
Article https://doi.org/10.1038/s41467-023-42762-w

Single-cell multi-omic analysis of the vestib-
ular schwannoma ecosystem uncovers a
nerve injury-like state

Thomas F. Barrett 1,12, Bhuvic Patel 2,12, Saad M. Khan 3,4,
Riley D. Z. Mullins 1,5, Aldrin K. Y. Yim5, Sangami Pugazenthi 2,
Tatenda Mahlokozera2, Gregory J. Zipfel2,6, Jacques A. Herzog1,6,
Michael R. Chicoine7, CameronC.Wick1,6, NedimDurakovic1,6, JoshuaW.Osbun2,
Matthew Shew1,6, Alex D. Sweeney8, Akash J. Patel8,9,10, Craig A. Buchman1,6,
Allegra A. Petti 3,4,13 , Sidharth V. Puram 1,5,11,13 & Albert H. Kim 2,5,6,13

Vestibular schwannomas (VS) are benign tumors that lead to significant neu-
rologic and otologic morbidity. How VS heterogeneity and the tumor micro-
environment (TME) contribute to VS pathogenesis remains poorly
understood. In this study, we perform scRNA-seq on 15 VS, with paired
scATAC-seq (n = 6) and exome sequencing (n = 12). We identify diverse
Schwann cell (SC), stromal, and immune populations in the VS TME and find
that repair-like andMHC-II antigen-presenting SCs are associatedwithmyeloid
cell infiltrate, implicating a nerve injury-like process. Deconvolution analysis of
RNA-expression data from 175 tumors reveals Injury-like tumors are associated
with larger tumor size, and scATAC-seq identifies transcription factors asso-
ciated with nerve repair SCs from Injury-like tumors. Ligand-receptor analysis
and in vitro experiments suggest that Injury-like VS-SCs recruit myeloid cells
via CSF1 signaling. Our study indicates that Injury-like SCs may cause tumor
growth via myeloid cell recruitment and identifies molecular pathways that
may be therapeutically targeted.

Vestibular schwannomas (VS) are benign tumors that arise from the
Schwann cells (SCs) lining the vestibulocochlear nerve and account for
8% of all primary intracranial tumors1. These tumors most frequently
arise sporadically (>90%) but are also associated with the schwanno-
matosis syndromes, including the autosomal dominant syndrome
neurofibromatosis type 2 (NF2)-related schwannomatosis (formerly

known as NF2)2. Due to their anatomic location adjacent to the
brainstem, both tumor growth and current treatment strategies (i.e.,
microsurgery and/or radiation therapy) can be associated with sub-
stantial, lifelong neurologic and otologic morbidity, including hearing
loss, facial palsy, disequilibrium, brainstem compression, hydro-
cephalus, and, in extreme cases, death3–6. Recent epidemiologic
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evidence suggests that the lifetime prevalence of VS is as high as 1 in
500 adults, largely due to incidental detection of asymptomatic
tumors, which has increased with increased clinical utilization of
computed tomography (CT) and magnetic resonance imaging (MRI)7.
However, our knowledge of the molecular drivers of VS pathogenesis
remains limited.

Loss-of-function mutations in the NF2 gene are believed to be the
central oncogenic event in the development of VS, but it is unknown
how this genetic aberration affects downstream pathways, inter-
cellular interactions, and intertumoral heterogeneity in vivo8–10. First
identified in patients with NF2-related schwannomatosis in the early
1990s, many studies have since sought out the pathways altered by
lossof theNF2geneproductMerlin andhave demonstrated its role in a
number of known oncogenic pathways in vitro, including Ras/Raf/
MEK/ERK11, mTORC1/212, Rac/p21-PAK/c-Jun Kinase13, PI3K/AKT14, and
Wnt/β-catenin15. However, pre-clinical and early clinical studies of
targeted inhibitors of these pathways have shown negative or, at best,
modest results in limiting tumor growth16–18. Only bevacizumab, an
anti-angiogenic agent, has been shown to limit growth in a subset of
NF2-related schwannomatosis patients, but not without the risk of
significant side effects19. Given the low burden of genomic alterations
in VS, a deeper understanding of the molecular pathogenesis of VS
may be advanced through detailed investigation of the transcriptional
and epigenetic alterations in these tumors.

Single-cell RNA sequencing (scRNA-seq) enables characterization
of the cellular compartments of tumors (e.g., malignant, stromal,
immune, etc.), as well as identification of the expression heterogeneity
that exists within each of these compartments, both within and across
patients20. More recently, single cell assay of transposase accessible
chromatin sequencing (scATAC-seq) has emerged as a means for epi-
genetically profiling distinct cellular subpopulations, providing insights
into gene regulation and determination of cell fate that complements
expression data21. However, no study to date has described both the
transcriptional and epigenomic profile of the VS TME at single cell
resolution, ormore broadly, utilized amulti-omic approach to study VS.

In this study, we performed scRNA-seq and scATAC-seq to char-
acterize the expression heterogeneity and epigenetic states of cells
comprising the VS TME. Within the SC compartment, we uncovered
unexpected heterogeneity of SC phenotypes and found that VS-
associated tumor Schwann cells (VS-SC) resemble SCs found in the
setting of peripheral nerve injury. A subset of tumors was enriched for
repair-like cells and antigen presenting SC (“Injury-like VS”), while
other tumors were characterized by low expression of these tran-
scriptional profiles and higher expression of core markers of non-
myelinating SC (“nmSC Core VS”). We also found monocytes/macro-
phages (herein referred to as myeloid cells) to be the most abundant
immune cells in the VS TME, with their enrichment being correlated
with higher fractions of repair-like and MHC II antigen presenting VS-
SCs. Through deconvolution of bulk RNA-seq and expression micro-
array datasets, we characterized tumors with high and lowmyeloid cell
infiltrate as Injury-like and nmSC Core and found that Injury-like
tumors were associated with larger tumor size. Epigenetic analysis of
VS-SCs in these distinct tumor states identified regulatory transcrip-
tion factors that are also expressed in the setting of peripheral nerve
injury. Lastly, we explored the interactions between VS-SC andmyeloid
cells to identify candidate targets thatmight disrupt these interactions.

Results
Single cell transcriptional and epigenetic profiling identifies
cellular diversity across the vestibular schwannoma tumor
ecosystem
Weperformed scRNA-seq transcriptional profiling of 15 sporadic VS (11
freshly dissociated samples and 4 samples from extracted frozen
nuclei) with paired scATAC-seq profiling of six tumors to capture a
detailed portrait of the human VS tumor ecosystem (Fig. 1a, b,

Supplementary Table 1). After correcting for ambient RNA and
removing doublets, low quality cells, lowly expressed genes and batch
effects (Supplementary Fig. 1a), we retained 112,728 high quality cells
and 9524 genes for downstream transcriptional analysis, and 31,578
cells with a median of 5957 fragments per cell for downstream epige-
netic analysis (Fig. 1c, d). We also performed whole exome sequencing
(WES) on tumor and matched blood tissue for 12 of the 15 scRNA-seq
samples with available tumor tissue (Fig. 1b, Supplementary Table 2).

We first assigned cell-type labels to cells within the scRNA-seq
dataset using a cluster-based approach. We annotated clusters using
differentially expressed genes and visualized them with Uniform
Manifold Approximation and Projection (UMAP) (Fig. 1c). This analysis
revealed five overarching classes of cells: Schwann cells (SC), fibro-
blasts, vascular (e.g., pericytes and endothelial cells), immune (e.g.,
myeloid cells, T cells, NK cells, and small populations of mast cells and
B cells) and cycling cells. One additional cluster was characterized by
expression of epithelial markers (KRT1, SLPI) and was almost exclu-
sively derived from one tumor (SCH4). These cells were likely derived
from temporal bonemucosa in the surgical field that were incidentally
captured during specimen collection and were excluded from further
analysis. Among VS-SCs, there were two distinct clusters: One char-
acterized by typical markers of myelinating SCs (myeSC), including
PRX and MPZ22, and another, larger SC cluster expressing genes asso-
ciated with VS and a non-myelinating SC identity (nmSC), including
S100B, SOX10, NRXN1, SCN7A with lack of PRX expression (Fig. 1e,
Supplementary Data 1)23. To confirm our cell type classifications, we
scored all cells in our datawith gene signatures derived frompublished
scRNA-seq peripheral nerve transcriptomic atlases22,24–27. We found
strong concordance between our cell-type labels and both the indivi-
dual prior study labels (Supplementary Fig. 1b, Supplementary Data 2)
as well as the aggregated meta-signature scores for these cell-type
signatures (Fig. 1f).

Next, we analyzed the six samples with paired scATAC-seq data.
After filtering for low quality cells and doublets (Supplementary
Fig. 2a–c), we performed dimensionality reduction (Fig. 1d) and an
initial cluster-based analysis using marker genes derived from gene
accessibility, as was performed with scRNA-seq data (Supplementary
Fig. 2d). Unconstrained pairing of scRNA-seq cells with cells in the
scATAC-seq atlas based on shared transcriptional and gene score
profiles showed excellent overlap with the a priori scATAC cluster-
based assignments (Supplementary Fig. 2e–h), suggesting that we
retained all major VS TME cell-type classes in the scATAC-seq data and
allowing us to reliably perform integrative downstream analysis com-
bining transcriptional and epigenetic data on an individual cell basis.

VS-SC adopt diverse functional states
We next sought to confirm that the VS-SC in our dataset were indeed
the neoplastic cells of interest. VS typically have a low tumor muta-
tional burden, with the most common genetic aberrations being NF2
loss of function mutations and loss of chromosomal arm 22q (chr22q
loss)28. We first attempted to detect any NF2 or other somatic variants
identified using our WES analysis (Supplementary Table 2 and Sup-
plementary Data 3) in our scRNA-seq data. No NF2 variants identified
by WES were detected in our scRNA-seq data. Other somatic variants
were detected in only 1013 cells out of a possible 97,396 cells (~1%)
from samples withWES data available, only 234 of which were SCs (the
majority, 582, were myeloid cells). These variant calls likely represent
noise from reverse transcription or sequencing errors rather than true
somatic mutations. Indeed, several properties of the scRNA-seq tech-
nology used in this study present challenges to SNV detection
including sparse transcript capture, short reads heavily biased toward
the 3’ end of detected transcripts, low coverage, and similar challenges
to identifying mutations from bulk RNA sequencing data, such as
missing mutations due to alternate splicing or false positive mutation
detection due to errors introduced by reverse transcription29. We
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therefore turned our attention to analysis of copy number alterations
(CNA) in the single cell data to identify neoplastic cells.

To identify CNA in single cells we used inferCNV to analyze our
fresh and frozen data (Fig. 2a, Supplementary Fig. 3a, Supplemen-
tary Data 4) and corroborated these results using CNA analysis of
our WES data (Supplementary Fig. 1c, Supplementary Data 5)30.
Besides chr22q loss, no other arm-level chromosomal alterations

were detected using WES. All three tumors found to have chr22q
loss in WES analysis were predicted to have chr22q loss by inferCNV
analysis. All nine tumors without chr22q loss in WES analysis were
also predicted not to have chr22q loss by inferCNV analysis. Of the
three tumors without available tissue for WES, one (SCH2) was
predicted to have chr22q loss by inferCNV. At the single cell level, all
VS-SCs from samples with predicted chr22 loss were predicted as
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Fig. 1 | scRNA-seq and scATAC-seq atlas of vestibular schwannoma (VS).
a Schematic of study design. b Clinical and molecular characteristics of tumors
included in scRNA-seq and scATAC-seq datasets. Discrete values for patient char-
acteristics are provided in Supplementary Table 1. See also Supplementary Fig. 1a
for additional copy number alteration data derived from exome sequencing and
Supplementary Table 2 for detailed annotation of NF2 mutations. WES, whole
exome seq; CN, copy number; AAO-HNS Hearing, American Association of Oto-
laryngology Head and Neck hearing score; EOR, extent of resection; FN, facial
nerve. Size, greatest axial dimension in cm. c UMAP plot of cell types identified in
the VS TME via scRNA-seq analysis. NK, natural killer cells; VSMC, vascular smooth

muscle cells; nmSC, non-myelinating Schwann cells; myeSC, myelinating Schwann
cells. Colors correspond to clusters identified using Seurat. d UMAP plot of cell
types identified in the VS TME via scATAC-seq. NK, natural killer cells; VSMC, vas-
cular smooth muscle cells; nmSC, non-myelinating Schwann cells; myeSC, myeli-
nating Schwann cells. Colors correspond to clusters identified using ArchR. e Dot
plot of expression levels of selected marker genes (x-axis) for each VS cell sub-
population depicted in c (y-axis). f Heatmap of meta-signature scores from gene
signatures of previously published mouse peripheral nerve studies (see also Sup-
plementary Fig. 1b). Source data are provided as a Source Data file.
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having chr22 loss, and only seventeen immune/stromal (i.e., non-
Schwann) cells were predicted to have chr22 loss, nine of which
were from samples without chr22 loss in any VS-SCs (false positives)
(Fig. 2b, Supplementary Table 3). Thus, in all samples with chr22q

loss detected on the WES level, inferred chr22q loss was also
detected specifically in all cells within the VS-SC compartment.
Together, these findings suggested that the VS-SCs in our dataset
were truly the neoplastic cells of interest.

O
bs

er
va

tio
ns

 (C
el

ls
)

R
ef

er
en

ce
s 

(C
el

ls
)

ch
r1

ch
r2

ch
r3

ch
r4

ch
r5

ch
r6

ch
r7

ch
r8

ch
r9

ch
r1

0

ch
r1

1

ch
r1

2

ch
r1

3

ch
r1

4

ch
r1

5

ch
r1

6

ch
r1

7

ch
r1

8

ch
r1

9

ch
r2

0
ch

r2
1

ch
r2

2

Modified Expression
0.85 0.95 1.05 1.15

0
1e

+0
7

2e
+0

7
3e

+0
7

Distribution of
Expression

C
ou

nt

Observations
SCH1
SCH2
SCH3
SCH4
SCH5
SCH6
SCH7
SCH8
SCH9
SCH13
SCH14

Myeloid
Non-Myeloid Immune
Stromal

References

a

UMAP_1

U
M

AP
_2

Chr 22q Loss - All Cells

myeSC

Fibroblast

PC/VSMC

Endothelial

nmSC

NK Cell T Cell

B/Plasma
Mast

Mucosa

Cycling

Myeloid

Loss
Neutral

b

PRX
FGFBP2
IL16
NFASC
ERBB4

SEMA5A
MPZ
PMP2
PLP1

S100B
NRXN3
PCDH9
NEGR1
NCAM1
SCN7A
NRXN1
NCAM2
CADM2
ADAM23
SLIT2
ITGB8
CHL1
PMP22

G
en

es
 e

xp
re

ss
ed

 in
 

no
n-

m
ye

lin
at

in
g 

SC
G

en
es

 e
xp

re
ss

ed
 in

 
m

ye
lin

at
in

g 
SC

Differential Expression
Up in Tumor
No change
Down in Tumor

Scaled Normalized 
Expression

0 2−2

Group
Normal
VS Tumor

c

C
or

e

M
ye

lin
at

in
g

R
ep

ai
r−

lik
e

H
yp

ox
ia

M
H

C
 II

IF
N

 re
sp

on
se

St
re

ss

Sample
NRXN1, SCN7A,
NCAM1, LAMA2

PRX, NCMAP,
MPZ

TGFBI, RUNX2,
NGFR, GAP43

VEGFA, LOX,
H19, HILPDA

HLA-DRB1,
CD74, HLA-DRB5

ISG15, IFI44L,
IFIT1

JUNB, FOSB,
FOS

Scaled
Expression

−4
−2
0
2
4

Sample
SCH1
SCH2
SCH3
SCH4
SCH5
SCH6
SCH7
SCH8
SCH9
SCH13
SCH14

d

0
1
2
3
4
5
6
7
8
9

Cluster #2

9

1

4

6 7

5

0

3

8

2

9

1

4

6 7

5

0

3

8

Core

Myelinating

Repair-Like

Hypoxia

Stress

IFN 
Response

MHC II

UMAP_1

2_PA
M

U

VS Schwann Cell Subclusterse

2

9

1

4

6 7

5

0

3

8

2

9

1

4

6 7

5

0

3

8

Core

Myelinating

Repair-Like

Hypoxia

Stress

IFN 
Response

MHC II

UMAP_1

2_PA
M

U

Chr 22q Loss - Schwann Cells

Loss
Neutral

f

Murine Nerve Schwann Cell Signatures

VS
 A

ss
oc

ia
te

d
Sc

hw
an

n 
Su

bt
yp

es

Stress

IFN response

MHC II

Hypoxia

Repair−like

Myelinating

Core

m
SC

 c
lu

st
er

 1

nm
SC

m
SC

 c
lu

st
er

 2

M
ye

lin
at

in
g 

SC

nm
(R

)S
C

m
SC

 c
lu

st
er

 3

SC
1

Sc
hw

an
n 

ce
lls

SC
3

D
iv

id
in

g 
SC SC

2

tS
C

iS
C

pm
SC

pr
ol

. S
C

Study

z−score

−2 −1 0 1 2

Study
Carr Gerber Kalinski Yim

Adult Nerve Injured Nerve Developing Nerveg

Fig. 2 | VS-SC have heterogeneous transcriptional profiles. a InferCNV residual
gene expression heatmap of VS-SC from freshly dissociated samples showing
decreased expression of genes on chromosome 22q (chr22q), indicative of chr22q
loss, in VS-SC from three tumors (SCH1, SCH2, SCH13). See also Supplementary
Fig. 3a for a heatmap of VS-SC from frozen samples which were analyzed inde-
pendently. Rows represent cells and columns represent genes arranged by chro-
mosomal position. b UMAP demonstrating cells with inferred chr22q loss are only
present in the nmSC andmyeSC clusters. cHeatmaps comparing expression of top
50 differentially expressed genes (DEGs) in nmSC (top) and myeSC (bottom) to
expression observed inmicroarray data of normal nerve and VS tumors fromGugel
et al. (GSE141801). See also Supplementary Fig. 3b. d Heatmap of expression of

DEGs from each SC meta-cluster. Two hundred randomly sampled cells from each
meta-cluster are displayed. eUMAP representation of VSSchwann cells subset from
the scRNA-seqdata withmeta-clusters labeled. See also Supplementary Fig. 3e for a
similar UMAP representation of frozen sample VS-SC subclusters. f UMAP plot of
scRNA-seq VS-SC highlighting cells with inferred chr22q loss. Cells with chr22q loss
donot forma discrete cluster but instead cluster with cells without chr22q loss that
share the same metaprogram. See also Supplementary Fig. 3e for a similar UMAP
plot for frozen sample Schwann cells. g Heatmap depicting scoring of each VS-SC
cluster using signatures from murine adult normal nerve, adult injured nerve and
developing nerve scRNA-seq atlases. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42762-w

Nature Communications |          (2024) 15:478 4



Next, we obtained publicly available RNA microarray expression
datasets that compared gene expression in VS samples relative to
control nerves (n = 125 tumors and 20 controls; GSE14180131,
GSE3964532, and GSE10852433) and compared expression of the top 50
differentially expressed genes (DEGs) defining the nmSC and myeSC
clusters between tumors and normal nerves in the microarray data
(Fig. 2c, Supplementary Fig. 3b). The gene signature defining VS-nmSC
wasmarkedly enriched in tumors relative to normal nerves across all 3
datasets, consistent with prior work suggesting VS-SCs lose their dif-
ferentiated, myelinating phenotype in favor of a less differentiated,
non-myelinating phenotype34. Interestingly, there was mixed upregu-
lation and downregulation of VS-myeSC associated genes in tumors
relative to normal nerve controls, with a notable decrease in expres-
sion of canonical myelinationmarkers (e.g., PRX, MLIP, NFASC, NCMAP,
FGFBP2). The mixed expression pattern of myeSC markers in tumors
relative to normal nerve may represent the capture of normal
bystander myeSCs or may suggest that VSs harbor a subpopulation of
SCs that exist in an intermediate state before losing their myelination
phenotype. Overall, this analysis served as further evidence that the
VS-SCs in the scRNA-seq data were indeed the neoplastic cells of
interest.

Next, we characterized the functional states of the VS SCs both
within and across tumors. We selected the myeSC and nmSC clusters
from the full scRNA-seq dataset and reanalyzed them by performing
dimensionality reduction and batch correction, revealing ten VS-SC
subclusters, which we narrowed down to eight meta-clusters based on
transcriptional similarities identified using hierarchical clustering
(Supplementary Fig. 3c), differential expression analysis (Fig. 2d, e,
Supplemental Data 6), and gene ontology enrichment analysis for
biologic processes (GOBP, Supplementary Fig. 3d, Supplementary
Data 7). A similar approach was taken to classify VS-SCs from the fro-
zen nuclei dataset (Supplementary Fig. 3c, e), revealing the same
transcriptional programs seen in the fresh sample dataset. We char-
acterized the other cell types comprising the VS TME with a similar
approach (Supplementary Fig. 4, Supplementary Data 8 and 9).

Among the VS-SC clusters, we identified gene signatures asso-
ciated with myelination (e.g., PRX, NCMAP), hypoxia (e.g., VEGFA,
HILDPA), cell stress (e.g., JUNB, FOSB), and interferon-response (e.g.,
ISG15, IFIT1). Two clusters of cells expressed core markers of nmSC
identity, including NRXN1, SCN7A, and NCAM1, and largely lacked
expression of the other VS-SC clusters (“core”). Interestingly, we noted
cells enriched for genes associated with MHC class II antigen pre-
sentation (e.g., CD74, HLA-DRB1), consistent with SCs in the post-nerve
injury setting, which are known to upregulate the antigen-presenting
machinery to recruit circulating immune cells and promote their
proliferation35. Furthermore, two clusters had increased expression of
NGFR, RUNX2, SPP1, and GAP43, all of which are upregulated in the
setting of peripheral nerve injury (“repair-like”)36–39. When inspecting
cells with and without chr22q loss at the Schwann cell subcluster level,
we found that cells with chr22q loss (30.2% of SCs) clustered with cells
with balanced chr22q (69.8% of SCs) and shared the same transcrip-
tional metaprograms rather than forming a unique cluster based on
chr22q copy number in both the fresh and frozen datasets, suggesting
that VS-SC functional states overlap regardless of CNA status (Fig. 2f,
Supplementary Fig. 3f, Supplementary Table 4).

Prior studies of VS have suggested that tumorigenic SCs adopt a
de-differentiated, immature SC phenotype, while others have sug-
gested that VS-SCs resemble “repair Schwann cells” in the setting of an
acute nerve injury40. To better understand the phenotypes of VS-SC,
we used transcriptional signatures from murine Schwann cells repor-
ted in scRNA-seq analyses of peripheral nerves in multiple contexts,
including steady-state adult, early development, and post-injury24, 25,27.
Scoring the VS-SCs for each of these signatures indicated that VS-SCs
most closely resemble SCs after peripheral nerve injury (Fig. 2g).
Interestingly, VS-SCs scored low for cycling SC markers seen in these

settings. Together, these findings suggest that VS-SCs downregulate
myelination-associated genes, upregulate gene expression programs
that promote nerve repair and immune cell recruitment, and largely
remain in a non-proliferative state.

VS TME immune cells are disproportionately cycling
The observation that VS-SCs do not strongly express markers of pro-
liferationmotivated us to return toour analysis of the broader cell type
composition of the VS TME, in which we observed a distinct cluster of
cells that was driven by cell cycle marker expression (Fig. 1c). After
assigning these cells to the VS cell type they most closely resembled,
we found that VS-SC and stromal cells were underrepresentedwhereas
immune cells were overrepresented in the cycling cell cluster (Chi-
squared test, p <0.001; Fig. 3a). Next, we turned our attention to all
cells across the entire dataset, excluding the cycling cell cluster. We
scored each cell type for cell cycle markers and found that immune
cells collectively scored higher for both S-Phase and G2M-Phase mar-
kers (ANOVA p <0.001; Fig. 3b). To validate these observations, we
performed immunohistochemical (IHC) staining of the same tumors
used for scRNA-seq. We used CD45 to identify immune cells and Ki67
to identify cycling cells (Fig. 3c). Consistent with our scRNA-seq ana-
lyses, we found that a higher proportion (3.4-fold more) of CD45
positive cells were Ki67 positive than CD45 negative cells (Fig. 3d).
Together, these findings suggested that immune cells in the VS TME
are disproportionately proliferative and thereforemay play a vital role
in tumor progression.

VS tumors enriched for nerve injury-related subtypes are asso-
ciated with increased myeloid cell infiltrate
We next sought to characterize the degree to which VS-SC subtypes
varied across samples (i.e., inter-tumoral heterogeneity). We assigned
subtype scores to each samplebyfirst scoring all VS-SCs for eachmeta-
cluster signature and then taking the mean for each signature. Unsu-
pervised hierarchical clustering of these sample scores revealed two
groups of tumors, one enriched for repair-like and MHC II signatures
(“Injury-like”) and the other enriched for the core signature (“nmSC
Core”) (Fig. 4a). These groups differed most by their expression of the
repair-like, MHC II, and core programs (Fig. 4b; multiple comparisons
corrected for with BH method, FDR <0.2). We confirmed enrichment
for repair-like and MHC II VS-SCs in Injury-like tumors by immuno-
histochemistry (Fig. 4c). Interestingly, we found that both the repair-
like (R = 0.77, p <0.05) and MHC II (R = 0.61, p < 0.05) scores were
associated with an increased fraction of myeloid cells (Fig. 4d). In
contrast, the core meta-signature scores did not correlate with degree
ofmyeloid infiltrate. These findings suggest that the VS can be broadly
divided into two groups – Injury-like VS and nmSC Core VS – based on
the composition of their TME.

VS-associatedmyeloid cells haveproperties of tumor-associated
macrophages and acute inflammatory cells
Since myeloid cells were the most abundant immune cell type in our
dataset and therefore might play a role in the pathogenesis of VS, we
sought to better characterize the diversity of their functional pheno-
types. Given their lack of discrete states, as has been observed in other
scRNA-seq studies of human tumors41, we utilized a previously
described implementation of non-negative matrix factorization (NMF)
to identify gene expression programs that recurred across samples
(i.e., “metaprograms”)42. Using this approach, we identified 69 distinct
gene expression programs across patients, of which eight metapro-
grams exhibited similar expression across patient samples (Supple-
mentary Fig. 4e, f, Supplementary Data 10). Each metaprogram was
then annotated according to its functional enrichment. We used gene
signatures from recently published pan-cancer and pan-tissue scRNA-
seq atlases of myeloid cell phenotypes to evaluate the VS myeloid
metaprogram signatures in the context of these integrative
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resources41, 43. As expected, we saw marked overlap between the VS
myeloid inflammatory metaprogram and pan-cancer M1 signature, the
VS angiogenic metaprogram and pan-cancer angiogenic signatures,
and the VS phagocytic metaprogram and pan-cancer phagocytic sig-
natures (Supplementary Fig. 4g). The pan-cancerM2 signaturewas less
specific, with pan-cancer M2-associated genes expressed across sev-
eral VS myeloid metaprograms (e.g., phagocytic, angiogenic, migra-
tory, and granulocytic). This is consistent with more recent
observations that macrophages take on a variety of transcriptional
states in vivo beyond the traditional M1/M2 states44. Interestingly,
when looking at pan-tissue signatures comparing cancer and inflam-
matory associated monocytes and macrophages, some VS myeloid
cells (e.g., granulocytic, angiogenic, and inflammatory) expressed
markers associated with the inflammatory monocytic signature while
others (e.g., phagocytic, migratory, and oxidative phosphorylation)
expressed cancer monocyte/macrophage signature genes (Supple-
mentary Fig. 4h). Our analysis suggests that many VSmyeloid cells are
monocytic in origin with pro-inflammatory signatures, while other
subsets appear to adopt a spectrum of anti-inflammatory phenotypes,
including migration, phagocytosis, and angiogenesis.

Myeloid cell infiltration varies across tumors and is associated
with tumor size
To assess the cellular composition of the TME in a larger cohort of
patients, we performed deconvolution analysis on VS tumors char-
acterized with bulk transcriptomic approaches (i.e., RNA-seq and
expression microarray)45. Using our scRNA-seq gene expression data
to define a cell-type signature matrix, we performed digital cytometry
using CIBERSORTx on a cohort of 22 newly sequenced tumors com-
bined with bulk transcriptomic data (153 tumors) from published
reports (Supplementary Data 11)28,31–33,46. Interestingly, we noticed a
marked variability in the proportion of immune cells across tumors
(Fig. 4e). Furthermore, increasing immune cell infiltrate was strongly
correlated with the imputed fraction of myeloid cells (R =0.93,

p = 7.2e−80) and only weakly correlated with the fraction of T cells
(R =0.26, p = 0.00021; Supplementary Fig. 5a), suggesting that varia-
bility in immune cell composition is primarily driven by the fraction of
myeloid cells. Inversely, the fraction of nmSC was anti-correlated with
the fraction of immune cells (R = −0.8, p = 1.8e−46 Supplemen-
tary Fig. 5a).

Next, we performed unsupervised hierarchical clustering of the
imputed cell fractions from each cohort of bulk expression samples.
We found that each dataset could be classified into two distinct
cohorts of tumors.One groupwas characterized by a lower proportion
of nmSCs and highmyeloid cell infiltrate, reminiscent of the Injury-like
VSs in the scRNA-seq analysis, whichwe labeled “Injury-like”. The other
group was characterized by a predominance of nmSCs and low
imputed fractions for all other cell types including macrophages,
which we labeled “nmSC Core” (Fig. 4f, Supplementary Fig. 5b–f). We
then assessed whether the Injury-like and nmSC Core cohorts were
associated with any clinical parameters of interest. Notably, the nmSC
Core tumor group was overrepresented in NF2 syndrome-associated
tumors (Fig. 4g, Fisher’s exact test, p =0.01149). Furthermore, large
tumors (≥2 cm in greatest axial dimension or Hannover Scale ≥ 3a)
were disproportionately associated with the Injury-like cohort, while
small tumorswere disproportionately classified as nmSCCore (Fig. 4g,
Fisher’s exact test, p =0.01361). Comparison of other clinical para-
meters of interest (prior radiation, hearing loss, tinnitus, vertigo, and
tumor consistency) did not reveal any significant associations (data
not shown). Thus, across a large cohort of patients, the Injury-like
tumor composition is associated with larger tumor size.

Analysis of chromatin accessibility in Injury-like VS-SC identifies
TFs enriched in peripheral nerve injury
Given that Injury-like and nmSC Core VS-SCs differ transcriptionally,
we wanted to characterize how these cells might differ epigenetically.
We therefore turned our attention to the VS-SCs in the scATAC-seq
dataset, whichwas comprisedof three Injury-like and three nmSCCore
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tumors based on scRNA-seq analysis (Fig. 4a). Indeed, after selecting
scATAC-seq VS-SCs, and assigning them to either Injury-like or nmSC
Core groups based on the tumor from which they were derived, we
observed that the Injury-like and nmSC Core cells were distributed
differently across UMAP space (Fig. 4h). Accordingly, analysis of dif-
ferentially accessible peaks (DAPs) identified 5616 statistically sig-
nificant marker peaks with Log2FC ≥ 2 differentiating the two groups
of VS-SCs (Supplementary Fig. 6a, b), further suggesting that these two
groups of VS-SCs differ from each other significantly at the epigenetic
level. Next, we performed TF motif enrichment analysis on a per-cell
level based on accessibility of TF binding sites from CIS-BP. We then
identified relevant TFs, defined as TFs with gene expression (either
inferred fromscATAC-seqdata ormeasured fromscRNA-seqdata) that

is positively correlated with increased accessibility of their motif, for
Injury-like and nmSC Core SCs (examples of relevant TFs are shown in
Supplementary Fig. 6b). Because of the correlation between motif
accessibility and associated TF expression, these TFs may be most
critical to defining cell state. Indeed, we identified several enriched TF
motifs with corresponding increased TF expression among Injury-like
(e.g., BACH1, SMARCC1, FOSL1, FOSL2, RUNX2) and nmSC Core (e.g.,
CTCF, NFYC, KLF7) SCs (Fig. 4i) and confirmed increased expression of
SMARCC1 and CTCF by immunohistochemistry in Injury-like and nmSC
Core tumors, respectively (Supplementary Fig. 6c). Interestingly,many
Injury-like TFs have been strongly implicated in the normal SC
response to nerve injury47–50. For example, an increase in both FOSL2
binding motifs and FOSL2 gene expression have been found in repair
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SCs47, reminiscent of the repair-like expression profile found in Injury-
like VS. In contrast, CTCFwas found to be critical for SC differentiation
into myelinating SCs, the most mature SC state, consistent with the
decreased repair-like expression profile in nmSC Core VSs49.

Injury-like VS-SCs secrete ligands that promote myeloid cell
migration and proliferation
We next sought to characterize the signaling pathways by which VS
tumor cells might communicate with other cell populations in the VS
TME in Injury-like and nmSC Core tumors. We first focused on tumor-
wide patterns of intercellular communication. We inferred network-
wide ligand-receptor interactions using CellChat51 and found that
Injury-like tumors had a higher total number of inferred intercellular
interactions and overall higher imputed interaction strength, largely
driven by stromal and SC interactions (Supplementary Fig. 7a, Sup-
plementary Data 12).

Next, we sought to better understand the specific signaling
pathways upregulated and downregulated in Injury-like VSs. Notably,
CCL, LIGHT, NECTIN, PERIOSTIN, HGF, PTN¸ andCSF signaling pathways
had stronger and more abundant interactions in Injury-like tumors
(Fig. 5a). A relative increase in outgoing CCL signals was observed
across all cell types in Injury-like tumors except for mast cells and B
cells, with endothelial cells being the primary receiver of these signals
via ACKR1 expression (Supplementary Fig. 7b). ACKR1 encodes the
Duffy antigen receptor, which mediates chemokine transcytosis and
enhances leukocyte migration and may therefore promote immune
cell recruitment in Injury-like VSs52. Interestingly, Injury-like fibroblasts
and SCs had increased expression of HGF and its receptor, MET,
respectively. Prior work has established HGF as a crucial activator of
repair Schwann cells in peripheral nerve injurymodels, suggesting that
this signaling may induce the VS-SC states seen in Injury-like VSs53.
Lastly, CSF signaling distinctly arose from both myeSC and nmSC in
Injury-like tumors, with myeloid cells and cycling cells receiving these
signals. Both IL-34 and CSF1, which are ligands for CSF1R, are known
chemotactic factors for circulating monocytes secreted by SCs, and
previouswork has shown thatboth IL-34 andCSF1 are expressed inVSs,
with a weak correlation between tumor growth and CSF1 levels
described54,55. These results suggest thatCSF1R signaling is increased in
Injury-like tumors.

Given the abundance of myeloid cells in Injury-like VS, we sought
to further characterize VS-SC to myeloid signaling at the cell subtype
level. We sought to identify secreted ligands that were 1) strongly
expressed by VS-SC in the scRNA-seq data, 2) differentially expressed
in tumors relative to healthy nerve controls in the bulk expression
data, 3) and had cognate receptors expressed in the VS myeloid cells.
Our search identified seven candidate ligands with 10 predicted
receptors (Fig. 5b). Of note, IL34 and CSF1 were highly expressed by
repair-like SCs and MHC II SCs, with the cognate receptor CSF1Rmost

strongly expressed inmigratorymyeloid cells. Furthermore, Injury-like
VS had significantly higher CSF1 expression compared to nmSC Core
VS (Fig. 5c).

We therefore hypothesized that VS-SCs promote myeloid cell
migration and proliferation via CSF1-CSFlR signaling. To test this
hypothesis, we developed a model system using conditioned media
from a previously utilized cell line model of schwannoma (immorta-
lized human Schwann cells; HSC) and human CD14+ peripheral blood
monocytes28. We first performed bulk RNA-sequencing analysis of the
HSC line, which showed enrichment for the Hypoxia, Repair-like, and
MHC II VS-SC signatures, suggesting that these cells are similar to
Injury-like VS-SC (Supplementary Fig. 7c). We also confirmed that the
HSC line expresses 5 of the 7 candidate ligands (Supplementary
Fig. 7d). Intriguingly, we found that conditioned media from the HSC
line promoted the migration and proliferation of monocytes in vitro,
suggesting that secreted SC factors may influence both processes
(Fig. 5d). We then tested whether SC-derived CSF1 mediates these
effects on monocytes using a CSF1 function blocking antibody. CSF1
inhibition significantly decreased both monocyte proliferation and
migration in response to HSC conditioned media (Fig. 5d). Together
these findings suggest that VS-SCs secrete ligands that recruit mono-
cytes and drive their proliferation, potentially contributing to the
growth of VS (see model in Fig. 5e).

Discussion
The fundamental factors driving VS tumor progression and unfavor-
able clinical outcomes remain poorly understood. Consequently,
accurate biomarkers to predict growth and effectivemedical therapies
to limit VS growth remain elusive.Our single-cellmulti-omic analysis of
sporadic VS represents an important step in understanding the intra-
and inter-tumoral heterogeneity underlying their pathogenesis and
progression. Recent studies have alsoprofiled sporadicVSwith scRNA-
seq56,57. Similar to these recent reports, we found an unexpected
diversity within the SC compartment of these tumors, with loss of the
myelinating phenotype and varying degrees of myeloid cell infiltrate
being consistent findings across studies. Xu et al. additionally descri-
bed variability of SC-fibroblast signaling across their cohort of 3
tumors56. Yidian et al. also profiled a cohort of 3 patient tumors and
used their scRNA-seq dataset to identify potential targets of drug
therapy, namely TGFBR1, VISG4, andHLA-DPB157. Our work adds to this
growing body of knowledge in several important ways. Using tran-
scriptional signatures derived from the peripheral nerves of mice
under steady state, post-injury, and developmental conditions, we
found that VS-SCsmost resemble SCs in the setting of peripheral nerve
injury, with subpopulations of VS-SC adopting transcriptional states
similar to repair-type SCs. Interestingly, we noted that, in select
tumors, enrichment of repair-like VS-SCs correlated with VS-SCs that
express the MHC class II antigen presentation machinery.

Fig. 4 | Injury-like VS tumors are associated with increased myeloid cell infil-
trate. a Heatmap displaying results of hierarchical clustering of VS-SC subtype
mean signature scores shows two distinct groups of tumors (“Injury-like” and
“nmSC Core”). b Box-and-whisker plot comparing mean scores of repair-like, MHC
II, and Core signatures in Injury-like (n = 6) and nmSC Core (n = 5) tumors (groups
defined in a.) Two-sided t-testing was performed with correction for multiple
comparisons viaBHmethodwith FDRof 0.2. Center linesof theboxplots reflect the
mean, upper and lower borders reflect the 75th and 25th percentiles, respectively,
whiskers are the highest and lowest points atmost 1.5 times the inter-quartile range
from the hinge, and outliers are represented as dots. See the Source Data file for
exact values. c Double-stain IHC images show VS classified as Injury-like have
enriched staining for Ngfr (Repair-like SC) and MHC II (MHC II SC), while these
markers are largely absent from tumors classified asnmSCCore. Sox10 (blue) labels
tumor cells. DAB stains Ngfr (left column) and MHC II (right column). Scale bar =
100μm. Four HPFs were evaluated from each available patient sample.
d Scatterplots with Pearson linear regression demonstrate strong correlation of
mean repair-like (left) andMHC II (right) scoreswith fractionofmyeloid cells across

samples. Error bands represent 95% confidence interval of the linear model. There
was no correction for multiple comparisons. e Barplot of imputed cell-type frac-
tions from 175 VS tumors shows high variability in degree of myeloid cell compo-
sition. Only fractions of immune cells are displayed. f Representative heatmap
demonstrating classification of our cohort of 22 VS tumors into Injury-like and
nmSC Core categories based on hierarchical clustering of imputed cell fractions.
Remaining results shown in Supplementary Fig. 5b–f. g Bar plots showing number
of tumor samples classified as Injury-like or nmSC Core and clinically classified by
size (n = 122) andNF2-syndrome status (n = 89). Two-sided Fischer’s exact test used
for comparison. h UMAP of all VS-SC from the scATAC-seq dataset with cells
colored based on the typeof VS, Injury-like (red) andnmSCCore (blue), fromwhich
they arose as determined by clustering in (A). i Scatter plot depicting transcription
factor (TF) motif deviation delta between Injury-like and nmSC Core VS-SC and
correlation to gene expression (left) and gene score based on accessibility (right).
Relevant TFs (correlation > 0.5, adjusted p <0.01 andmaxdelta > 75th percentile of
all max deltas) are labeled and colored. Source data are provided as a Source
Data file.
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Fig. 5 | Ligand-receptor interactions in the VS-TME distinguish Injury-like from
nmSC Core tumors, and promote myeloid cell proliferation and migration.
a Bar plot showing the relative information flow of select signaling pathways.
Pathway names in red are enriched in Injury-like VSand those inblue are enriched in
Core VS. Information flow is defined as the sum of communication probability
among all pairs of cell groups in each inferred network. See Supplementary Data 9.
b Heatmap showing relative expression of VS-SC ligands (left) with receptors
expressed onmyeloid cells (right). c Box-and-whisker plots showing the mean log-
normalized expression of candidate ligands in VS-SC from Fig. 5b. CSF1 expression
is higher in Injury-like VS (two-sided t-test, multiple testing correction with Benja-
mini Hochberg Method and FDR of 20%. Inury-like (n = 6) and nmSC Core (n = 5)
groups defined in (a). Center lines of the boxplots reflect the mean, upper and

lower borders reflect the 75th and 25th percentiles, respectively, whiskers are the
highest and lowest points at most 1.5 times the inter-quartile range from the hinge,
and outliers are represented as dots. See the Source Data file for exact values. d Bar
plots showing relative proliferation (left) and transwell migration (right) of CD14+
monocytes from healthy donors in Basal Media (BM), HSC Conditioned Media
(CM), CMwith isotype IgG control, and CMwith anti-CSF1. Each bar represents the
normalized mean of all technical replicates (n = 3 per assay) across biological
replicates (n = 3) and error bars are SEM. eModel of Injury-like VS. VS-SC undergo a
critical stressor that triggers subpopulations to adopt repair-like and antigen pre-
senting states. Myeloid cells are recruited to the VS TME and proliferate locally,
leading to tumor progression. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-42762-w

Nature Communications |          (2024) 15:478 9



Furthermore, this group of tumors also had disproportionately higher
fractions of cells of myeloid lineage (e.g., monocytes and macro-
phages) comprising the TME. In the setting of peripheral nerve injury,
SCs are believed to be the initial recruiters of monocytes and macro-
phages, which then contribute to breakdown of myelin and recruit-
ment of additional leukocytes58. Accordingly, our findings suggest that
the TME of Injury-like VSs resembles the cellular microenvironment of
a peripheral nerve in the initial days after injury.

In contrast to damaged peripheral nerves, where SCs proliferate
along the trajectory of regenerating axons, we observed low pro-
liferative capacity among VS-SCs in our data, which is consistent with
the typical slow growth of these lesions59. Interestingly, we found that
infiltrating immune cells expressedmarkersof cell cycle progression at
a higher rate than VS-SC or VS stromal cells, which suggests that cues
within the VS TME promote this immune cell turnover and renewal. In
particular, our ligand-receptor analysis and functional in vitro experi-
ments suggest that CSF1 may be among the key signals driving this
proliferation. Our findings are consistent with a prior study of VS
tumors with sudden growth, which found that tumor-associated
macrophages (TAM) comprised 50–70% of all proliferating cells
in situ60. Thus, our analysis extends on thesefindings and converges on
the overarching principle that myeloid cell proliferation and infiltra-
tion may be key cell biological processes that underlie tumor growth.

In our deconvolution analysis of 175 tumors characterized by bulk
expression sequencing, we found that Injury-like tumors were asso-
ciated with larger tumor size. The variable presence of TAMs in the VS
TME has been previously described, but their role in VS pathogenesis
and their functional phenotypes have been poorly characterized54,60,61.
For example, increased presence of macrophagemarkers on histology
has been associated with tumor growth, poor post-operative facial
nerve outcomes, and poor pre-operative hearing60,62,63. Other reports
have suggested that an inflammatorydimension of VSsmay contribute
to adverse outcomes in these patients and have served as the basis for
ongoing trials evaluating the potential of aspirin to mitigate sudden
tumor growth64. Interestingly, among this broad cohort of patients,
NF2-associated VS tumors were almost exclusively low inmacrophage
infiltrate. Why these lesions harbor fewer infiltrating immune cells
remains an important question, as our cohort of patient samples
characterizedby scRNA-seqdid not include any syndromicNF2patient
tumors. Future work characterizing both sporadic and syndromic VS
will help elucidate the differences in microenvironmental cues that
promote myeloid cell recruitment in specific tumors.

Given that Injury-like VSs may be associated with worse patient
outcomes, we sought to characterize the transcriptional regulation
and cell-to-cell signaling of these tumors relative to nmSC Core VSs to
identify potential therapeutic targets. We found that VS-SCs from
Injury-like and nmSC Core tumors bear different epigenetic profiles.
Furthermore, we identified several relevant TFs that not only have
accessible motifs in both Injury-like and nmSC Core cells but also
demonstrated increased gene expression of the relevant TF in the
respective VS-SC groups (e.g., RUNX1, FOSL1, FOSL2, etc.). Regarding
cell-to-cell signaling, there were multiple pathways more highly
expressed in Injury-like tumors (e.g., CCL, MIF, etc.). In particular,
CSF1R signaling appeared to be specific between VS-SC and myeloid
cells and appeared to be enriched in Injury-like tumors. This signaling
axis is seen in inflammatory neuropathies, and our results suggest its
role may extend to VS tumor progression55,65. Our experiments using
an in vitro VS model and healthy donor CD14+ monocytes further
support the hypothesis that VS-SCs promote monocyte migration and
proliferation and suggest an important causal role for CSF1. Taken
together, our findings uncover potential pathophysiological mechan-
isms that may drive tumor growth and require further investigation,
including future pre-clinical work to screen regulatory transcription
factors and/or receptor-ligand pathways for their effects on tumor
behavior.

There are several limitations of this study. Patients in our scRNA-
seq cohort were limited to sporadic VS, and our findings pertaining to
the TME composition and SC states may not be generalizable to
patients with schwannoma of other sites or patients with syndromic
NF2-related schwannomatosis. Our patient cohort was also restricted
to patients who underwent surgery, and thus we were unable to
characterize small, asymptomatic tumors since such lesions are rou-
tinely observed radiographically or treated with stereotactic radio-
surgery. Additionally, although several recent studies have suggested
that glial cell gene signatures are highly conserved across species,
there are inherent limitations to our use of murine gene signatures to
explore VS-SC phenotypes66,67. Lastly, our cell line model lacked
expression of IL34, which is also a ligand for the receptorCSF1R. Future
work should more broadly study the clinical relevance of CSF1R sig-
naling, both as a predictor of poor outcomes (e.g., hearing loss, rapid
tumor growth) as well as its potential targetability.

In summary, ourwork provides important insights into VSbiology
as well as a detailed transcriptomic and epigenetic single cell atlas of
the Schwann, stromal, and immune cells that comprise the VS TME.
Our analysis suggests that VSs can be categorized based on nerve
Injury-like VS-SC gene expression programs and associated myeloid
cell infiltrate. Furthermore, Injury-like tumors appear to be associated
with larger tumor size, and chemokines secretedby VS-SCsmay recruit
circulating monocytes. These findings uncover previously unde-
scribedmechanisms of pathogenesis and tumor progression in VS and
suggest biomarkers and therapeutic targets to be explored in future
studies.

Methods
Human tumor specimens
Patient samples used for scRNA-seq and scATAC-seq were all derived
from patients treated at Barnes-Jewish Hospital (St. Louis, MO, USA).
All patients provided written informed consent to participate in the
study following Institutional Review Board Approval (Protocol
#201111001, #201103136, and #201409046). Patient characteristics are
summarized in Fig. 1b and Supplementary Table 1. Tumor samples
used for bulk RNA-seq analysis consisted of paraffin-embedded tissue
from 22 VS patients treated at Baylor College of Medicine (BCM;
Houston, TX, USA) (Supplementary Table 5). All patients provided
written informed consent, and tumor tissues were collected under an
institutional review board (IRB)-approved protocol at BCM by the
Human Tissue Acquisition and Pathology Core (Protocol H-14435). All
schwannomas were reviewed by a board-certified neuropathologist
according the 2016 WHO guidelines. Raw data from previously pub-
lished studies were obtained as follows: RNA-seq and expression
microarray data that were publicly available were downloaded
(GSE3964532, GSE14180131, GSE10852433, EGA0000100188628); data
from Aaron et al.46 were kindly shared upon request. Clinical annota-
tions accompanying the sample data from Torres-Marin et al.32 were
also kindly shared upon request.

Whole exome sequencing and analysis
Whole exome sequencing (WES) was performed by Genome Access
Technology Center at the McDonnell Genome Institute (GTAC at MGI,
St. Louis, MO). For tumor samples, FFPE tissue scrolls were cut and
submitted for sequencing. Germline variants were identified by
sequencing DNA extracted frommatched whole blood tissue for each
tumor. Exome sequencing for SCH1 blood and SCH5 blood/tumor was
performedwith 100x target coverage using the IDT xGen™ ExomeHyb
Panel v1. For all other samples exome sequencing was performed with
200x target coverage using the IDT xGen™ Exome Hyb Panel v2 cus-
tomized to include probes for all NF2 exons and all exons and introns
of the SH3PXD2A and HTRA1 genes (Supplementary Data 13). Sequen-
cing data were analyzed using a DRAGEN Bio IT processor using
DRAGEN software version 3.10 with a GRCh38 reference genome.
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Alignments were generated in CRAM format with duplicates marked.
Each sample was processed in tumor-normal mode to filter germline
variants. Structural variants and small variants were called. Variants
that passed all default quality control filters in the exome target region
were annotated using ANNOVAR. Normalization for copy number
variant calling was performed using a panel of normals for coverage
normalization. Copy number segment calls were included if they met
the following criteria: CNA quality score > = 5, segment length
> = 100,000, number of targets > = 10, and segmentmean in the top or
bottom tenth percentile for a given tumor (Supplementary Data 5).

Fresh tumor dissociation
Fresh samples processed for scRNA-seq and scATAC-seq were col-
lected at the time of surgical resection and immediately processed.
Tumor samples wereminced and dissociated using the Human Tumor
Dissociation Kit (Miltenyi Biotech, Bergisch Gladbach, Germany) per
manufacturer guidelines. The dissociated cell suspensions were then
passed through 40 µm filter, pelleted through centrifugation, and
resuspended in AutoMACS Rinsing Solution with 0.5% bovine serum
albumin (BSA;Miltenyi Biotech). Red blood cell lysiswas performedon
all samples with Gibco ACK Lysing Buffer (ThermoFisher Scientific,
Waltham Massachusetts, US) and was followed by debris removal via
density gradient when necessary (Debris Removal Solution, Miltenyi
Biotech, Bergisch Gladbach, Germany). Cell viability was confirmed to
be > 80% using 0.4% Trypan Blue staining (Invitrogen, catalog
#T10282) andmanual counting with a hemocytometer. For samples in
which scATAC-seq was additionally performed, nuclei isolation was
performed according to the 10X Demonstrated Protocol “Nuclei Iso-
lation for Single Cell ATAC Sequencing” (Rev D).

Tumor nuclei isolation for scRNA-seq
Fresh frozen samples used for scRNA-seq were collected at the time of
surgical resection and frozen in OCT compound embedding media
(Tissue-Tek, Torrance, California) on a pre-chilled aluminum block
resting on dry ice, and stored at −80 oC. Tissue scrolls were cut at
30 µm using a Cryostat (50–100 scrolls were cut per sample, depend-
ing on the tissue size) andmaintained at −80 °Cuntil the time of nuclei
isolation. Lysis buffer (consisting of Tris-HCl, NaCl, MgCl2, Nonidet
P40 Substitute, 0.1M DTT, RNase inhibitor, and nuclease free water)
was added to the tissue scrolls, whichwere homogenized using a Pellet
Pestle while on ice. Additional lysis buffer was then added, and the
mixture was incubated on ice for 5min. The suspension was passed
through a 70 µm strainer and centrifuged before being washed with a
solution of PBSwith 1%BSA and 1U/µl Rnase inhibitor, incubatedon ice
for 5min, centrifuged, and resuspended in 1ml PBS with 1% BSA and
1 U/µl Rnase inhibitor. The nuclei were then labeled with DRAQ5
(Thermo Scientific, catalog #62251) and selected using FACS sorting
performed by the Siteman Flow Cytometry Core before being carried
forward for single nuclei library creation.

scRNA-seq library preparation and sequencing
Single cell and single nuclei suspensions were processed using 10X
Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (10X Genomics,
Pleasanton, CA) per manufacturer protocols. Briefly, cells were added
onto the 10X Next GEM Chip G to form Gel Bead-in-Emulsions (GEMs)
in the Chromium instrument followed by cell lysis, barcoding, cDNA
amplification, fragmentation, adaptor ligation, and sample indexed
library amplification. Completed gene expression libraries were
sequenced on Illumina NovaSeq S4 flow cells at a target depth of
50,000 read pairs per cell. Single cell RNA and single nucleus RNA
sequencing reads were aligned to human reference GRCh38 v2020-A
from 10x Genomics using the 10x Genomics Cellranger-4.0.0 and
Cellranger-6.0.0 (include-introns flag set to true) pipelines, respec-
tively. Sequencing quality control metrics are listed in Supplementary
Data 14.

scATAC-seq library preparation and sequencing
scATAC-seq libraries were prepared using the 10X Chromium Next
GEM Single Cell ATAC Reagent Kits v1.1 (10X Genomics) according to
the manufacturer’s protocols. In brief, nuclei were incubated in a
transposition mixture including a transposase to fragment open
chromatin regions. Transposed nuclei were then loaded onto the 10X
Next GEM Chip H to generate GEMs, followed by sample indexed
library amplification. scATAC-seq libraries were sequenced in Illumina
NovaSeq S1 flow cells at a target depth of 250M total read pairs per
sample. The resulting FASTQ files were aligned to GRCh38 v2020-A
using the 10x Genomics Cellranger ATAC-1.2.0 count function.

scRNA-seq data preprocessing
Ambient RNA removal and empty droplet calling was performed using
CellBender68. Samples were processed individually and iteratively with
adjustment of the parameters to achieve optimal learning curves and
barcode rank plots for each sample. Final parameters used are listed in
Supplementary Table 6. CellBender outputs consisting of counts
matrices adjusted for ambientRNAandexcludingemptydropletswere
then preprocessed for doublet calling using Scrublet69 and ScanPy70 as
follows: a) Cells with < 500 genes were excluded; b) Genes not
expressed in at least 0.1% of cells were excluded; c) Percent mito-
chondrial counts was computed for each cell, Leiden clustering per-
formed, and cells with percent mitochondrial counts greater than
2 standard deviations from their respective cluster mean percent
mitochondrial counts were removed. Samples were then processed
individually and iteratively, varying the n-neighbors and expected_-
doublet_rate and choosing the values for each that resulted in a
bimodal simulated doublet histogramwith a bimodal curve fit R > 0.85
and the fraction of the second Gaussian less than or equal to the 99th
percentile of the first.

The filtered gene expression matrix was then processed and
analyzed by using Seurat v4.0.071. To filter low-quality cells, we first
removed cells for which less than 1000 genes were detected or cells
that contained greater than 20% of genes from the mitochondrial
genome. We included genes with ≥ 5 UMI in at least 10 cells for
downstream analysis.

scATAC-seq data preprocessing and clustering analysis
scATAC-seq preprocessing and analysis was performed using ArchR
1.0.1 as detailed in the ArchR manual72. Briefly, nuclei with a TSS < 10
and with < 1000 fragments were excluded. Doublets were identified
and removed using the ArchR addDoubletScores and filterDoublets
functions with filterRatio = 1.5, DoubletScore ≤ 50. Dimensional
reduction was performed using the addIterativeLSI function and
default ArchR values of sampleCells = 10000, n.start = 10 and varFea-
tures = 15000. Next, the addClusters function was used for cell clus-
tering and the addGeneIntegrationMatrix function was used to
perform unconstrained cross-platform linkage of scATAC-seq cells
with cells from the scRNA-seq atlas without single nucleus samples
(SupplementaryData 15). scATAC-seq clusters were then labeledwith a
cell identity by creating a confusion matrix between scATAC-seq
clusters and cell identities from linked scRNA-seq cells and assigning
each cluster the identity of the greatest proportion of linked scRNA-
seq cells in that cluster (Supplementary Fig. 2e).

Multiple sample integration with reciprocal principal compo-
nent analysis
To overcome batch effects related to freshly dissociated samples and
nuclei isolated from fresh frozen samples, including higher mito-
chondrial and ribosomal transcripts in the fresh samples and more
intronic and long non-coding reads in the frozen nuclei, Seurat’s
reciprocal principal component analysis (RPCA) was used to integrate
the scRNA-seq datasets73. In brief, a SeuratObject was generated for
each sample. Each sample was then normalized using Seurat’s
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‘NormalizeData’ function. ‘FindVariableFeatures’ was used to identify
3000 variable features in each sample. Integration features were
selected using ‘SelectIntegrationFeatures’ (nfeatures = 3000). ‘FindIn-
tegrationAnchors’ was used to perform RPCA integration (by sample)
in Seurat. The data was integrated using ‘IntegrateData’ with k-nearest
neighbors (k.weight) set to 50; integrated values were returned for all
genes in the SeuratObject. The integrated RPCA object was further
scaled using ‘ScaleData’ function and was projected on the UMAP with
30 principal components. Graph-based clustering was performed
(resolution = 0.5) on the integrated object. Differentially expressed
genes were calculated for the clusters of “integrated Assay” on the
“RNA Assay” using the ‘FindAllMarkers’ function with only.pos = T (i.e.,
only for upregulated genes). Only significant (p.adj ≤0.05) DEGs were
used in further analysis.

Gene signature scoring and cell type assignments
To corroborate our cell type labels, we used the top 30 differentially
expressed genes (DEGs) fromeach peripheral nerve cell-type cluster as
defined by the original authors from each study to score each cell in
our VS dataset. The mean score of each signature was calculated for
each VS TME cluster using the Seurat AddModuleScore function
(Supplementary Fig. 1b). To assess the consistency of peripheral nerve
cell-type scores across studies, we assigned meta-signatures for simi-
larly labeled cell clusters within and across the mouse nerve studies
(e.g., “Schwann cells” from Carr et al. and “Nm-SCs” from Yim et al.
were assigned the meta-label “Schwann”) and computed the mean
score of all cluster scores per meta-signatures (Fig. 1f).

Variant identification in scRNA-seq data
VarTrix v1.1.22 was used to determine whether variants detected in
WES analysis were present in scRNA-seq sequencing reads as per the
VarTrix documentation. Briefly, for each sample WES variants were
queried in all cells included after preprocessing using the VarTrix
“coverage”mode, which produces twomatrices: one with the number
of alternate reads and another with the number of reference reads for
each cell for each variant. Thesematrices were then used to determine
which scRNA-seq cells harbored variants detected by WES.

Inferred copy number alteration analysis
InferCNV (v1.14.0) was used for single cell CNV analysis30. Using the
initial cell type assignments, two reference sets of cells (one for fresh
dissociation samples and one for frozen nuclei samples) were created
by randomly sampling 600 myeloid cells, 600 non-myeloid immune
cells (i.e., T cells, NK cells, etc) and 1200 stromal cells across all fresh
dissociation and frozen nuclei samples, respectively. A balanced
number of immune and non-immune cells was used to construct the
reference set to minimize false positive CNA inferences related to true
differences in gene expression (e.g., expression of the MHC complex
genes on chromosome 6). Separate references were created to mini-
mize the impact of technique-related batch effects between fresh
dissociation and frozen nuclei samples. All VS-SC (nmSC and myeSC)
were assumed tobepotential tumor cells and thereforenot included in
the reference sets. Each sample was analyzed separately, with fresh
dissociation samples being compared to the fresh dissociation refer-
ence and frozen nuclei samples being compared to the frozen nuclei
reference. For each sample, all cells not included in the reference were
treated as putative tumor cells for the purposes of inferCNV analysis to
obtain CNA inferences for all cells in the dataset. Input files for
inferCNV analysis were generated as per the inferCNV documentation.
The inferCNV run() functionwasexecuted for each samplewith default
parameters with the following exceptions: cutoff = 0.1 (recommended
for 10X data by inferCNV documentation), HMM=TRUE, HMM_type =
“i3” (use inferCNV’s implementation of Hidden Markov Model-based
CNV prediction using a three-state CNV model representing deletion,
neutral, and amplification states), analysis_mode = ‘subclusters’

(recommended as ideal by inferCNV documentation), leiden_resolu-
tion = 0.001 (adjusted to minimize number of singleton clusters used
in HMM predictions), denoise = TRUE. A complete list of all segments
predicted to be altered by inferCNV’s HMMi3 implementation is pro-
vided in Supplementary Data 4. Cells with chromosome 22q loss,
which were identified based on greater than 50% segmental loss of
chromosome 22q, are identified in Supplementary Data 16.

Comparison of nmSC and myeSC gene signatures of VS tumor
samples to normal nerve
Microarray datasets (GSE141801, GSE108524 and GSE39645) were
downloaded using GEOquery’s (v2.58.0) ‘getGEO’ function. Bio-
base’s (v2.50.0) ‘exprs’ function was used to extract the microarray
eSets (expression data from sets) object and log2 normalization was
performed. The design matrix for a particular microarray dataset
was constructed to compare the type of tissue (i.e., ‘Normal-nerve’
vs. ‘schwannoma’) using the ‘model.matrix’ function from stats
package (v4.0.3). The eSet object was weighted based on the design
matrix and a linear model was fit to the data using limma’s (v3.46.0)
‘arrayWeights’ and ‘lmFit’ functions respectively. ‘makeContrasts’
function from limma was used to extract contrasts between ‘con-
trol/normal-nerve’ and ‘tumor/schwannoma’ samples. Empirical
Bayes statistics were used for differential expression analysis
between normal and tumor samples using limma’s ebayes function.
The resulting moderated t-statistics were classified into ‘up’, ‘down’
or ‘no change’ using limma’s ‘decideTests’ function. The scaled eSet
matrix was further visualized for top 50 differentially expressed
single cell markers from both ‘nmSC’ and ‘myeSC’ cells. Complex-
Heatmap (v2.11.1) was used to annotate differential expression and
normal-tumor groupings.

VS-SC, stromal, and NK/T cell analysis
Clusters were extracted from the full scRNA-seq dataset and were
renormalized and reclustered using Seurat. The subclusters were
corrected/integrated using RPCA, as described above (see Methods:
Multiple sample integration with reciprocal principal component ana-
lysis). Samples with fewer than 40 cells for a given cell type were
excluded. Clusters that were presumed residual doublets (e.g., cells
expressing PTPRC in the Schwann cell subcluster) or low quality cells
(i.e., high ribosomal RNA content) were manually removed and the
remaining data were reprocessed, as above. Due to batch effects that
were apparent at the subcluster level between the freshly dissociated
cells and isolated nuclei from frozen tissue, we performed the primary
subtype analysis on the freshly dissociated samples, with the fresh
frozen samples serving as a validation dataset (Supplementary Fig. 3c).
Gene Ontology Biologic Process Enrichment analysis was performed
using the ‘compareCluster’ function fromClusterProfiler (v3.18.1), with
the top 25 DEGs of each celltype subclassification, ranked by average
Log2FC. VS-SCwere scoredusing themouse peripheral nerve Schwann
cell-specific DEGs as defined by the original study authors’ labels with
Seurat’s ‘AddModuleScore’ function.

Cycling cell analysis
Cells from the scRNA-seqdata that clusteredby expressionof cell cycle
markers (“Cycling Cells”, Fig. 1c) were subset from the overall dataset
and scored by top 30DEGs of all other broad cell types comprising the
VS TMEwith Seurat’s AddModuleScore function. Cell-type frequencies
were scaled to reflect cell numbers of the overall dataset. Chi-square
testing was used to compare scaled expected cell-type frequencies
with observed cell type frequencies across the entire dataset. Cell cycle
phase assignments were made using Seurat’s CellCycleScoring func-
tion with Seurat’s included S-phase and G2M phase markers.

FFPE VS specimens from included patients in scRNA-seq analysis
were obtained and used to generate a tissue microarray (TMA). The
TMA was designed to include four separate 2mm cores from each
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FFPE block used for pathologic diagnosis at the time of surgery. Tissue
arrays were cut into sections (5μm) on positively charged slides. For
IHC, sections were stained using a Bond RXm autostainer (Leica).
Briefly, slides were baked at 65 °C for 4 h and automated software
performed dewaxing, rehydration, antigen retrieval, blocking, primary
antibody incubation, post primary antibody incubation, detection
(DAB) and (RED), and counterstaining using Bond reagents (Leica).
Samples were then removed from the machine, dehydrated through
ethanols and xylenes, mounted and cover-slipped. Antibodies for Ki67
(Abcam, clone SP6, catalog # ab16667)) and CD45 (Agilent, clone
2B11 + PD7/26, catalogue # M0701)) were diluted 1:200 in Antibody
diluent (Leica). Brightfield images of 3-4 high-powerfield regions (40x)
per patient were obtained using a Nikon ECLIPSE Ti2 inverted micro-
scope. Quantification of cell type marker scoring was performed in a
semi-quantitative fashion using QuPath-0.3.1. The ‘Positive Cell
Detection’ functionwas used to identify Ki67+ andKi67- cells using the
following parameters: Nucleus Parameters (Requested pixel size
0.5 µm, Background radius 8 µm, Median filter radius 0 µm, Sigma
1.5 µm, Minimum area 10 µm2, Maximum area 40 µm2), Intensity Para-
meters (Threshold 0.001, Max background intensity 2), Cell para-
meters (Cell expansion 0 µm), Intensity threshold parameters (Score
compartment “Nucleus: DAB OD Mean”, Single Threshold 1.4976).
CD45+ cells were manually annotated. Statistical analysis was per-
formed using a two-sided student’s t-test to compare the means of
individual sample means with a significance threshold of p < 0.05.

Classification of VS as injury-like and nmSC core
VS-SCobtained via freshdissociationwere subset and, using the top50
DEGs of each VS-SC subtype based on average log2FC, scored for each
of the identified VS-SC subtypes with Seurat’s ‘AddModuleScore’
function. Individual cell scores were averaged across all cells of a given
VS-SC subtype across all samples. Sample scores were scaled and
samples were hierarchically clustered based on their scaled scores in
an unsupervised manner based on Euclidean distance. The highest
branchpoint of the dendrogramwas used to divide the cohort into two
groups, which we ultimately labeled Injury-like and nmSC Core. Mean
scores for each VS-SC subtype were compared between Injury-like and
Core using a student’s t-test with correction for multiple hypothesis
testing using the BH method with an FDR or 20%.

Myeloid cell analysis
To identify cell states in Myeloid subcluster, non-negative matrix fac-
torization was applied to each sample to identify meta-programs, as
previously described in ref. 42. The data was first normalized using
CPM normalization and was transformed with log2(CPM+ 1) transfor-
mation. The CPM expression was then centered across each gene by
subtracting the average expression of each gene across all cells. All
negative values were then transformed to zero. The NMF was com-
puted on the relative expression values with number of factors (K)
ranging from 2 to 9. For each value of K, the top 100 genes (with
respect to NMF score) were used to define an expression program. For
each sample, we selected “robust” expression programs, which were
defined as having an overlap of at least 70% (intra_min = 70) with a
program obtained from the same sample using a different value of K.
We removed “redundant” programs, which were defined as over-
lapping another program from the same sample by more than 10%
(intra_max = 10). The programs were filtered based on their similarity
toprogramsof other samples (inter_filter =True). Only thoseprograms
whichhad anoverlap of at least 20%betweenprogramsof two samples
were considered (inter_min = 20). To identify metaprograms across
samples, we compared expression programs by hierarchical cluster-
ing, using 100 minus the number of overlapping genes as a distance
metric. Eight clusters (i.e., metaprograms) were defined by manual
inspection of the hierarchical clustering results. Final metaprogram
signatures only included those genes that occurred in 50% of the

constitutive programsper cluster. Individualmyeloid cellswere scored
according to these metaprogram signatures using Seurat’s AddMo-
duleScore function, and the cells were assigned to the metaprogram
for which they scored most highly. The functional annotation of these
metaprograms was done using (1) GO term enrichment (data not
shown) and (2) overlap of these metaprogram genes in existing mye-
loid subtype markers.

Bulk RNA sequencing, alignment, and preprocessing of human
tumor samples
Bulk RNA-sequencing of VS was performed by Tempus, Inc. (Chicago,
IL, USA), which entailed sending tumor samples along with saliva for
processing according to their protocol74. RNA-seq reads were then
aligned to the GRCh38 assembly with STAR version 2.7.2b (Para-
meters:--genomeDir Ensembl_GRCh38.fa --genomeLoad NoShar-
edMemory --outSAMmapqUnique 60 --outSAMunmapped Within
KeepPairs --outFilterIntronMotifs RemoveNoncanonicalUnannotated
--outSAMstrandField intronMotif --runThreadN 8 --outStd BAM_Un-
sorted --outSAMtype BAM Unsorted --alignTranscriptsPerReadNmax
100000 --outFilterMismatchNoverLmax 0.1 --sjdbGTFfile
Ensembl_GRCh38_genes.gtf > genome_accepted_hits.bam). Gene
counts were derived from the number of uniquely aligned unambig-
uous reads by Picard version 2.6.0. Sequencing performance was
assessed for the total number of aligned reads, total number of
uniquely aligned reads, and features detected. All gene counts were
then imported into the R (3.2.3). Bioconductor (3.2) package EdgeR
and TMM normalization size factors were calculated to adjust for
samples for differences in library size. The previously published RNA-
seq datasets were aligned and processed in an identical manner.

Deconvolution analysis of bulk expression data
CIBERSORTx was used to build a custom signature reference from the
scRNA-seq dataset and impute cell fractions from each of the RNA-seq
and microarray expression datasets on a one-by-one basis to avoid
confounding batch effects45. Default CIBERSORTx parameters for
generation of a scRNA-seq reference matrix were used, except for
fraction of cells expressing a given gene, which was set to 0 to avoid
overly aggressive filtration of genes for generation of the signature
matrix given the sparse nature of 10X Chromiumderived data. S-mode
was used for batch correction during imputation of cell fractions from
mixture (e.g., bulk sequencing) data. Unsupervised hierarchical clus-
tering based on Euclidean distance was performed across all samples
for each individual bulk expression dataset, and cohorts were grouped
into “Injury-like” and “nmSC Core” Cohorts based on the first den-
drogrambranchpoint. Sampleswith available clinical datawere split by
Injury-like/nmSC Core groups and outcomes of interest were com-
pared across these two groups using a Fisher’s exact test.

scATAC-seq VS-SC analysis
All VS-SC from the scATAC-seq dataset were subset and assigned an
identity of Injury-like or nmSC Core based on the classification of the
tumor from which they arose by scRNA-seq analysis. Myelinating SC
arosepredominantly ( > 90%) fromasinglenmSCCore sample andwere
therefore excluded from further analysis. To reduce biasing by outlier
cells when comparing the two groups, cells in the top and bottom 5th
percentile for number of fragments, TSS enrichment, and reads in TSS
were excluded from further analysis. Approximately 750 cells remained
in eachof the Injury-like andnmSCCore groups after filtration andwere
analyzed further. Pseudo-bulk replicates were created using the ArchR
addGroupCoverages function with minReplicates = 3, minCells = 100,
maxCells = 500, and sampleRatio =0, and peak calling was performed
using MACS2 (2.2.7.1) (https://pypi.org/project/MACS2/) as detailed in
the ArchR manual. Per-cell transcription factor motif deviations were
added using the addDeviationsMatrix function and motifs annotated
using the CIS-BP annotations built in to ArchR. Positive transcription
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factor regulators were identified using the correlateMatrices function
and pairing either the gene score matrix (containing chromosomal
accessibility data) or the gene integration matrix (containing gene
expression data from linked scRNA-seq cells) with the transcription
factor deviations matrix (see ArchR manual for details). Relevant TFs
were defined based on default ArchR parameters (correlation >0.5,
adjusted p <0.01 and max delta > 75th percentile of all max deltas).

Double stain IHC of Injury-like and nmSC Core markers
Double stain IHC was performed for comparison of Injury-like and
nmSCCoremarkers as follows. FFPE blocks frompatient tumorswere
obtained from the Washington University Department of Pathology
and were sectioned onto slides at 5 μm. Slides were baked at 60
degrees Celsius for 30min followed by deparaffinization with xylene
and graded ethanol. Antigen Decloaker (Biocare Medical) was used
for heat-mediated antigen retrieval for all stains. Blocking was per-
formed with Dual Endogenous Enzyme Block (DEEB, Agilent Dako)
for 5min. The first antibody was applied and incubated for 1 h. First
antibodies included MHC II (1:400 dilution, Cell Signaling Technol-
ogies, clone LGII-612.4, catalog # 68258), Ngfr (1:100, abcam, clone
NGFR/1965, catalog # ab224651), and S100 (1:25, Invitrogen, clone
PA1-26313, catalog # PA1-26313). Sections were incubated with HRP
Labeled Polymer (Dako) for 30min followed by DAB staining for
5min. Blocking was then repeated with DEEB. The second antibody
was incubated for 1 h, then 30min with Rabbit Polymer AP (Dako),
and lastly AP Blue substrate for 15min. Second antibodies included
Sox10 (1:100, Cell Signaling Technology, clone E6B6I, catalog #
69661), SMARCC1 (1:800, Cell Signaling Technology, clone D7F8S,
catalog # 11956), and CTCF (Cell Signaling Technology, clone D31H2,
catalog #3418).

Ligand-receptor analysis
Cell-cell communication networks were inferred using the stan-
dard CellChat inference and analysis of cell-cell communication
workflow CellChat (1.5.0)51. In brief, the scRNA-seq was divided
into two cohorts (Injury-like and Core), each individual dataset
then underwent library size normalization followed by log
transformation using Seurat’s ‘NormalizeData’ function. The
CellChatDB curated database of ligand-receptor interactions was
used, over-expressed ligand/receptor genes were identified
within each broad cell group (e.g., nmSC, fibroblasts, etc.) using
the ‘identifyOverExpressedGenes’ function, and then each ligand-
receptor interaction were identified using the ‘identifyOver-
ExpressedInteractions’ function. Communication probabilities
were calculated for both ligand-receptor pairs and pathway level
interactions using the ‘computeCommunProb’ and ‘compute-
CommunProbPathway’ functions, respectively. The cell-cell
communication networks were then summarized using the
‘aggregateNet’ function to determine the number of unique links
and overall communication probability. The two communication
networks (i.e., Injury-like VS and nmSC Core VS) were compared
following the CellChat manual for comparison analysis of multi-
ple datasets. Functions were performed with default parameters
unless otherwise stated. Total interactions and interaction
strength were determined using the ‘compareInteractions’ func-
tion and visualized on a cell-type level as a heatmap using the
newVisual_heatmap’ function. Joint manifold learning and clas-
sification of the inferred communication networks based on their
functional similarity was performed using the ‘computeNetSimi-
larityPairwise’, ‘netEmbedding’, and ‘netClustering’ functions.
Conserved and context-specific signaling pathways for each
communication network were compared using the ‘rankNet’
function and a Wilcoxon rank-sum testing was performed with p
cutoff of 0.05. Cell-type population level signaling was visualized
in a heatmap using the ‘netAnalysis_signalingRole_heatmap’

function for those pathways that were most specific to Injury-like
tumors (Fig. 5a).

Specific interactions between VS-SC and myeloid cells were
determined in the following manner. First, we used an extensive,
previously described ligand-receptor database to identify potential
signaling pairs (NicheNet v1.1.1)75. We identified ligands expressed in
the VS-SCpopulationswith an average Log2FCof 0.5 and expression in
at least 5% of VS-SC and with similarly expressed cognate receptors in
the myeloid cells. This list was further refined by only including ligand
and associated receptor genes that were differentially expressed by
tumors relative to normal nerve controls in the expression microarray
datasets, as described above. Lastly, the resulting list was filtered to
only include those ligands that were known to be secreted molecules
by review of the existing literature. Data visualization performed with
ComplexHeatmap (v2.11.1), circlize (v0.4.12), and ggplot2 (v3.3.3).

Bulk RNA-sequencing of cell lines
HSC cells were obtained from the lab of Dr. Gelareh Zadeh. HSC cells
were plated at a density of 10,000 cells per ml of growth media in a
6-well plate and expanded for 2 days prior to RNA extraction. RNA
extraction was performed with RNeasy Mini (Qiagen) per manu-
facturer protocol. Samples were submitted to the GTAC core labora-
tory at Washington University. Total RNA integrity was determined
using Agilent Bioanalyzer or 4200 Tapestation. Library preparation
was performed with 500ng to 1 ug of total RNA. Ribosomal RNA was
removed by an RNase-H method using RiboErase kits (Kapa Biosys-
tems). mRNA was then fragmented in reverse transcriptase buffer and
heated to 94 degrees for 8min. mRNAwas reverse transcribed to yield
cDNA using SuperScript III RT enzyme (Life Technologies, per manu-
facturer’s instructions) and random hexamers. A second strand reac-
tion was performed to yield ds-cDNA. cDNAwas blunt ended, had an A
base added to the 3’ ends, and then had Illumina sequencing adapters
ligated to the ends. Ligated fragments were then amplified for 12–15
cycles using primers incorporating unique dual index tags. Fragments
were sequenced on an Illumina NovaSeq-6000 using paired end reads
extending 150 bases. Base calls and demultiplexing were performed
with Illumina’s bcl2fastq software and a custompythondemultiplexing
programwith a maximum of onemismatch in the indexing read. RNA-
seq reads were then aligned to the Ensembl release 76 primary
assembly with STAR version 2.5.1a1. Gene counts were derived from
the number of uniquely aligned unambiguous reads by Subread:fea-
tureCount version 1.4.6-p52.

CD14+ monocyte isolation
Peripheral blood mononuclear cells (PBMC) were obtained from leu-
kocyte reduction system cones that are classified as non-human
researchunder theWashingtonUniversityHumanResearchProtection
Office. PBMCs were isolated using SepMate tubes (StemCell Technol-
ogies) and Ficoll-Paque density gradient medium (Fisher Scientific)
and immediately cryopreserved in FBS supplementedwith 10% DMSO.
PBMCs were then thawed and incubated for 12–16 h. Subsequently,
CD14+ monocytes were positively selected using anti-CD14-
conjugated magnetic microbeads (Miltenyi Biotec, 130-050-201) by
applying the cell suspension to two consecutive magnetic columns to
maximize purity of the CD14+ fraction.

Migration assay with conditioned media
Conditioned media (CM) was obtained as follows: HSC cells were
plated at a density of 5 × 105 cells/10 cm tissue culture plate in
10mL of their growth media containing 2.5% FBS. CM was collected
at 72 h after plating, centrifuged at 500 x g for 10min, filtered
through a 0.45 µM polyethersulfone (PES) syringe filter (MidSci),
and used fresh. Base media (BM) consisted of 10mL of growth
media/10 cm tissue culture plate for each respective line with 2.5%
FBS that was placed in an empty tissue culture plate in parallel to
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the CM plates and processed identically as the CM. The CM was
supplemented with protein A purified rabbit IgG (Cell Sciences,
CSI20228) as isotype control or rabbit anti-human CSF1 antibody
(Cell Sciences, PA0922) at the indicated concentrations. 150 µL of
CM or BM was added per well to the bottom chamber of a 96-well
transwell plate (5 µm pore polycarbonate membrane, Corning,
3388). Isolated CD14+ monocytes were resuspended in serum free
RPMI1640 media (ThermoFisher Scientific) supplemented with
protein A purified rabbit IgG (Cell Sciences, CSI20228) or rabbit
anti-human CSF1 antibody (Cell Sciences, PA0922) at 0.50 µg/µl.
5 × 104 CD14+ monocytes in 100 µl were added to the upper cham-
ber of the transwell plate. Plates were incubated at 37 °C for 24 h.
CellTitre-Glo (CTG, Promega) was used to quantify the lumines-
cence in the bottom chamber according tomanufacturer protocols.
The Biotek Cytation 5 (BioTek, Winooski, VT) was used to measure
luminescence. Each condition was performed in technical tripli-
cates, and the experiment was repeated three times to ensure
biologic validity.

Cell proliferation with conditioned media
CellTitre-Glo (CTG, Promega) was used to quantify proliferation
according tomanufacturer protocols. Isolated CD14+monocytes were
resuspended at 2.5 × 104 cells/mL in BM or CM prepared as above
except that themedia contained 10% FBS. The CM cell suspension was
supplemented with protein A purified rabbit IgG (Cell Sciences,
CSI20228) as isotype control or rabbit anti-human CSF1 antibody (Cell
Sciences, PA0922) at 0.50 µg/µl. 100μL of the cell suspensions con-
taining 2.5 × 103 CD14+ monocytes were seeded per well in a 96 well
tissue culture plate. CTG quantification was performed at 1 h and 48 h
after seeding, and luminescence was measured using the Biotek
Cytation 5 (BioTek,Winooski, VT). Luminescence values were adjusted
based on the average luminescence value for three control wells con-
taining 40 nM adenosine triphosphate (ATP) measured on the same
plate for each recording. Each condition was performed in technical
triplicates, and the experiment was repeated three times to ensure
biologic validity.

Statistics & reproducibility
Given the exploratory design of our study, aimed at exploring the VS
TMEand the association of VS-SC states with immune cell populations,
no statistical method was used to predetermine sample size and
datasets were integrated as they became available. Cell line experi-
ments were performed in technical and biological replicates, as
described above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All scRNA-seq, scATAC-seq, and new bulk RNA-seq data is available
through the Gene Expression Omnibus with GEO accession
“GSE216784”. All WES data is available through the database of Gen-
otypes and Phenotypes (dbGaP) with accession “phs003318.v1.p1”.
Raw data frompreviously published studies were obtained as follows:
RNA-seq and expression microarray data that were publicly available
were downloaded (“GSE39645”, “GSE141801”, “GSE108524”,
“EGAS00001001886”); data from Aaron et al. (Otol Neurotol, 2020)
were kindly shared upon request. Source data are provided with
this paper.

Code availability
Data analysis was performed with publicly available packages, as
described in theMethods. No customcodewas generated in this study.
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