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Abstract
Fargesin, a bioactive lignan derived from Flos Magnoliae, possesses anti-inflammatory, anti-oxidative, anti-melanogenic, 
and anti-apoptotic effects. This study compared the metabolic profiles of fargesin in human, dog, monkey, mouse, and 
rat hepatocytes using liquid chromatography-high resolution mass spectrometry. In addition, we investigated the human 
cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT), and sulfotransferase (SULT) enzymes responsible for fargesin 
metabolism. The hepatic extraction ratio of fargesin among the five species ranged from 0.59 to 0.78, suggesting that it 
undergoes a moderate-to-extensive degree of hepatic metabolism. During metabolism, fargesin generates three phase 1 
metabolites, including fargesin catechol (M1) and O-desmethylfargesin (M2 and M3), and 11 phase 2 metabolites, including 
O-methyl-M1 (M4 and M5) via catechol O-methyltransferase (COMT), glucuronides of M1, M2, M4, and M5, and sulfates 
of M1–M5. The production of M1 from fargesin via O-demethylenation is catalyzed by CYP2C9, CYP3A4, CYP2C19, 
and CYP2C8 enzymes, whereas the formation of M2 and M3 (O-desmethylfargesin) is catalyzed by CYP2C9, CYP2B6, 
CYP2C19, CYP3A4, CYP1A2, and CYP2D6 enzymes. M4 is metabolized to M4 glucuronide by UGT1A3, UGT1A8, 
UGT1A10, UGT2B15, and UGT2B17 enzymes, whereas M4 sulfate is generated by multiple SULT enzymes. Fargesin is 
extensively metabolized in human hepatocytes by CYP, COMT, UGT, and SULT enzymes. These findings help to elucidate 
the pharmacokinetics and drug interactions of fargesin.
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Introduction

Fargesin, 5-[(3S,3aR,6R,6aR)-6-(3,4-dimethoxyphenyl)-
1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-1,3-benzo-
dioxole is a bioactive lignan derived from Flos Magnoliae 
[1]. It has anti-allergic effects [2], inhibits inducible nitric 
oxide synthase [3, 4], and improves osteoarthritis, chem-
ical-induced bowel disease, and atherosclerosis via anti-
inflammatory effects [5–9]. Furthermore, it promotes reverse 
cholesterol transport [9] and has in vivo anti-hypertensive 
effects via attenuation of oxidative stress and apoptosis [10, 

11]. It also improves lipid and glucose metabolism [12, 13] 
and inhibits colon cancer cell growth via suppression of the 
CDK2/cyclin E signaling pathway [14] and melanin syn-
thesis [15].

During the development of a new drug, drug candidates 
are selected based on efficacy and pharmacokinetic attrib-
utes, such as clearance, oral bioavailability, and metabolic 
profile [16]. During the preclinical development stage, the 
metabolism and pharmacokinetic properties of drug can-
didates must be characterized to predict the drug exposure 
levels and safety in humans. Therefore, it is necessary to 
characterize the metabolic stability and metabolic pathways 
of drugs in human and animal hepatocytes, the gold stand-
ard model for in vitro metabolism studies. Furthermore, 
the identification of drug-metabolizing enzymes, such as 
cytochrome P450 (CYP), UDP-glucuronosyltransferase 
(UGT), and sulfotransferase (SULT), which are responsible 
for the metabolism of candidate drugs, can predict pharma-
cokinetics and drug interactions [16, 17].
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Few studies have evaluated the pharmacokinetics of 
fargesin in rats and mice [18, 19]. In one such study on male 
ICR mice, intravenous or oral administration of fargesin at 1, 
2, and 4 mg/kg led to high clearance (53.2–55.5 mL/min/kg), 
short half-life (84.7–140.0 min), low absolute bioavailability 
(4.1–9.6%), no urinary recovery, and negligible cumulative 
fecal recovery for 48 h (< 0.089% of the dose), suggest-
ing that the high clearance of fargesin is attributable to its 
metabolism [18]. However, no studies have evaluated the 
metabolism of fargesin in experimental animals and humans.

In two previous studies, fargesin inhibited CYP2C9-medi-
ated diclofenac hydroxylation (Ki: 16.3 µM), UGT1A1-medi-
ated SN-38 glucuronidation (Ki: 25.3 µM), and UGT1A3-
mediated chenodeoxycholic acid 24-acyl-glucuronidation 
(Ki: 24.5 µM) in human liver microsomes [20, 21]. Further-
more, it showed time-dependent inhibition of CYP2C8-cat-
alyzed amodiaquine N-deethylation (Ki: 10.7 µM and kinact: 
0.082  min−1), CYP2C19-catalyzed [S]-mephenytoin hydrox-
ylation (Ki: 3.7 µM and kinact: 0.102  min−1), and CYP3A4-
catalyzed midazolam hydroxylation (Ki: 23.0 µM and kinact: 
0.050  min−1) in human liver microsomes [20].

The present study explored the in vitro metabolic path-
ways of fargesin in hepatocytes from humans and four ani-
mal models using liquid chromatography-high resolution 
mass spectrometry (LC-HRMS), and characterized the 
human drug-metabolizing enzymes involved in its metabo-
lism to predict pharmacokinetics and drug interactions.

Materials and methods

Materials and reagents

Fargesin (purity, 98.0%), sylvatesmin (purity, 98.54%, 
M4), and magnolin (purity, 98.9%; internal standard) were 
obtained from Tokyo Chemical Industry (Tokyo, Japan), 
Toronto Research Chemicals (Toronto, Canada), and 
PhytoLab GmbH & Co. (Vestenbergsgreuth, Germany), 
respectively. Alamethicin, reduced nicotinamide adenine 
dinucleotide phosphate (NADPH), 3-phosphoadenosine-
5-phosphosulfate (PAPS), S-adenosylmethionine (SAM), 
and uridine 5′-diphosphoglucuronic acid (UDPGA) were 
obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). 
Pooled human liver microsomes, pooled human liver S9 
fraction, cryopreserved dog, monkey, mouse, and rat hepat-
ocytes, human cDNA-expressed CYP enzymes (CYP1A2, 
2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5) and 
UGT enzymes (UGT 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 
1A10, 2B4, 2B7, 2B10, 2B15, and 2B17) were obtained 
from Corning Life Sciences (Woburn, MA, USA). Human 
cDNA-expressed SULT enzymes (SULT 1A1*1, 1A1*2, 
1A2, 1A3, 1B1, 1C2, 1C4, 1E1, and 2A1) were obtained 
from Cyprotex Ltd. (Scotland, UK). LiverPool™ pooled 

human hepatocytes (50-donor mixed gender), INVITRO-
GRO HT medium, and INVITROGRO KHB were obtained 
from BioIVT (Westbury, NY, USA). Cryopreserved hepat-
ocyte recovery medium for cryopreserved dog, monkey, 
mouse, and rat hepatocytes was obtained from Invitrogen 
(Waltham, MA, USA). Methanol and water (HPLC grade) 
were obtained from Thermo Fischer Scientific (Fair Lawn, 
NJ, USA). All other chemicals were of the highest quality 
available.

Metabolic stability of fargesin in human and animal 
hepatocytes

To evaluate the metabolic stability of fargesin in human, dog, 
monkey, mouse, and rat hepatocytes, pooled cryopreserved 
hepatocytes were carefully thawed in recovery medium and 
resuspended in incubation medium (Krebs–Henseleit buffer 
for mouse, rat, and human hepatocytes; William’s E media 
for dog and monkey hepatocytes) to achieve a final density 
of 5 ×  105 cells/mL. Then, 60 µL hepatocyte suspension and 
an equal volume of 1 μM fargesin in the incubation medium 
were mixed in 96-well plates and incubated in triplicate for 
0, 15, 30, 45, 60, 90, and 120 min at 37 °C in a  CO2 incuba-
tor. Next, 120 μL ice-cold magnolin (internal standard) in 
methanol was added to each well and the mixtures were son-
icated for 5 min, followed by centrifugation at 13,000 rpm 
for 10 min at 4 °C. An aliquot of each supernatant was trans-
ferred to an autosampler vial, and 5 µL supernatant was ana-
lyzed via LC-HRMS, as described previously [18].

The depletion rate constant (k) was calculated from the 
slope of the natural logarithm plots of the percentage of 
fargesin remaining at each time point compared to 0 min. 
In vitro parameters of metabolic stability, such as half-
life  (t1/2), intrinsic clearance  (Clint), and hepatic clearance 
 (Clhep), and hepatic extraction ratio of fargesin in human, 
dog, monkey, mouse, and rat hepatocytes [22] were calcu-
lated using the following equations:

Here, A has values of 87.5, 40, 32, 32, and 25.7; B has 
values of 135, 117, 215, 120, and 139;  Qh (representing 
hepatic blood flow) has values of 90, 55.2, 30.9, 43.4, and 
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20.7 mL/min/kg for mouse, rat, dog, monkey, and human, 
respectively [23]. Hepatic extraction ratio values of ≤ 0.25, 
0.25–0.75, and ≥ 0.75 were regarded as low, moderate, and 
high, respectively [22].

Metabolite profiling of fargesin in hepatocytes

To identify in vitro metabolites of fargesin, 60 µL aliquots 
of dog, monkey, mouse, rat, or human hepatocyte suspen-
sions (5 ×  105 cells/mL) and an equal volume of 10 μM 
fargesin in the incubation medium were mixed in 96-well 
plates and incubated for 2 h in a  CO2 incubator at 37 °C. 
120 μL ice-cold methanol was added to each well and the 
mixtures were sonicated for 5 min, followed by centrifuga-
tion at 13,000 rpm for 10 min at 4 ℃. The supernatants 
were evaporated to dryness using a vacuum concentrator. 
The residues were dissolved in 100 μL 40% methanol and 
5 μL aliquots were injected into the LC-HRMS system.

To identify the glucuronidation of phase 1 metabo-
lites, M1–M3, 100 μL reaction mixture containing 50 mM 
potassium phosphate buffer (pH 7.4), 10 mM magnesium 
chloride, human liver microsomes (20 μg protein), 1 mM 
NADPH, 2 mM UDPGA, and 10 μM fargesin was used. The 
mixture was incubated at 37 °C for 30 min. The reactions 
were quenched by adding 200 μL methanol. After centrifu-
gation, the supernatants were evaporated to dryness using a 
vacuum concentrator. The residues were dissolved in 100 μL 
40% methanol and 5 μL aliquots were injected into the LC-
HRMS system.

To identify fargesin and its metabolites, we used a 
Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Sci-
entific) coupled with Nexera X2 UPLC (Shimadzu, Kyoto, 
Japan). Fargesin and its metabolites were separated on a 
Halo C18 column (2.1 × 100 mm, 2.7 μm; Advanced Mate-
rial Technology, Wilmington, DE, USA) via gradient elu-
tion using 5% (v/v) methanol in 10 mM ammonium formate 
(mobile phase A) and 95% methanol (mobile phase B) at a 
flow rate of 0.25 mL/min: 40% mobile phase B for 0.5 min, 
40 to 60% mobile phase B over 29.5 min, 60 to 90% mobile 
phase B over 0.5 min, 90% mobile phase B for 3 min, 90 to 
40% mobile phase B over 0.5 min, and 40% mobile phase 
B for 3.5 min. The column and autosampler temperatures 
were 40 °C and 4 °C, respectively. Accurate mass values of 
fargesin and its metabolites were measured via positive elec-
trospray ionization, with the following electrospray source 
settings: capillary temperature, 250 °C; aux gas heater tem-
perature, 200 °C; spray voltage, 3.8 kV; nitrogen sheath gas, 
40 arbitrary units; and auxiliary gas, 10 arbitrary units. Full 
scan MS1 with the data-dependent MS2 acquisition mode 
was used to obtain MS scan data ranging from m/z 100 to 
1000 with resolution of 70,000. Nitrogen gas was used for 
higher-energy collision dissociation at an energy of 15 eV 
to obtain product ion spectra of fargesin and its metabolites. 

Data were processed using Xcalibur software version 2.2 
(Thermo Fisher Scientific). The drug structures were ana-
lyzed using Mass Frontier software (version 6.0; HighChem 
Ltd., Bratislava, Slovakia).

Screening of CYP enzymes involved in the phase 1 
metabolism of fargesin

Incubation mixtures (95  μL) containing fargesin (final 
concentration: 5 μM), 10 mM magnesium chloride, and 
10 human cDNA-expressed CYP enzymes (CYP1A2, 
CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, 
CYP2D6, CYP2E1, CYP3A4, and CYP3A5; 4 pmol) in 
50 mM potassium phosphate buffer (pH 7.4) were mixed 
with 5 μL 1 mM NADPH and incubated at 37 °C for 30 min 
in a shaking water bath. The reactions were terminated by 
adding 100 μL ice-cold magnolin (100 ng/mL) in methanol. 
The samples were centrifuged at 13,500 rpm for 10 min at 
4 °C and 5 μL supernatants were analyzed via LC-HRMS, 
as described above.

In the CYP screening experiments, the levels of 
fargesin and its metabolites, M1–M3 were quanti-
fied based on the parallel reaction monitoring (PRM) 
transitions using m/z 388.17547 → 135.04407 for 
fargesin, m/z 376.17547 → 123.04408 for M1, m/z 
374.15982 → 137.05974 for M2 and M3. The concentrations 
of M1–M3 metabolites were determined using the standard 
curve of fargesin in the absence of authentic standards.

The relative contributions of CYP isoforms to 
the formation of M1–M3 metabolites from fargesin 
in human liver microsomes were determined using 
(VelocityCYPi∕

∑n

i=1
VelocityCYPi × RAFCYPi) × 100, where 

RAF is the relative activity factor that encompasses the 
hepatic abundance of each CYP isoform and the differences 
in activity per unit enzyme between human cDNA-expressed 
CYPs and human liver microsomal CYPs [24].

Screening of UGT enzymes involved in M4 
glucuronidation

A mixture (95 μL) containing M4 (final concentration: 
10 μM), alamethacin, and 13 human cDNA-expressed UGT 
enzymes (UGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 
1A10, 2B4, 2B7, 2B10, 2B15, and 2B17; 10 μg protein) in 
50 mM Tris buffer (pH 7.4) was mixed with 5 μL UDPGA 
and incubated at 37 °C for 30 min in a shaking water bath. 
The reactions were stopped by adding 200 μL ice-cold mag-
nolin (100 ng/mL) in methanol. The samples were centri-
fuged at 13,500 rpm for 10 min at 4 °C and 5 μL supernatant 
was analyzed via LC-HRMS, as described above.

The levels of M4 and its metabolite M4 glu-
curonide (M4-G) were quantified based on PRM 
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transitions using m/z 390.1907 → 137.05971 for M4 and m/z 
566.22375 → 355.15320 for M4-G. As no authentic standard 
of the M4-G metabolite was available, the metabolite was 
quantified based on the standard curve of M4 (sylvatesmin).

Screening of SULT enzymes involved in M4 sulfation

A mixture (95 μL) containing M4 (final concentration: 
10 μM) and human liver S9 fraction or 10 human cDNA-
expressed SULT enzymes (SULTs 1A1*1, 1A1*2, 1A2, 
1A3, 1B1, 1C2, 1C4, 1E1, and 2A1; 0.25 μg protein) in 
50 mM phosphate buffer (pH 7.4) were mixed with 5 μL 
0.4 mM PAPS and incubated at 37 °C for 30 min. The reac-
tions were terminated by adding 200 μL ice-cold magnolin 
(100 ng/mL) in methanol. The samples were centrifuged at 
13,500 rpm for 10 min at 4 °C and 5 μL supernatant was 
analyzed via LC-HRMS, as described above.

The levels of M4 and its metabolite M4 sul-
fate (M4-S) were quantified based on PRM transi-
tions using m/z 390.1907 → 137.05971 for M4 and m/z 
470.14750 → 315.05255 for M4-S. As no authentic standard 
of the M4-S metabolite was available, its levels were quanti-
fied on the basis of the standard curve of M4.

Results

Metabolic stability of fargesin in hepatocytes

The in vitro parameters of metabolic stability (e.g.,  t1/2, 
CLint, CLhep, and hepatic extraction ratio) of fargesin 
obtained after incubation with human, dog, monkey, mouse, 
and rat hepatocytes are shown in Table 1. The t1/2 values of 
fargesin in human, dog, monkey, mouse, and rat hepatocytes 
were 68.3, 204.0, 46.2, 130.6, and 104.2 min, respectively. 
Using a well-stirred model, the CLint values were 72.5, 46.7, 
115.2, 125.4, and 62.3 mL/min/kg, whereas the CLhep values 
were 16.1, 18.6, 31.5, 52.4, and 29.3 mL/min/kg, respec-
tively (Table 1). The hepatic extraction ratios were 0.78, 
0.60, 0.73, 0.58, and 0.53, respectively, indicating that it is 

highly metabolized (> 0.75) in humans but is moderately 
metabolized (0.25–0.75) in the others [22].

Metabolic profiles of fargesin in hepatocytes

Incubation of fargesin with each type of hepatocyte 
resulted in the formation of 14 metabolites. The extracted 
ion chromatograms of fargesin, three phase 1 metabolites 
(M1–M3), and 11 phase 2 metabolites are shown in Fig. 1. 
The retention time, elemental composition, observed 
molecular ion, mass error, and product ions of fargesin 
and its 14 metabolites are presented in Table 2. M1–M4, 
M1-G, M1-S, M2-G, M2-S, M3-S, M4-G, and M4-S were 
formed in all species. M5, M5-G, and M5-S were formed 
from fargesin in all species except mice.

Fargesin exhibited an ammonium adduct ([M +  NH4]+) 
peak at m/z 388.17548 as molecular ion in MS spec-
trum. The characteristic product ions at m/z 353.13803 
(loss of water and  NH3 from [M +  NH4]+ ion), m/z 
249.11177 (4-(3,4-dimethoxyphenyl)tetrahydro-
1H,3H-furo[3,4-c]furan-1-ylium ion), m/z 233.08055 
(4-(benzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-
c]furan-1-ylium ion), m/z 203.07022 (5-(benzo[d][1,3]
dioxol-5-yl)-2,5-dihydrofuran-3-yl)methylium ion), m/z 
151.07513 ((3,4-dimethoxyphenyl)methylium ion), and 
m/z 135.04388 (benzo[1.3]dioxol-5-ylmethylium ion) 
were produced within MS/MS spectrum of fargesin 
([M +  NH4]+; Fig. 2a).

M1 exhibited an [M +  NH4]+ ion at m/z 376.17593 
with 12 atomic mass units (amu) less than that of the 
[M +  NH4]+ ion of fargesin. The MS/MS spectrum of M1 
included product ions at m/z 341.13812 (loss of water and 
 NH3 from [M +  NH4]+ ion), m/z 249.11093, m/z 221.08063 
(4-(3,4-dihydroxyphenyl)tetrahydro-1H,3H-furo[3,4-c]
furan-1-ylium), m/z 191.06989 ((5-(3,4-dihydroxyphenyl)-
2,5-dihydrofuran-3-yl)methylium ion), m/z 151.07544, 
and m/z 123.04385 ((3,4-dihydroxyphenyl)methylium ion) 
(Fig. 2b), indicating that M1 was produced by demethylena-
tion of benzo[1,3]dioxole to pyrocatechol. As a result, M1 
was presumed to be catechol metabolite of fargesin.

M2 and M3 exhibited an [M +  NH4]+ ion at m/z 
374.15967 with 14 amu less than that of the [M +  NH4]+ 
ion of fargesin, indicating O-demethylation of fargesin. The 
MS/MS spectra of M2 and M3 generated the product ions 
at m/z 339.12103 (loss of water and  NH3 from [M +  NH4]+ 
ion), m/z 235.09657 (4-(3-hydroxy-4-methoxyphenyl)tet-
rahydro-1H,3H-furo[3,4-c]furan-1-ylium or 4-(4-hydroxy-
3-methoxyphenyl)tetrahydro-1H,3H-furo[3,4-c]furan-1-
ylium ion), m/z 233.08035, m/z 203.07039, m/z 137.05966 
((3-hydroxy-4-methoxyphenyl)methylium or (4-methoxy-
3-hydroxyphenyl)methylium ion), and m/z 135.04411 
(Fig. 2c). M2 and M3 were presumed to be 3-O-desmethyl- 
and 4-O-desmethyl-fargesin, whereas the accurate position 

Table 1  Half-life (t1/2), intrinsic clearance (CLint), hepatic clearance 
(CLhep), and hepatic extraction ratio values of fargesin obtained by 
incubation with human, dog, monkey, mouse, and rat hepatocytes at 
37 °C in a  CO2 incubator

Parameters Human Dog Monkey Mouse Rat

t1/2 (min) 68.3 204.0 46.2 130.6 104.2
CLint (mL/min/kg) 72.5 46.7 115.2 125.4 62.3
CLhep (mL/min/kg) 16.1 18.6 31.5 52.4 29.3
Hepatic extraction ratio 0.78 0.60 0.73 0.58 0.53



129Toxicol Res. (2024) 40:125–137 

1 3

of O-demethylation at the 3,4-dimethoxybenzyl moiety of 
M2 and M3 could not be ascertained due to a lack of authen-
tic standards.

M4 and M5 exhibited an [M +  NH4]+ ion at m/z 
390.19040, with 14 amu more than that of the [M +  NH4]+ 
ion of M1, indicating O-methylation of M1. The MS/

Fig. 1  Extracted ion chromatograms of fargesin and its possible 14 metabolites obtained following incubation of 10 μM fargesin with a human, 
b dog, c monkey, d mouse, and e rat hepatocytes at 37 ℃ for 2 h
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MS spectra of M4 and M5 generated the product ions at 
m/z 355.15353 (loss of water and  NH3 from [M +  NH4]+ 
ion), m/z 249.11174, m/z 235.09628 (4-(4-hydroxy-
3-methoxyphenyl ) te t rahydro-1H,3H-furo[3 ,4-c]
furan-1-ylium and 4-(3-hydroxy-4-methoxyphenyl)
tetrahydro-1H,3H-furo[3,4-c]furan-1-ylium ion for M4 
and M5, respectively), m/z 205.08569 ((5-(4-hydroxy-
3-methoxyphenyl)-2,5-dihydrofuran-3-yl)methylium 

or (5-(3-hydroxy-4-methoxyphenyl)-2,5-dihydrofuran-
3-yl)methylium ion), m/z 151.07513, and m/z 137.05954 
((4-hydroxy-3-methoxyphenyl)methylium or (3-hydroxy-
4-methoxyphenyl)methylium ion) (Fig. 2d). M4 was con-
firmed as sylvatesmin on the basis of the retention time 
and MS/MS spectrum of the authentic standard; there-
fore, M5 was identified as 4-O-methyl-M1. Incubation of 
fargesin with the human liver S9 fraction in the presence 

Table 2  Retention times  (tR), molecular formulae, observed molecular ions, mass errors, product ions, and biotransformation of fargesin and its 
metabolites identified after incubation of 10 μM fargesin with human, dog, monkey, mouse, and rat hepatocytes at 37 °C

Metabolite tR (min) Molecular formula Detected 
[M +  NH4]+ 
(m/z)

Mass error (ppm) Product ions (m/z) Biotransformation

Fargesin 20.56 C21H22O6 388.17548 0.03 135.04388, 151.07513, 
203.07022, 233.08055, 
249.11177, 353.13803

M1 5.87 C20H22O6 376.17593 1.22 123.04385, 151.07544, 
191.06989, 221.08063, 
249.11093, 341.13812

O-demethylenation

M1-G 2.35 C26H30O12 552.20776 0.36 191.06966, 221.08070, 
249.11020, 341.13760, 
517.16846

O-demethylenation and glucu-
ronidation

M1-S 3.14 C20H22O9S 456.13129 −2.19 123.04344, 249.11234, 
271.02643, 301.03720, 
341.13879, 376.17484, 
421.09473

O-demethylenation and sulfation

M2 14.18 C20H20O6 374.15967 −0.40 135.04411, 137.05966, 
203.07039, 233.08035, 
235.09657, 339.12103

O-demethylation

M3 15.46 C20H20O6 374.15976 −0.16 135.04417, 137.05978, 
203.07045, 233.08090, 
235.09656, 339.12311

O-demethylation

M2-G 3.55 C26H28O12 550.19257 1.20 203.06995, 233.08055, 
235.09608, 339.12250

O-demethylation and glucuro-
nidation

M2-S 5.20 C20H20O9S 454.11606 −1.28 135.04382, 233.08055, 
315.05307, 339.12241, 
374.15915, 419.07907

O-demethylation and sulfation

M3-S 6.04 C20H20O9S 454.11685 0.46 135.04407, 233.08089, 
315.05330, 339.12283, 
374.15967, 419.07959

O-demethylation and sulfation

M4 9.61 C21H24O6 390.19040 −1.85 137.05954, 151.07513, 
205.08569, 235.09628, 
249.11174, 355.15353

O-demethylenation and 
O-methylation

M5 11.08 C21H24O6 390.19116 0.10 137.05988, 151.07544, 
205.08586, 235.09680, 
249.11200, 355.15384

O-demethylenation and 
O-methylation

M4-G 2.06 C27H32O12 566.22186 −2.38 235.09625, 249.11206, 
355.15320

O-demethylenation, O-methyla-
tion, and glucuronidation

M5-G 2.87 C27H32O12 566.22375 0.95 235.09702, 249.11147, 
355.15448

O-demethylenation, O-methyla-
tion, and glucuronidation

M4-S 3.12 C21H24O9S 470.14792 −0.04 235.09683, 249.11256, 
315.05347, 355.15262, 
390.19131, 435.11053

O-demethylenation, O-methyla-
tion, and sulfation

M5-S 3.87 C21H24O9S 470.14795 0.02 235.09674, 249.11244, 
315.05365, 355.15466, 
390.18954, 435.11108

O-demethylenation, O-methyla-
tion, and sulfation
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Fig. 2  MS/MS spectra and fragmentation of a fargesin and its possible metabolites, b M1, c M2 and M3, d M4 and M5, e M1 glucuronide (M1-
G), and f M1 sulfate (M1-S)
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of NADPH and SAM as cofactors at 37 °C for 30 min 
resulted in the formation of M1–M5, suggesting that M4 
and M5 were 3- and 4-O-methyl-M1 formed from fargesin 
by CYP and catechol O-methyltransferase (COMT).

M1-G exhibited an [M +  NH4]+ ion at m/z 552.20776, 
with 176 amu higher than that of the [M +  NH4]+ ion of M1, 
and generated the product ions at m/z 517.16846 (loss of 
water and  NH3 from [M +  NH4]+ ion), m/z 341.13760 (loss 
of glucuronic acid from m/z 517.16846 ion), m/z 249.11020, 
m/z 221.08070, and m/z 191.06966 (Fig. 2e). M1-G was pre-
sumed to be M1 glucuronide, although the accurate posi-
tion of glucuronidation at the benzene 1,2-diol moiety of 
M1 could not be determined due to a lack of an authentic 
standard.

M1-S exhibited an [M +  NH4]+ ion at m/z 456.13129, 
with 80 amu higher than that of the [M +  NH4]+ ion of M1, 
and generated the product ions at m/z 421.09473 (loss of 
water and  NH3 from [M +  NH4]+ ion), m/z 376.17484 (loss 
of sulfate group from [M +  NH4]+ ion), m/z 341.13879 
(loss of sulfate group from m/z 421.09473 ion), and m/z 
123.04344 (Fig. 2f). M1-S was presumed to be M1 sulfate, 
although the accurate position of sulfation at benzene 1,2-
diol moiety of M1 could not be determined due to a lack of 
an authentic standard.

M2-G exhibited an [M +  NH4]+ ion at m/z 550.19257, 
with 176 amu higher than that of the [M +  NH4]+ ion of 
O-desmethylfargesin (M2 and M3), indicating the glucu-
ronidation of O-desmethylfargesin. The MS/MS spectrum 
of M2-G included the product ions at m/z 339.12250, m/z 
235.09608, m/z 233.08055, and m/z 203.06995 (Fig. 3a). 
Compared to the incubation of fargesin in the presence of 
NADPH, incubation of fargesin with human liver micro-
somes in the presence of NADPH and UDPGA resulted 
in the formation of O-desmethylfargesin glucuronide and 
a decrease in M2 concentration, without a change in M3 
concentration. These results indicate that M2 was further 
metabolized to M2 glucuronide; therefore, M2-G is pre-
sumed to be M2 glucuronide.

M2-S and M3-S exhibited an [M +  NH4]+ ion at m/z 
454.11606, with 80 amu higher than that of the [M +  NH4]+ 
ion of M2 and M3, and generated product ions at m/z 
419.07907 (loss of water and  NH3 from [M +  NH4]+ ion), 
m/z 374.15915 (loss of sulfate group from [M +  NH4]+ ion), 
m/z 339.12241 (loss of sulfate group from m/z 419.07907 
ion), m/z 315.05307 (loss of 1,3-benzodioxole moiety 
and  NH3 from [M +  NH4]+ ion), m/z 233.08055, and m/z 
135.04382 (Fig. 3b). M2-S and M3-S were presumed to 
be M2 sulfate and M3 sulfate, respectively; however, the 

Fig. 3  MS/MS spectra of possible fargesin metabolites: a M2 glucuronide (M2-G), b M2 sulfate (M2-S) and M3 sulfate (M3-S), c M4 glucuron-
ide (M4-G) and M5 glucuronide (M5-G), and d M4 sulfate (M4-S) and M5 sulfate (M5-S)
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position of sulfation could not be accurately determined due 
to a lack of authentic standard.

M4-G and M5-G exhibited an [M +  NH4]+ ion at 
m/z 566.22186, with 176 amu higher than that of the 
[M +  NH4]+ ion of M4 and M5, indicating the glucuroni-
dation of M4 (sylvatesmin) and M5. Their MS/MS spectra 
showed product ions at m/z 355.15320 (loss of glucu-
ronosyl group, water, and  NH3 from [M +  NH4]+ ion), m/z 
249.11206, and m/z 235.09625 (Fig. 3c). Based on the 
retention time and MS/MS spectrum of M4 glucuronide 
(M4-G) formed after the incubation of sylvatesmin (M4) 
with human liver microsomes and UDPGA at 37 °C for 
30 min, M4-G was identified as sylvatesmin (M4) glu-
curonide. M5-G was characterized as M5 glucuronide.

M4-S and M5-S exhibited an [M +  NH4]+ ion at m/z 
470.14792, with 80 amu more than that of the [M +  NH4]+ 
ion of M4 and M5, and generated product ions at m/z 
435.11053 (loss of water and  NH3 from [M +  NH4]+ ion), 
m/z 390.19131 (loss of sulfate moiety from [M +  NH4]+ 
ion), m/z 355.15262 (loss of sulfate moiety from m/z 
435.11053 ion), m/z 315.05347 (loss of 3,4-dimeth-
oxyphenyl moiety from molecular ion), m/z 249.11256, 
and m/z 235.09683 (loss of sulfate moiety from m/z 
315.05262) (Fig. 3d), indicating the sulfation of M4 and 
M5. Based on the retention time and MS/MS spectrum of 
M4 sulfate (M4-S) formed after incubation of sylvatesmin 
(M4) with human liver S9 fractions and PAPS at 37 °C for 
30 min, M4-S was identified as sylvatesmin (M4) sulfate. 
M5-S was characterized as M5 sulfate.

Screening of CYP, UGT, and SULT enzymes involved 
in fargesin metabolism

To characterize the CYP enzymes involved in fargesin 
metabolism, the formation rates of phase I metabolites, such 
as M1–M3, from 5 μM fargesin were evaluated by incuba-
tion with 10 human cDNA-expressed CYPs (1A2, 2A6, 2B6, 
2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5) and NADPH at 
37 °C for 30 min. CYP1A2, CYP2B6, CYP2C8, CYP2C9, 
CYP2C19, CYP2D6, and CYP3A4 enzymes were involved 
in fargesin metabolism, whereas CYP2A6, CYP2E1, and 
CYP3A5 enzymes were not involved (Fig. 4). The rela-
tive contributions of CYP2C8, CYP2C9, CYP2C19, and 
CYP3A4 to M1 formation from fargesin were 1.5%, 84.2%, 
5.3%, and 9.0%, respectively. The relative contributions of 
CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 to 
M2 formation from fargesin were 0.2%, 31.8%, 67.4%, 0.1%, 
and 0.4%, respectively, whereas M3 formation from fargesin 
was catalyzed by CYP2C9 and CYP2C19 based on their 
relative contributions (98.5% and 1.5%, respectively). These 
results indicate that CYP2C9 enzyme plays a major role in 
the formation of M1–M3 from fargesin, with minor con-
tributions from CYP1A2, CYP2B6, CYP2C8, CYP2C19, 
CYP2D6, and CYP3A4.

To characterize the UGT enzymes involved in the metab-
olism of M4 to M4 glucuronide (M4-G), the formation 
rates of M4-G from 10 μM sylvatesmin (M4) were evalu-
ated by incubation with 13 human cDNA-expressed UGTs 
(1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 

Fig. 4  Formation rates of M1–M3 following incubation of 5  μM 
fargesin with human cDNA-expressed CYP enzymes (1A2, 2A6, 
2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5). Data points rep-

resent the mean ± standard deviation (n = 3). ND not detected (lower 
limit of quantification: 0.002 pmol/min/pmol CYP)
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2B10, 2B15, and 2B17) and UDPGA at 37 °C for 30 min. 
UGT1A3, UGT1A8, UGT1A10, UGT2B15, and UGT2B17 
were involved in the formation of M4-G from M4 (Fig. 5a).

To characterize the SULT enzymes involved in the metab-
olism of M4 to M4 sulfate (M4-S), the formation rates of 
M4-S from 10 μM sylvatesmin (M4) were evaluated by incu-
bation with human cDNA-expressed SULTs (1A1*1, 1A1*2, 
1A2, 1A3, 1B1, 1C2, 1E1, and 2A1) and PAPS at 37 °C for 
30 min. SULT1A1*1, SULT1A1*2, SULT1A2, SULT1B1, 
SULT1C4, and SULT1E1 enzymes were responsible for the 
formation of M4-S from M4 (Fig. 5b).

Discussion

Our data indicate that fargesin is extensively metabolized 
in humans but moderately metabolized in dogs, monkeys, 
mice, and rats. The  CLhep value (52.4 mL/min/kg) in mouse 
hepatocytes was comparable to the systemic clearance value 
(53.2–55.5 mL/min/kg) following intravenous injection of 
fargesin in male ICR mice [18], suggesting that hepatic 
metabolism is the major clearance pathway of fargesin in 
experimental animals and humans.

The incubation of fargesin with human, dog, monkey, 
mouse, and rat hepatocytes resulted in the formation of 
three phase 1 metabolites and 11 phase 2 metabolites via 
O-methylation, glucuronidation, and sulfation of three phase 
1 metabolites (Fig. 1; Table 2). The potential in vitro meta-
bolic pathways of fargesin in each species are summarized 
in Fig. 6.

The metabolism of fargesin to fargesin catechol (M1) 
is a major metabolic pathway in the hepatocytes of all 
five species. This is analogous to the CYP-mediated 

O-demethylenation of 1,3-benzodioxole compounds such 
as myristicin [25–27], irisflorenin [28], sesamin [29–31], 
piperine [32], dihydromethysticin [33], tetrahydropiper-
ine [34], deoxypodophyllotoxin [35], and podophyllotoxin 
[36] to each catechol metabolite, which are further metab-
olized to phase 2 metabolites by glucuronidation, sulfa-
tion, O-methylation, or combination. In our study, fargesin 
catechol (M1) was further metabolized to M1 glucuronide 
(M1-G), M1 sulfate (M1-S), and O-methyl-M1 (M4 and 
M5), which were further metabolized to their glucuron-
ides (M4-G and M5-G) and sulfates (M4-S and M5-S) in 
human, dog, monkey, and rat hepatocytes (Fig. 6).

1,3-Benzodioxle compounds can form a reactive metab-
olite intermediate at methylene group and inhibit CYPs 
[37]. Sesamin exhibited the mechanism-based inhibition 
of CYP2C9, which plays a major role in the oxidation of 
sesamin to sesamin monocatechol [29, 31]. The oxida-
tion of myristicin to myristicin catechol is catalyzed by 
CYP3A4 and CYP1A2 [26]. Myristicin is a mechanism-
based inhibitor of CYP1A2 via the formation of myristicin 
catechol [27]. Fargesin exhibited competitive inhibition 
of CYP2C9 activity and time-dependent inhibition of 
CYP2C8, CYP2C19, and CYP3A4 activities in human 
liver microsomes, whereas the other tetrahydrofuranoid 
lignans without a 1,3-benzodioxole group, such as epimag-
nolin A, eudesmin, magnolin, and dimethyllirioresinol, did 
not inhibit CYP activities [20]. The metabolism of magno-
lin to the two major metabolites, 4′-O-desmethylmagnolin 
and 4′′-O-desmethylmagnolin, is catalyzed by CYP2C9, 
CYP3A4, CP2C8, and CYP2C19 enzymes [38]. There-
fore, fargesin inhibits CYP2C8, CYP2C9, CYP2C19, and 
CYP3A4 activities through the oxidation of 1,3-benzodi-
oxole group to M1.

Fig. 5  Formation rates of a M4 glucuronide (M4-G) and b M4 sulfate 
(M4-S) following incubation of 10 μM sylvatesmin (M4) with human 
cDNA-expressed UGT enzymes (1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 
1A9, 1A10, 2B4, 2B7, 2B10, 2B15, and 2B17) and SULT enzymes 

(1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C2, 1E1, and 2A1), respectively. 
Data points represent the mean ± standard deviation (n = 3). ND not 
detected (lower limit of quantification: 0.5 pmol/min/mg protein)
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Incubation of fargesin with human liver S9 fractions in 
the presence of SAM, a cofactor of COMT, and NADPH 
resulted in the formation of M4 and M5 and a decrease in 
M1 compared to incubation in the absence of SAM, sup-
porting that M4 (sylvatesmin) and M5 might be formed 
from M1 via COMT-mediated O-methylation. COMT pro-
motes meta-O-methylation over para-O-methylation of the 
catechol moiety and the COMT activity in rats and dogs is 
higher than that in humans, mice, and monkeys [39, 40], 
suggesting that the peak area of M4 produced by fargesin 
was larger than that of M5 in human, rat, dog, and monkey 
hepatocytes. Furthermore, M5 was not detected in mouse 
hepatocytes (Fig. 1).

Gastrointestine-specific UGT1A8 and UGT1A10 as well 
as UGT1A3, UGT2B15, and UGT2B17 are involved in 
the glucuronidation of M4 to M4-G (Fig. 5a), suggesting 
that M4-G can be produced from fargesin in the intestine 
as well as liver. The formation of M4-S from M4 was cata-
lyzed by SULT1A1*1, SULT1A1*2, SULT1A2, SULT1B1, 
SULT1C4, and SULT1E1 enzymes (Fig. 5b).

In conclusion, fargesin metabolism produced 14 metabo-
lites in human, rat, mouse, monkey, and dog hepatocytes. 
These included three phase 1 metabolites; fargesin cat-
echol (M1) by the CYP2C8, CYP2C9, CYP2C19, and 
CYP3A4 enzymes; and O-desmethylfargesin (M2, M3) by 
the CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and 

Fig. 6  Potential metabolic pathways of fargesin in human (H), dog (D), monkey (Mk), mouse (M), and rat (R) hepatocytes.  SO3: sulfate; Glu: 
glucuronosyl
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CYP3A4 enzymes; as well as 11 phase 2 metabolites, such 
as O-methyl-M1 (M4 and M5) by COMT, M1-G, M2-G, 
M4-G, and M5-G by UGTs, and M1-S, M2-S, M3-S, M4-S, 
and M5-S by SULTs.
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