, is the subset
1

of loci with top SNP P value <107%. A single PRS is calculated by a
weighted sum of the PRS across all i, j and k, with weights determined
by a ridge regression fit to the test data, using leave-one-out
cross-validationto select the ridge shrinkage parameter that minimizes
out-of-sample deviance, asimplemented in the R package glmnet®.

Stage 2: PRS informed by stage 1. In stage 2modeling, SNP effect sizes
estimated by the application of stage 1 modeling to population 1 (for
example, Europeans) are updated based on population 2 GWAS sum-
mary statistics and optimized using population 2 genotype-phenotype
data. The prior used is taken as the posterior derived from the A, and
aprior parameters, which optimize predictioninthe test dataof popu-
lation1. Asfor stage 1, this prior is also amultivariate Gaussian. A param-
eter tis added to the precision parameter of the Gaussian to control
the contribution of population 1to population 2; thus, the prior is
specified as B, ~ N( B, ¢t£2)). This is similarly a conjugate model with
a Gaussian posterior?:

B~ N ((T91 + @) (r2B, + B20,(1— 0,)), ¢ (0 + 452))

Ba ~ N(B, )

where @, is the SNP covariance at the locus in population 2, §, is the
vector of marginal maximum likelihood SNP effect sizes and 0, is the
vector of allele frequencies. Small values of 7 correspond to using effect
estimates close to those from population2. As rincreases, more weight
isassigned to population1,suchthatast~> «, 3, > f5,.

Ranking loci in stage 2. Owing to differences in LD between popula-
tions, we do not rank lociby the Pvalue of asingle best SNP but instead
aggregate informationacross lociby adapting the Ftest. We show below
that the Ftestinamultivariate linear regression model for the null H,:
[ =0iswell approximated by:

—k
Fotar = ,:lnjﬁrxrxﬁ

with degrees of freedom k and n - k, where k is the dimension of S,
nisthe number of observations and ¢*is the phenotypic variance. The
maximum likelihood estimate and X"X are substituted by the poste-
rior mean and precision matrix and n with ns=n(1+ 1), the effective
number of observations accounting for the prior, giving the statistic:

Ner—k & -
FBayes = E:TBZQZBT

The resultant tail probability is analogous to a P value, although it
cannot be interpreted as such as the parameter estimates fand A
include priorinformation. Instead, for each 7, alocus with test statistic
Fis assigned to S, if F > g,, where g, is the F quantile corresponding to
Prob(p <107%), where the values p are the locus-specific top SNP Pval-
ues. This ranking ensures that the pseudo F statistic ranking assigns
the same number of loci to each subset as the SNP Pvalue ranking. As
for the stage 1 single-ancestry PRS, multiple genome-wide PRSs are
constructed by:

5D
PRSy = 35, XiBy, -

where B(,? isthe posterior meanatlocus/with prior defined by param-
eter 1, and S, is the subset of lociwith F > g,.Models arefitfort=1,2, 5,
10, 15,20, 50,100, 200 and 500 and the same P value thresholds as
those used in stage 1 of the modeling. A single PRS is estimated via a
ridge regression fit using population 2 test data as described above
using glmnet.

Supplementary Table1shows the average R?from BridgePRS rank-
ing loci by the pseudo F statistic versus the Pvalue from the European
GWAS across the 19 traits analyzed here for African and South Asian
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UKB samples. There were broadly similar results for the pseudo F
statistic versus the P value ranking: 0.0413 versus 0.0403 and 0.0683
versus 0.0688 in African and South Asian samples, respectively. Also
shown in Supplementary Table 1 are equivalent results using UKB
genotyped variants (rather than imputed variants); here, there was a
pronounced improvement using the pseudo F statistic ranking: 0.0413
versus 0.0359 in African samples and 0.0694 versus 0.0646 in South
Asiansamples (P = 0.086 for the superiority of the F statistic ranking).
All results presented here were obtained using the pseudo F statistic
lociranking. The BridgePRS software allows users to rank lociin stage
2 using either of the two ranking methods.

Incomplete SNP overlap between populations 1 and 2. Quality
control (QC) is performed separately in each population; see below.
Thisresultsin variantsincluded in analyses differing between popula-
tions. Thus, stage 2 analyses are performed on the intersection of vari-
ants passing QC in both populations and the prior is calculated
conditional on effects of nonoverlapping variants set to zero. Thus,
givenaprior of B, ~ N(B,, ¢t2)), the prior on the overlapping variants
is given by*

b s(a) -1 b) 50
p(BOIBY = 0) = N (57 + () 6 e,

where arepresents the overlapping variants and b the nonoverlapping
variants,and 2"”and 2{“” are the appropriate submatrices of 2,. SNP
overlapistaken at stage 2 to allow modelsfitinstage1tobeapplied to
other datasets with different SNP sets.

Combining PRSs. We consider three alternative models for the
PRS of population 2: (1) PRS estimated using only the two-stage
European-informed PRS, that is, where the population 2 GWAS is
underpowered and contributes insufficientinformation onits own; (2)
PRS estimated using only population 2, thatis, where European GWAS
does notinformthe PRS of population 2; and (3) the case where both
the population-2-only PRS and the two-stage PRS contribute inde-
pendent information. The estimation of models (1) and (2) is deter-
mined by a cross-validated ridge regression fit as described above
using glmnet. Model (3) is estimated similarly by merging all single-
ancestry and two-stage PRS and weighting by a cross-validated ridge
regression fit.

The final PRS is a weighted sum of these three PRS, with weights
determined by the estimated marginal likelihood of each. The
log-marginal likelihood of alinear regression model M;can be approxi-
mated by?**

log p( y, X|M;) = g logo? + K,

where ¢?is the residual model variance estimated from cross-validation
and kis aconstant. Withequal prior weight for each of the models, the
posterior model weights for models M,, M, and M, are given by:

exp{nloga?/2}

Py X0 = S

Combining PRSs in this way can be extended to any number of
contributing PRS. For example, we also combined PRSs for African
ancestry samples constructed from East Asian BBJ and African UKB
GWAS summary statistics to PRS constructed in our main analysis
that used African and European UKB GWAS summary statistics. Sup-
plementary Fig. 1 compares trait R? for African + European PRS with
African + European + East Asian PRS for UKB and BBJ overlapping traits.
Marginalimprovement was observed with the addition of the BBJ East
Asian data for monocyte count, BMIand height; for the other traits, R
was practically unaltered.

Definition of loci. Loci for the two-stage modeling were defined by
clumping and thresholding of European GWAS summary statistics
and LD estimated from UKB European samples using PLINK v.1.9
(ref. 27) with the following parameters: --clump-p1 0.01, --clump-p2
0.01, --clump-kb1,000, --clump-r2 0.01. The Pvalue for each locus was
determined by the Pvalue of the lead SNP of the locus in the European
GWAS. The ancestry-specific loci were defined similarly but used GWAS
and LD data from the appropriate ancestry.

Estimating LD. BridgePRS calculates LD on the fly using genotype
datasupplied by the user and is therefore not restricted to any prede-
fined subset of variants. Inthe simulation analyses, BridgePRS used all
1,000G samples from the appropriate ancestry to estimate LD, and in
thereal dataanalyses asubsample (between 5,000 and 6,000) of UKB
samples from the appropriate ancestry was used.

Application of PRS-CSx

PRS-CSx is a Python-based software package that integrates GWAS
summary statistics and LD reference data from multiple populations
to estimate population-specific PRS. PRS-CSx applies a continuous
shrinkage prior to SNP effects genome-wide in which the sparseness of
the genetic architecture across populations is controlled by a param-
eter ¢». PRS-CSx does not make any inference on ¢ but instead esti-
mates separate PRS for each value of ¢ considered. Throughout, we
followed theimplementation described in Ruan et al.’; thus, values of
¢=(10"%,10",102and 1) were considered. For each ¢, PRS-CSx first
estimates population-specific PRS, for example. PRS,, ;s (European)
andPRS, sz (African), where PRS, is the standardized PRS for popula-
tion x. For each ¢, PRS-CSx fits the following linear regression to the
target population test datay:

Y =Wy rurPRSp ur + Wy arRPRSp AR + €.

where eis Gaussian error. The ¢ value and the corresponding regres-
sion coefficients for the linear combination of PRSs that maximize the
coefficient of determination (R?) in the target population (for example,
African) test set were used in the validation dataset to calculate the
final PRS:

PRSfinal = Wy purPRSg pur + Wp,arrPRS AFR

Unlike BridgePRS, PRS-CSx does not use European test data to estimate
non-European PRS. Therefore, to ensure that both methods used the
same data, GWASs were performed on the European test samples using
PLINKv.2.0 (ref. 27) and then meta-analyzed with the GWAS data from
the European data METAL?. The meta-analyzed European GWAS, the
GWASs generated from the training samples of the target population
and the LD reference panel generated by the authors of PRS-CSx were
provided to PRS-CSx.

UKB genotype and sample QC

The UKBis aprospective cohort study of around 500,000 individuals
recruited across the United Kingdom during 2006-2010. The genetic
data comprise 488,377 samples genotyped at 805,426 SNPs. Popula-
tion ancestries were defined by four-means clustering performed on
the first two principal components (PCs) of the genotype data. The
ancestry of each cluster was defined by the country of birth (field ID:
20115) of the majority of individualsin the cluster. Standard QC proce-
dures were then performed on each ancestry cluster independently;
any SNP with minor allele frequency <0.01, genotype missingness
>0.02 or Hardy-Weinberg equilibrium test Pvalue <10 was removed.
Samples with high levels of missingness or heterozygosity, with mis-
matching genetic-inferred and self-reported sex, or with aneuploidy
of the sex chromosomes were removed as recommended by the UKB
dataprocessing team. A greedy algorithm? was used toremove related
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individuals, with kinship coefficient >0.044, in a way that maximized
sample retention. In total, 557,369 SNPs and 387,392 individuals were
retained for analysis.

Imputation

Imputed variants were extracted from imputed UKB data using
PLINKv.2.0, converting the imputed datainto hard-coded genotypes
and retaining variants with the following filters: biallelic variants
(--max-alleles 2), minor allele frequency greater than 0.001 (-maf
0.001), genotype missingness less than 1% (--geno 0.01) and MACH
info score greater than 0.8 (--mach-r2-filter 0.8).

Traitselection

We extracted all continuous traits from unique samples in the UKB
and performed basic filtering, discarding samples with phenotypic
values six standard deviations away from the mean. Traits with more
than 2,000 samples of African ancestry were extracted. For each trait,
300,000 European samples were extracted (retaining at least 10,000
samples for test and validation for each trait) and GWASs were run on
the genotype data using PLINK v.2.0 with --gIlm. Sex (field ID: 31), age
(field ID: 21003), genotyping batch, UKB assessment center (field ID:
54) and 40 PCs were included as covariates, with fasting time (field
ID: 74) and dilution factor (field ID: 30897) also included for blood
biochemical traits. LD score regression** was run on the resultant sum-
mary statistics and traits were further filtered, discarding those with
heritability less than1%. The remaining traits were ranked according to
their heritability, and traits correlated with a more heritable trait (abso-
lute Pearson correlation greater than 0.3) were removed, resulting in
27 traits. Results are presented for 19 traits that had an R? in Africans of
greater than 1% for atleast one analysis. The sample sizes for each trait
and ancestry are shown in Extended Data Table 1.

Implementation

European, African and South Asian UKB samples were split into three
independent groups: training data to construct the GWAS summary
statistics, test data to select best-fitting parameters, and validation
datato calculate out-of-sample predictive accuracy. The proportions
of samplesallocated to each set were 2/3 training, 1/6 testand 1/6 valida-
tion. Each GWASwas runin PLINK v.2.0 as described above. East Asian
samples were split equally between test and validation sets.

For each trait, analyses were run with imputed variants. GWASs
were run separately for the training samples of European, African
and South Asian ancestry for each of the 19 traits using PLINK v.2.0 as
described above. All PRSs were calculated using two populations: the
African PRS used African and European UKB GWAS data, the South
Asian PRS used South Asian and European UKB GWAS data, and the
East Asian PRS used BBJ and European UKB GWAS.

Application to BioMe

BioMe samples were genotyped on the Infinium Global Screening Array
v.1.0 platform.Samples were removed if they had a population-specific
heterozygosity rate of greater than +6 standard deviations of the
population-specific mean, along with a call rate of <95%. In addi-
tion, samples were removed if they exhibited persistent discordance
between the electronic health record and genetic sex. Variants were
removed that had a call rate <95%, a Hardy-Weinburg Equilibrium P
value threshold of P <107 in African American and European American
ancestry, or P<10™in Hispanic and South Asian ancestry.

PC analysis was performed, and African, South Asian and East
Asian samples were selected by clusters on PC plots corresponding to
self-reported ancestry. African samples were selected as those with
PC1>0.0075, PC2 <-0.0005 and PC3 > -0.002. South Asian samples
were selected as those with—0.01<PC3 <-0.004,-0.003 <PC4 < 0.001
and PC5<-0.015. East Asian samples were selected as those
with PC3 <-0.01, PC4 > 0.001, PC5>-0.005 and PC6 >-0.0035.

Supplementary Figs. 2-4 plot the top six PCs, with samples colored by
self-reported ancestry, and show the thresholds used to select African,
South Asian and East Asian ancestry samples.

Imputationwas performed using IMPUTE2 (ref. 31) with the 1000G
Phase 3 v.5 reference panel'. Variants were first filtered by info score
>0.3. Genotype data for the calculation of PRS in unique individuals
were generated for in each of the two ancestry groups separately by
first removing variants with minor allele frequency <1%in the respec-
tive BioMe population and then removing one of each pair of variants
with duplicate genomic position. BioMe variants were mapped onto
the UKB PRS by genomic position (build 37). Variants were coded by
their expected allele count (dosage) for the calculation of PRS. Samples
with phenotypic values three standard deviations away from the mean
were excluded.

Measure of PRS accuracy
Variance explained was calculated as
R =1_ Jaruim
Var (yimo)

where M;is the regression model with (i=1) and without (i= 0) the
PRS, with both models including covariates for the top 40 PCs, age,
sex, center and batch, fasting and dilution for the biochemical traits.
Variance explained in the applications to BioMe included covariates
for age, sex and the top 32 PCs. Standard errors and confidence inter-
vals were calculated by bootstrapping in the R package boot*** using
10,000 replicates.

Equivalence of sample size and heritability on GWAS power
We assume a phenotype value is given by additive genetic effects fand
anenvironmental component e

r= T e
J

where e ~ N(0,d2). Therefore,

var(Y) =3y, ﬁ}Var(xj) +0%
J

setting variance due to genetics to o2, we have

— 2
=0, +0;.

As heritability A2 = —

lfhentabllltychanges by afactor of k, Var(¥) must change by afactor
of k. If the genetic effect §;ina GWAS is estimated in a linear regression
model, the expected variance of its maximum likelihood estimate §; is
approximately —= =~ V") Therefore, changing h2by afactor of k, and thus
Var(Y)bya factor of(l( has the same effect on Var(B;) as changing the
sample suzenbyafactorofk

Reformulation of the Ftest

Without loss of generality, assume zero-centered normally distributed
traitdataywith variance o°. Alinear regressionis fitted to this data with
ann x k covariate matrix X, resulting in maximum likelihood estimates
B. The F statistic is defined by the residual sum of squares of the null
and alternative models (RSS, and RSS,) as follows:

F=

n—k ( RSS,-RSS,
& RSS,

—k
k

:

Yy—(y- XB (y-XB)
—XB

s
% (e
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:
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»
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B™XX is the variance explained by the locus; therefore, assuming this
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Data availability

Publicly available data used to generate the simulated data are
available from the following sites. 1000G Phase 3 reference pan-
els: https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html;
and genetic maps for each subpopulation: ftp.1000genomes.ebi.
ac.uk/voll/ftp/technical/working/20130507_omni_recombina-
tion_rates. UKB genotype and phenotype data were obtained
from the UKB resource under application 18177 (https://www.
ukbiobank.ac.uk/enable-your-research/approved-research/
multi-trait-gwas-analyses-in-the-uk-biobank). UKB QC information
(missingness, allele frequency, Hardy-Weinberg equilibrium) was
obtained from UKB resource 531 (https://biobank.ctsu.ox.ac.uk/crys-
tal/refer.cgi?id=531). Recruitment and enrollment of participants into
BioMewas Institutional Review Board (IRB) and Health Insurance Port-
ability and Accountability Act 1996 (HIPAA) approved. Itisabiobank
linked to electronic medical records that allows the use of deidentified
samples linkable to past, present and future clinicalinformation from
electronic health records at Mount Sinai. BioMe contains protected
healthinformation andis thus under controlled access. Applications
to access the data can be made to biome@mountsinai.org; see also
https://icahn.mssm.edu/research/ipm/programs/biome-biobank.
BBJ summary statistics were downloaded from PheWeb: https://
pheweb.jp. SNP weights for the polygenic risk scores estimated by
BridgePRS in this paper are available on GitHub (https://github.com/
clivehoggart/BridgePRS_data).

Code availability

Software, example data and a tutorial for BridgePRS are available
fromwww.bridgeprs.net. Source code, to which www.bridgeprs.net
links, is available from https://github.com/clivehoggart/BridgePRS,
DOI badge https://doi.org/10.5281/zenod0.8385983, v.0.1 (ref. 32).
Scripts used for all analyses are available on GitHub: https://github.
com/clivehoggart/BridgePRS_data. All other code used in this study
is available from the following websites: BridgePRS: https://www.
bridgeprs.net; HAPGEN2 v.2.2.0: https://mathgen.stats.ox.ac.uk/
genetics_software/hapgen/hapgen2.html; IMPUTE2 v.2: https://
mathgen.stats.ox.ac.uk/impute/impute_v2.html; LDSC v.1.0.1:
https://github.com/bulik/Idsc; METAL v.2011-03-25: http://csg.sph.
umich.edu/abecasis/metal/; PLINK v.1.9: https://www.cog-genomics.
org/plink; PLINK v.2.0: https://www.cog-genomics.org/plink/2.0/;
PRS-CSx v.1.0.0: https://github.com/getian107/PRScsx; PRS-CS
v.1.0.0: https://github.com/getian107/PRScs; PRSice-2 v.2: https://
www.prsice.info; R v.4.0.3: https://cran.r-project.org; R boot pack-
age v.1.3.25: https://cran.r-project.org/web/packages/boot/index.
html; Ridge reg glmnet package v.4.0-2: https://cran.r-project.org/
web/packages/glmnet/index.html.
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Extended Data Fig. 1| Relative loss in removing causal variants from analysis
insimulated data. Relative loss measured by ratio of models’ variance explained
(R?) without and with the causal variants included. Results are shown for
BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-meta across six simulation
scenarios for African and East Asian ancestry samples. a SNP heritability

hZgnp = 0.25and b SNP heritability h?gyp = 0.5, tensimulated phenotypes per
scenario. Under each set of analyses the proportion of causal variants and the
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relative power of the data used is shown, measured by nhmup to
proportionality, where nis the GWAS sample size, h> heritability and m the
number of causal variants. The central rectangular boxes show the interquartile
range, horizontal lines inside the boxes show the median, whiskers extend to the
most extreme results and points show results for each of the 10 simulated
phenotypes. PRSice-meta results for East Asian analyses were unstable and

removed for clarity.
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Extended Data Fig. 2| Predictive accuracy for different polygenic prediction

methods in simulations using half GWAS sample size as used in the primary
simulation. Sample sizes of 40K European and 10K non-European were used.

Results are shown for BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-meta across

six simulation scenarios, with and without the causal variantsincluded in the
model for African and East Asian ancestry samples. a SNP heritability
hZgyp = 0.25and b SNP heritability h?gyp = 0.5, tensimulated phenotypes per
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scenario. Under each set of analyses the proportion of causal variants and the
relative power of the data used is shown, measured by nh¥mup to
proportionality, where nis the GWAS sample size, h> heritability and m the
number of causal variants. The central rectangular boxes show the interquartile
range, horizontal lines inside the boxes show the median, whiskers extend to the
most extreme results and points show results for each of the 10 simulated
phenotypes.
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Extended DataFig. 3| Predictive accuracy for different polygenic prediction
methodsin simulations at h?gyp= 0.75. Results are shown for BridgePRS,
PRS-CSx, PRS-CS-mult and PRSice-meta across six simulation scenarios, withand
without the causal variants included in the model for African and East Asian
ancestry samples, ten simulated phenotypes per scenario. Under each set of
analyses the proportion of causal variants and the relative power of the data used
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is shown, measured by nh?/m up to proportionality, where nis the GWAS sample
size, h? heritability and m the number of causal variants. The central rectangular
boxes show the interquartile range, horizontal lines inside the boxes show the
median, whiskers extend to the most extreme results and points show results for
each of the 10 simulated phenotypes.
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shown for BridgePRS and PRS-CSx across six simulation scenarios, 10 simulated
phenotypes per scenario with h*=0.25 for African and East Asian ancestry
samples. Data was simulated using 1000 Genomes as reference. Under each set of
analyses the proportion of causal variants and the relative power of the data used
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Extended Data Fig. 5| Predictive accuracy for quantitative traits in UK phosphatase, Mono count=Monocyte count, apoAl=Apolipoprotein
Biobank samples. For each trait variance explained (R?), point estimates and A, BMI=Body mass index, RDW=Red blood cell distribution width, Eos
95% confidence intervals, by BridgePRS, PRS-CSx, PRS-CS-mult and PRSice-meta count=Eosinophil count, TG=Triglycerides, Baso %=Basophil percentage,
are shown for African, South Asian and East Asian ancestry samples. nindicates CRP=C-reactive protein. Confidence intervals were calculated by bootstrapping
sample size. Neutro count=Neutrophil count, MCV=Mean corpuscular volume, using 10,000 replicates.

Platelets=Platelet count, Retic count=Reticulocyte per- centage, ALP=Alkaline
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Extended Data Table 1| GWAS and UK Biobank test and validation sample sizes

European African South Asian East Asian

Train Train Test Valid. Train Test Valid. Train™ Test Valid.
Height 257675 4862 1215 1214 6666 1666 1665 191787 1235 1235
BMI 257327 4853 1213 1212 6653 1662 1662 173430 1234 1233
Platelet # 250404 4657 1163 1163 6538 1634 1633 108208 1204 1203
CRP 176422 3281 820 819 4581 1145 1144 75391 1034 1034
Neutrophill # 249945 4642 1160 1159 6515 1628 1627 62076 1202 1201
MCV 250359 4660 1164 1164 6541 1634 1634 108256 1204 1203
ApoA 161594 3029 756 756 4182 1045 1044 - - -
Reticulocyte % 246092 4531 1132 1131 6367 1591 1590 - - -
ALP 177485 3293 823 822 4611 1152 1152 105030 1034 1034
LDL direct 177383 3291 822 821 4603 1150 1150 72866 1034 1034
Monocyte # 249782 4639 1159 1158 6503 1625 1625 62076 1202 1202
RDW 249871 4645 1161 1160 6523 1630 1630 - - -
Urea 177343 3289 821 821 4603 1150 1149 - - -
Triglycerides 177317 3289 821 821 4603 1150 1149 105597 1034 1034
Basophill % 249368 4623 1155 1154 6495 1623 1622 62076 1199 1199
Total protein 162440 3045 761 760 4190 1047 1046 113509 1034 1034
Urine sodium 250253 4734 1183 1182 6497 1624 1623 - - -
IGF-1 176643 3272 817 817 4583 1145 1144 - - -
Eosinophill # 249594 4629 1157 1156 6503 1625 1624 62076 1198 1197

African and South Asian GWASs used UK Biobank samples, Biobank Japan was used for East Asian GWAS summary data, for East Asians numbers are only shown for those traits with
overlapping BBJ summary statistics. Across all traits 10,000 European samples were used as test data. Height - Standing height, BMI - Body mass index, CRP - C-reactive protein, MCV - Mean
corpuscular volume, ApoA - Apolipoprotein A, Alp - Alkaline phosphatase, RDW - red cell distribution width.
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Extended Data Table 2 | BioMe Biobank sample sizes for individuals of African, South Asian and East Asian ancestry

African South Asian East Asian
Standing height 2061 560 589
Body mass index 4084 560 595
LDL direct 1998 217 220
Mean corpuscular volume 2412 360 366
Platelet count 2459 368 369
Monocyte count 2229 283 310
Neutrophill count 2226 284 309
Eosinophill count 2204 268 306
Red blood cell distribution width 2398 366 -

These samples were used for out-of-sample PRS validation.
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- PRS-CS v1.0.0 (https://github.com/getian107/PRScs)

- PRSice-2 v2 (https://www.prsice.info}

- HAPGEN v2.2.0 (01/04/2011): https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.htm
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Publicly available data used to generate the simulated data are available from the following sites: 1000G Phase 3 reference panels: https://mathgen.stats.ox.ac.uk/
impute/1000GP Phase3. html and genetic maps for each subpopulation: ftp.1000genomes.ebi.ac.uk/vol1/ ftp/technical/working/20130507 omni recombination
rates

UK Biobank genotype and phenotype data were obtained from the UK Biobank Resource under applica- tion 18177 https://www.ukbiobank.ac.uk/enable-your-
research/approved-research/multi-trait-gwas-analyses-in-the-uk-biobank. UK Biobank Quality Control information (missingness, allele frequency, Hardy Weinberg
Equilibrium) was obtained from UK Biobank resource 531: https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=531

Recruitment and enrollment of participants into the Mount Sinai BioMe Biobank is IRB and HIPAA approved. It is an electronic medical record-linked biobank which
allows the use of de-identified samples linkable to past, present and future clinical information from electronic health records at Mount Sinai. Biome contains
protected health information and is thus under controlled access. Application to access the data can be made to biome@mountsinai.org, also see
https://icahn.mssm.edu/research/ipm/programs/biome-biobank.

BBJ summary statistics were downloaded from PheWeb: https://pheweb.jp.

SNP weights for the polygenic risk scores estimated by BridgePRS in this paper are available on Github

https://github.com/clivehoggart/BridgePRS data
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Sample size Biobank analyses: We used all samples that were available for trait analyses in Biobanks, sample sizes for each phenotype in each ancestral
population in UKB, BBJ and Biome are reported in Supplementary Tables 1 and 2.

Simulation analyses: Sample sizes for simulation studies were chosen as those typical for current GWASs: 80K European, 20K non-European.
We show in the manuscript that there is a linear relationship between GWAS sample size and heritability, therefore, we performed simulation
at 3 levels of heritability: 25%, 50% and 75%, the later two heritabilities are equivalent to doubling and trebling the sample size respectively
with a heritability of 25%. To confirm the relationship between heritability and sample size analyses were run with half the sample size: 40K
European, 10K non-European.

Data exclusions  Standard genotype quality controls were performed in both cohorts and are reported in the Methods. In UKB, samples with phenotypic values
6 standard deviation away from the mean were excluded. In Biome samples with phenotypic values 3 standard deviation away from the mean
were excluded

Replication Biobank analyses: PRS estimated using UKB and BBJ summary data were replicated in (1) unseen UKB samples and (2) the independent Mount
Sinai Biome Biobank. Confidence intervals (Cls) for the R2 in the replication cohorts were calculated via boot strapping of 10,000 replicates,
resulting Cls were symmetrically distributed around the mean values indicating consistency.

Simulation analyses: Each simulation setting was repeated 10 times. Results were consistent across replicates.

Randomization  UKB samples were randomly assigned to training, test and validation cohorts In each ancestral population.

Blinding Researchers were blinded to group assignments. All phenotypes analyses were continuous, therefore phenotype blinding is not applicable.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<




Materials & experimental systems Methods

Involved in the study n/a | Involved in the study

|:| Antibodies |Z |:| ChiIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants
|:| Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics The UK Biobank is a population cohort. The Mount Sinai BioMe Biobank is a ~60k patient electronic medical record-linked
biobank at Mount Sinai hospital and enables researchers to rapidly and efficiently conduct genetic, epidemiologic, molecular,
and genomic studies on large collections of research specimens linked with medical information.

It has been enrolling since September 2007.
The ~60k participants represent diverse ancestry classified as African American ~20%, European American ~29%, East Asian
(~4%) , South Asian (~3%), Hispanic (~36%) and OTHER (~9%) group

Recruitment This research has been conducted using the UK Biobank Resource under Application Number 18177 (P.F.O'Reilly). The
Mount Sinai Biome Biobank recruited patients visiting Mount Sinai hospital.

Ethics oversight The study protocols were approved by the institutional review board at the Icahn School of Medicine at Mount Sinai.
Participants from the UK Biobank provided written informed consent (Information available at https://
www.ukbiobank.ac.uk/2018/02/gdpr/). All DNA samples and data in this study were pseudonymized.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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