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Serum Metabolic Fingerprints Characterize Systemic Lupus
Erythematosus

Shunxiang Li, Huihua Ding, Ziheng Qi, Jing Yang, Jingyi Huang, Lin Huang,
Mengji Zhang, Yuanjia Tang, Nan Shen, Kun Qian,* Qiang Guo,* and Jingjing Wan*

Metabolic fingerprints in serum characterize diverse diseases for diagnostics
and biomarker discovery. The identification of systemic lupus erythematosus
(SLE) by serum metabolic fingerprints (SMFs) will facilitate precision medicine
in SLE in an early and designed manner. Here, a discovery cohort of 731
individuals including 357 SLE patients and 374 healthy controls (HCs), and a
validation cohort of 184 individuals (SLE/HC, 91/93) are constructed. Each
SMF is directly recorded by nano-assisted laser desorption/ionization mass
spectrometry (LDI MS) within 1 minute using 1 μL of native serum, which
contains 908 mass to charge features. Sparse learning of SMFs achieves the
SLE identification with sensitivity/specificity and area-under-the-curve (AUC)
up to 86.0%/92.0% and 0.950 for the discovery cohort. For the independent
validation cohort, it exhibits no performance loss by affording the
sensitivity/specificity and AUC of 89.0%/100.0% and 0.992. Notably, a
metabolic biomarker panel is screened out from the SMFs, demonstrating the
unique metabolic pattern of SLE patients different from both HCs and
rheumatoid arthritis patients. In conclusion, SMFs characterize SLE by
revealing its unique metabolic pattern. Different regulation of small molecule
metabolites contributes to the precise diagnosis of autoimmune disease and
further exploration of the pathogenic mechanisms.
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1. Introduction

Systemic lupus erythematosus (SLE) is a
heterogeneous autoimmune disease with
diverse clinical manifestations and unpre-
dictable disease courses, which affects more
than 6 million people in the world.[1] The
various organ involvements of SLE pa-
tients cause a profound effect on their
health-related life quality, the delayed di-
agnosis of which would lead to organ
damage accrual and retard the survival
improvement.[2] However, due to the com-
plexity and heterogenicity of SLE,[3] the un-
derlying pathogenic mechanism has not
been fully elucidated, restricting the discov-
ery of reliable biomarkers for its diagnosis
and related metabolic pathway analysis.

Metabolic fingerprints correlate with
other omics (e.g., genomics and pro-
teomics), as metabolites are the end
products of gene expression.[4] Addressing
the delayed diagnosis and high cost of cur-
rent genomic and proteomic biomarkers,[5]

metabolic biomarkers provide a more distal
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Scheme 1. Nano-assisted acquisition of serum metabolic fingerprints (SMFs) and systemic lupus erythematosus (SLE) diagnosis by sparse learning.
A) Experimental process of laser desorption/ionization mass spectrometry (LDI MS) detection. 1 μL of native serum per individual was mixed with
ferric particles for LDI MS detection. The mass to charge (m/z) features of sodium ion (Na+) and potassium ion (K+) adducts were recorded under
the irradiation of Nd:YAG laser (355 nm). B) Sparse learning of SMFs was conducted for SLE metabolic analysis. The SMFs of SLE patients and healthy
controls (HCs) in the discovery cohort were first applied in 5-fold cross-validation with 20 rounds, yielding 100 diagnostic models for verification of
receiver operating characteristic (ROC) curves. The optimized model was obtained by assessing ROC curves of above 100 models. Then an independent
validation cohort was applied to the optimized model to obtain the blind test result. Specific m/z features were also screened out as biomarkers and
constructed as a biomarker panel for analysis.

characterization of pathological and physiological processes,
which are more sensitive to the slight variations of health
status.[6] In addition, the translational use of metabolic biomark-
ers in concert with genomic and proteomic markers may change
the way of biomarker utility in SLE. However, the manner how
SLE hallmarks (metabolic disorders, organ injuries, and autoim-
munity abnormality, etc.) affect metabolites is still unknown.[7]

The limited exploration of SLE metabolic fingerprint attributes
to two key factors: 1) lack of a large sample cohort to exclude the
individual difference, and 2) absence of advanced metabolic de-
tection tool.

Serum detection assays promise SLE diagnostics owing to
their minimal invasiveness and desirable adaptability for large-
scale clinic use, superior to the conventional methods (e.g.,
biopsy and physical examination).[8] Current analytic tools for
serum metabolic analysis mainly include nuclear molecular res-
onance (NMR) spectroscopy and mass spectrometry (MS).[9] Su-
perior to the NMR of suboptimal sensitivity and limited iden-
tification capability, MS affords high sensitivity and favorable
biomarker identification ability assisted by tandem MS. Mainly,
laser desorption/ionization (LDI) MS enables fast analysis speed,
low sample consumption, and cost-effective expenses by nano-
assisted solid-gas transition,[4a,10] promising to be a powerful an-

alytical tool in the coming era of precision medicine. Herein,
we acquired serum metabolic fingerprints (SMFs) of 915 indi-
viduals by nano-assisted LDI MS (Scheme 1A), which could be
deciphered by sparse learning for SLE diagnosis and metabolic
biomarker panel construction (Scheme 1B).

2. Experimental Section

2.1. Study Design and Population

This is a cross-sectional study with a total of 915 individu-
als, including 448 SLE patients and 467 healthy controls (HCs)
(Figure 1A and Tables S1 and S2, Supporting Information).
All the patients were recruited from Renji Hospital, School of
Medicine, Shanghai Jiao Tong University, from Oct. 1st, 2016 to
Jun. 30th, 2018. All SLE patients fulfilled the classification cri-
teria of 2012 systemic lupus international collaborating clinics
(SLICC).[11] For the HCs, 467 healthy volunteers, who showed no
signs of arthralgia, heart failure, renal failure, autoimmune dis-
ease, inflammatory conditions, and other major diseases, were
included in this study. All the participants gave their written in-
formed consents before the beginning of the study. This research
was conducted in accordance with the Declaration of Helsinki
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Figure 1. SMF extraction by nano-assisted LDI MS. A) Sample characteristics and study design of 915 individuals, including 731 in the discovery cohort
and 184 in the validation cohort. The SMF acquisition process is shown in (B,C). B) The serum samples were collected from SLE patients and HCs
according to standard protocols (see Methods for more details) with only 1 μL of serum per individual loaded on the plate. C) The matrix suspension
was mixed with serum sample for direct LDI MS detection. D) Typical MS spectra of an SLE patient and a healthy volunteer with m/z of 100–400. E) The
blueprint consists of 731 SMFs in the discovery cohort, each of which contains 908 m/z features.

and approved by the institutional ethics committee of Renji Hos-
pital (RA-2019-156), School of Medicine, Shanghai Jiao Tong Uni-
versity.

Specifically, 731 individuals (357 SLE patients and 374 age- and
sex-matched HCs) were randomly employed as the discovery co-
hort for SLE diagnostic model building (Table S1, Supporting In-
formation). The other 184 individuals (91 SLE patients and 93
age- and sex-matched HCs) were applied as the independent val-

idation cohort for verifying the SLE diagnostic model (Table S1,
Supporting Information). No significant differences of age and
sex were discovered between the discovery and validation cohort
for SLE patients, ensuring the effective validation results (p >

0.05, Table S2, Supporting Information).
The organ involvements of 448 SLE patients were confirmed

based on their medical history and pathological examinations,
including 228 with renal involvement, 203 with mucocutaneous
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involvement, 134 with hematological involvement, 123 with
musculoskeletal involvement, and 87 with cardiorespiratory
involvement. In addition, a small RA queue was collected for
disease controls, and a separate queue (SLE/HC, 14, 13) for
metabolic marker detection under the same ethics committee
(RA-2019-156). All the participants gave their written informed
consents before the beginning of the study.

This research was conducted following the Declaration of
Helsinki and approved by the institutional ethics committee of
Renji Hospital (RA-2019-156), School of medicine, Shanghai Jiao
Tong University.

3. Results

3.1. Serum Metabolic Fingerprint Analysis

We carried out the metabolic measurement of 1 μL of native
serum from each sample in a microarray manner (Figure 1B),
without any complex pretreatment. For a typical LDI MS detec-
tion, we loaded the serum sample microarray with ferric particles
as the matrix (see Methods in Supporting Information, Figure
1C). Notably, the ferric particles demonstrated nanoscale surface
roughness for selective metabolite enrichment and stable crys-
talline structure eliminating the conventional sweet-spot search-
ing (Figure S1, Supporting Information). These ferric particles
can be ideal for LDI MS due to the fine water dispersity (polydis-
persity index (PDI) < 0.3, Figure S2A, Supporting Information)
for matrix use, negative surface charge (zeta potential, Figure
S2B, Supporting Information) for cation adduct,[4a,8a,12] strong
light absorption in the ultraviolet range (Figure S2C, Supporting
Information) for laser energy transfer during LDI process.[13] Be-
sides, the preparation of ferric particles is scalable and capable of
> 150 000 tests per batch (Figure S2D, Supporting Information)
since only 1 μg of ferric particles is required per LDI MS detec-
tion (Figure 1C). Consequently, nano-assisted LDI MS achieved
the original data acquisition within 1 minute per individual. The
typical MS spectra acquired for SLE and HC were exhibited in
Figure 1D.

A blueprint of SLE patients and HCs displayed in Figure 1E
summarized the SMFs of 731 individuals (SLE/HC, 357/374) in
the discovery cohort. Notably, the mass to charge (m/z) features
were focused on the low mass range of small metabolites (m/z of
100–1000), considering the desirable detection selectivity (deal-
ing with high concentrations of salts/proteins in Figure S3, Sup-
porting Information) and sensitivity (dealing with low concentra-
tions of small metabolites in Figure S4, Supporting Information).
Specifically, from the raw mass spectrum containing ≈ 120 000
m/z data points per sample, the SMF of 908 m/z features was
obtained by searching the local maxima. We also examined the
intra-similarity of mass spectra using cosine correlation analysis,
confirming the high similarity within the SLE/HC group (≈90%
SLE patients/HCs with similarity score > 0.9, Figure S5, Sup-
porting Information). Therefore, our platform features fast an-
alytical speed (< 1 minute per individual) and high-throughput
(908 m/z features within the ≈120 000 data points of raw mass
spectra) for achieving the large cohort extraction of SMFs, lay-
ing the solid foundation for following the SLE diagnostic model
construction.

3.2. Diagnosis by Machine Learning

We diagnosed SLE patients from HCs by machine learn-
ing of the SMFs (Figure 2). Based on the sufficient sample
size demonstrated by power analysis (Figure S6, Supporting
Information),[14] we studied the diagnostic performance of SMFs
in identifying SLE patients from HCs by using different machine
learning methods. In the discovery cohort, the sparse learning of
SMFs achieved the diagnostic AUC of 0.950 with a 95% confi-
dence interval (CI) of 0.935-0.965 (Figure 2A and Table S3, Sup-
porting Information), the performance of which remained stable
as changing model numbers (Figure S7 and Table S4, Supporting
Information). The employed parameters of the sparse learning
were determined by the iterative optimization process (Figure S8,
Supporting Information), which was based on the literature with
slight modifications.[8a] Notably, the SLE patients could be differ-
entiated from HCs with a sensitivity/specificity of 86.0%/92.0%
(Figure 2B). In contrast, other machine learning methods only af-
forded the limited AUC of 0.486-0.544 (p < 0.05, Figure 2A, and
Table S3, Supporting Information).

We also conducted the machine learning methods on the
SMFs of an independent validation cohort. Specifically, sparse
learning of SMFs achieved the diagnostic AUC of 0.992 with 95%
CI of 0.983-1.000 for diagnosing SLE patients from HCs, higher
than the AUC of 0.450-0.533 afforded by other machine learn-
ing methods (p < 0.05, Figure 2C, and Table S3, Supporting In-
formation). Accordingly, SMFs by sparse learning achieved the
sensitivity/specificity of 89.0%/100.0% (Figure 2D), much higher
than other machine learning methods (sensitivity/specificity of
44.1%−61.3%/34.1%−65.9%, p < 0.05, Table S3, Supporting In-
formation). We also investigated the performance of major organ
involvements in SLE (Table S5, Supporting Information), and
the results showed limited specificity. This could be due to the
fact that the majority of SLE patients have multi-organ involve-
ment (Figure S9, Supporting Information), and the biomarkers
selected based on multi-organ involvement have limited effective-
ness in distinguishing patients with involvement of different or-
gans. For disease activity, while the SMFs failed to distinguish
the SLE patients with low disease activity (SLEDAI ≤ 6) and high
disease activity (SLEDAI > 6), the established model maintained
the diagnostic performance (AUC of 0.898) in identifying the SLE
patients with low disease activity (Figure S10, Supporting Infor-
mation). Briefly, the superiority of SMFs by sparse learning has
been demonstrated for SLE diagnosis due to its high consistency
exhibited in the discovery and validation cohort.

3.3. Construction of SLE Metabolic Biomarker Panel

We expected to identify the unique metabolic pattern of SLE
patients from the massive features, thus providing insights
for elucidating related pathological mechanisms. We identified
a biomarker panel of 4 metabolites (imidazoleacetic acid, 2-
hydroxyadipic acid, glucose, and pseudouridine) for SLE based
on the optimized diagnostic model by measuring the contribu-
tion of each m/z feature within SMFs (Figure 3A and Table S6,
Supporting Information).

The identification and validation for the 4 high-contribution
m/z features within SMFs were conducted by an LC-ESI-HRMS2
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Figure 2. Differentiation of SLE from HCs by machine learning methods. A) ROC curves based on the 731 SMFs (SLE/HC, 357/374) in the discovery
cohort, using sparse learning (AUC of 0.950), decision tree (AUC of 0.486), logistic regression (AUC of 0.489), supporting vector machine (SVM, AUC of
0.498), K-nearest neighbors (kNN, AUC of 0.544), and random forest (AUC of 0.513). B) The scatter plot of probability in the discovery cohort is based
on the optimized diagnostic model of sparse learning. C) ROC curve based on the 184 SMFs (SLE/HC, 91/93) in the validation cohort, using sparse
learning (AUC of 0.992), decision tree (AUC of 0.533), logistic regression (AUC of 0.527), SVM (AUC of 0.450), kNN (AUC of 0.523), and random forest
(AUC of 0.499). D) The scatter plot of probability in the validation cohort is based on the optimized diagnostic model of sparse learning. Every dot in
(B) and (D) represents one individual in this study.

metabolic analysis for an independent validation cohort
(SLE/HC, 14/13). Specifically, the information on m/z and
fold changes of intensities can serve as identifier to match the
m/z features within different mass spectrometry platform of
the same compound. Next, the high-contribution m/z features
within LDI-MS were annotated to metabolites (imidazoleacetic
acid, 2-hydroxyadipic acid, glucose and pseudouridine) according
to the matched m/z features within LC-MS/MS via accurate mass
and MS/MS matching with the human metabolome database
(https://hmdb.ca, Table S7, Supporting Information).[15] Mean-
while, the LC-MS/MS result, consistent with the LDI-MS result,
verified that the biomarkers were reliable.

Sparse learning of biomarker panel reached an enhanced di-
agnostic AUC of 0.800–0.877 (Figure 3B,C, and Table S8, Sup-
porting Information). It was critical to combine the 4 metabolic
biomarkers as a biomarker panel for presenting the unique
metabolic pattern of SLE, as these biomarkers showed limited
diagnostic performances when singly applied (AUC of 0.66-
0.81/0.58-0.83 in discovery/validation cohort, Figure S11 and
Table S9, Supporting Information). Notably, the 4 potential

biomarkers did not show correlation with SLEDAI, which sug-
gested that the biomarkers are geared towards the diagnosis of
SLE patients but have limited capability in assessing disease ac-
tivity (Table S10, Supporting Information). Moreover, the valid-
ity of the above metabolic panel (4 metabolic biomarkers) was
illustrated by maintaining the diagnostic performance of whole
profiling of SMFs (908 m/z features) with slight AUC loss (<0.1,
Figure 2).

In patients with rheumatoid arthritis (RA), features associ-
ated with systemic lupus erythematosus (SLE) are commonly
observed and both RA and SLE are systemic autoimmune dis-
eases, sharing some similar clinical features and underlying
pathogenesis.[16] We also investigated the potential metabolic
biomarkers regarding the variations in SLE patients compared to
HCs or a small cohort of rheumatoid arthritis (RA) patients as dis-
ease controls. Compared to HCs, these four potential biomarkers
were all up-regulated in SLE patients by affording the fold change
of 1.09-2.30 (Figure 3D, Figure S12 and Tables S11 and S12,
Supporting Information). The established metabolic biomark-
ers showed significant differences between SLE and RA patients
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Figure 3. Construction of metabolic biomarker panel of SLE. A) Workflow for constructing the metabolic biomarker panel. After the pretreatment of raw
mass spectra (containing 120 000 data points), the SMF of 908 m/z features was extracted, yielding 66 m/z signals through the feature selection process,
thus identifying 4 biomarkers. B) The ROC curves by sparse learning of the 4 biomarkers in the discovery cohort (red line) and validation cohort (black
line). C) The scatter plot of probability in discovery cohort based on the optimized diagnostic model of SMFs. D) The intensity plot of SLE patients (in
pink) and HCs (in green) is based on the 4 biomarkers, according to five independent LDI MS experiments. E) The intensity plot of 357 SLE patients
(in pink) and 27 rheumatoid arthritis (RA) patients (in yellow) based the 4 biomarkers, according to five independent LDI MS experiments (* represents
p < 0.05, ** represents p < 0.01, *** represents p < 0.001, and **** represented p < 0.0001). F) The scores plot of SLE patients and RA patients by
principal component analysis (PCA).

(357/27, Figure 3E, Tables S13 and S14, Supporting Information,
p < 0.05). Also, the SLE and RA patients could be assembled into
two clusters by applying the unsupervised cluster method of prin-
cipal component analysis (PCA) (Figure 3F, Tables S13 and S14,
Supporting Information), suggesting their different metabolic
patterns in distal metabolic fingerprints. As the medication of
RA and SLE was significantly different, we applied the propen-
sity score matching (PSM) to select SLE patients to match the RA
patients, which was conducted at a ratio of 1:1 for age, gender,
and medication (prednisone, methotrexate, leflunomide, and hy-
droxychloroquine, Table S15, Supporting Information). The PCA
analysis demonstrated the limited influence of medication. A
similar result was also obtained on 20 patients (SLE/RA, 10/10)
with naïve treatment (Figure S13, Supporting Information). Con-
sidering the small sample size of RA patients, the effect of med-
ication regimens (e.g., corticosteroids) still calls for more future
efforts on cohort construction with strict enrollment criteria.

We constructed a small cohort to evaluate the effect of med-
ications on the diagnostic performance of SMFs in our SLE pa-
tients (Table S16, Supporting Information). The diagnostic model
based on the SLE patients who were treatment naive and HCs
showed the AUC of 0.947 (Figure S14A, Supporting Informa-
tion), which maintained the major diagnostic performance based
on the large cohort of 915 individuals (AUC of 0.950). The differ-
ence in medication exposure could not result in the differentia-
tion between SLE patients (AUC of 0.504, Figure S14B, Support-
ing Information), indicating the limited influence of medication

usage in the SLE diagnostic model. We conducted PCA analysis
on SLE patients who received different dosages of corticosteroids
in the discovery cohort, including 15 individuals who received
no corticosteroids, 100 individuals with a daily dosage of less
than 20 mg, 104 individuals with a daily dosage between 20 and
40 mg, and 79 individuals with a daily dosage greater than 40 mg.
As shown in Figure S14C (Supporting Information), no distinct
clusters were formed for patients with different medication sce-
narios, illustrating the minor role of corticosteroids in the SLE
diagnostic model. Moreover, there were 27 SLE patients who ex-
hibited complications with diabetes and dyslipidemia, the effect
of which on the diagnostic model could be negligible, as shown
in Figure S14D (Supporting Information). While the above anal-
ysis provided indirect insights into medication and complication
effects, it is critical to construct a cohort with strict enrollment
criteria to rule out the medication effect in the future.

4. Discussion

SLE is a progressive autoimmune disease with great heterogene-
ity. The accurate and in-time diagnosis of SLE is indispensable
for effective treatment and appropriate prognosis. Currently,
the clinical diagnosis of SLE relies on three major classification
criteria (EULAR/ACR-2019, SLICC-2012, and ACR-1997 criteria)
with both clinical criteria and immunological criteria involved.
Besides the complexity, there were about 25.6-30.5% of patients
missed as estimated despite the major classification criteria
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afforded the high diagnostic performance (sensitivity of 85.7-
91.3% and specificity of 93.0-97.3%).[17] Meanwhile, it is of
intense research efforts to develop the alternatives to current
classification criteria based on a simple blood test, mainly focus-
ing on the design of assays from nucleic acids and proteins.[5b,c,18]

Importantly, given a designed cohort like genomic/proteomic ap-
proaches to study large series of individuals (> 1000), metabolic
approaches would be the next-generation diagnostic tools,
considering that 1) metabolites at the end of pathways reveal
the real-time status of patients with precision; 2) metabolic
assay construction is facile and free of expensive or tedious
sequencing/immunoassays.

Notably, the metabolic analysis of metabolites as end-products
has exhibited great potential for profiling complex diseases like
cancers. In this study, we conducted the serum metabolic analysis
for SLE patients and achieved the identification of SLE patients
from HCs with a diagnostic sensitivity of 86.0–89.0% and speci-
ficity of 92.0-100.0% in the cohort of 915 individuals (SLE/HC of
448/467). Compared with the prior serum metabolomic studies
in SLE (Table S17, Supporting Information), the present study af-
forded the optimized diagnostic performance and improved cred-
ibility due to the advantages in sample volume and study design,
detection platform, and statistical algorithms.

The sample volume and study design are of fundamental sig-
nificance to the metabolic analysis. In this study, a large cohort
of 731 individuals (SLE/HCs, 357/374) was constructed, which is
essential to avoid individual differences for SLE metabolic anal-
ysis. In addition, 184 individuals were further classified as an
independent cohort for verification, thus ensuring credible di-
agnostic performance. In contrast, the previous studies of SLE
metabolic analysis were conducted based on small numbers of
individuals (60-140 individuals, including 30-80 SLE and 20-60
controls),[18c,19] which often lacked an independent validation co-
hort and could be easily disturbed by individual difference. Sim-
ilarly, some pilot studies also found promising results on the
specific metabolomic signature in LN patients but might run
the risk of overfitting due to the limited sample size (20-110
individuals).[6b,20]

A high-performance metabolic detection platform is also crit-
ical for SLE diagnosis. The mainstream platforms include NMR
spectrometry and MS, besides biochemical/immunoassay.[21] For
NMR, the spins of nuclei interact with the applied magnetic field
to characterize atomic species for untargeted detection,[22] but
the weak interaction energy involved results in low sensitivity.
For comparison, MS affords high-throughput (≈1000 m/z fea-
tures) and high resolution (± 10 mDa) for both targeted and un-
targeted metabolic detection.[4a,23] However, frequently applied
MS techniques of GC/LC-MS call for a considerate experimental
time of 0.5–1 h,[10a–c] sample volume of 30–50 μL,[10c] and prime
cost of additional devices and reagents.[10b,c,24] Accordingly, nano-
assisted LDI MS we developed is 1) fast without tedious sample
pretreatment, due to the surface nano-crevices of the matrix for
in situ size-selective enrichment of small metabolites rather than
large molecules (Figure S1, Supporting Information); 2) of low
sample volume (1 μL of serum per individual), due to the unique
LDI process in producing efficient cation adduct at low detection
limits (8.8–85.4 pmol, Figure S4, Supporting Information); and
3) low-cost and free of additional devices and reagents, due to the
direct recognition of serum microarrays on-chip (Figure 1A,B)

in an antibody-free manner. Notably, compared to reported nano
matrix based on metal oxide,[25] the ferric particles can offer high
production efficiency and easy-controlled structure, making it
suitable for widespread adoption in large-scale and clinical test-
ing. Therefore, the ferric particle assisted LDI MS tackled the
major challenges in metabolic analysis, serving as a promising
detection platform.

A suitable statistical algorithm is essential to interpreting
the MS signals for diagnosis due to their complexity (contain-
ing ≈120000 data points per SMF). Distinct from the prior
metabolomic studies in SLE that adopted the traditional statisti-
cal algorithms (eg, principal component analysis (PCA)), sparse
learning was applied for SMFs based diagnostic model building
towards computer-aided diagnosis. Sparse learning of the SMFs
exhibited a superior diagnostic AUC of 0.950-0.992 for SLE diag-
nosis. No performance loss in the independent validation cohort
further confirmed the validity of the established diagnostic model
(Figure 2 and Figure S6, Supporting Information). The success of
sparse learning over other machine learning methods attributes
to the sparse regularization and intrinsic sparsity of SMFs (Figure
S7 and Table S4, Supporting Information).[4a] For sparse regular-
ization, sparse learning allows to gauge the contributions of these
m/z features via numeric computation and assign high weights
to a limited number of biomarkers with relatively high impor-
tance. For intrinsic sparsity, only a few m/z features are poten-
tially useful to diagnosis, revealed by that only tens of features (66
m/z signals) were selected stably with frequency ≥ 95 and statis-
tical significance (p < 0.05) as metabolic biomarkers. Therefore,
we achieved the advanced sparse learning-aided diagnosis of SLE
based on the SMFs.

In clinical practice, employing the fewer selected metabolites
as biomarkers is more practical and feasible than attempting
to use the entire set of 66 features.[26] We constructed a four-
metabolite panel based on the optimized diagnostic model (66
features), which maintained the diagnostic performance of
the whole profiling of SMFs. The panel was further validated
in a small cohort of SLE patients versus RA patients. The
four metabolites (imidazoleacetic acid, 2-hydroxyadipic acid,
glucose, and pseudouridine) identified in the current study
showed certain consistency with previous metabolic profiling
or pathogenesis studies and revealed novel discoveries. Glucose
was found to be increased in SLE patients by several different
metabolic profiling studies.[20b,27] The alternation of glucose
could be raised by the mitochondrial dysfunction and conse-
quent energy abnormality of SLE patients, agreeing with CD4+

T cells metabolism.[28] 2-Hydroxyadipic acid, an aliphatic acyclic
compound, is another biomarker associated with the energy
abnormality, which is involved in fatty acid metabolism.[29]

Clinically, our group has reported that metformin, originally a
medication for diabetes, reduced frequency of major flares in
SLE patients,[30] indicating that the metabolism of glucose and
energy is a promising therapeutic target in SLE. In addition to
energy metabolism, the disorder of histamine metabolism was
also found to be associated with SLE in the present study, which
is mainly involved in immune regulation and allergy.[31] Imida-
zoleacetic acid is the oxidative product of histamine,[32] an im-
portant immunomodulator that regulates allergic inflammatory
reactions and other physiological processes.[31,33] The abnormal-
ity of histamine metabolism in SLE patients has been reported in
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previous work,[18c,34] indicating histamine metabolism could be a
key factor in the pathogenesis of SLE and other immune diseases.
Another interesting biomarker is pseudouridine, also known
as 5-ribosyluracil, associated with the nucleoside metabolism.
Previous metabolic profiling studies haven’t suggested the
abnormality of nucleoside metabolism of SLE, which, however,
has been reported to be related to other autoimmune diseases,
such as Graves’ disease and Aicardi-Goutières syndrome.[35] The
abnormality of nucleoside metabolism could indicate the dys-
functions for activation and proliferation of immune cells, which
demand more complex and energy expensive nucleotide synthe-
sis pathway.[36] Meanwhile, nucleotide metabolism is involved
in the regulation of mtDNA-dependent innate immunity.[37] Our
finding suggested that nucleotide metabolism has the potential
as a novel target for therapeutic interventions to prevent SLE. Al-
though the biomarker panel identified in this study differed from
previous reports, the pathways and biological roles of biomarkers
were generally consistent across the present and previous stud-
ies, which were mainly involved in the inflammation responses,
mitochondrial dysfunction, carbohydrate and lipid metabolism
abnormality.[18c,34,38] The different metabolites within the same
metabolic pathways were identified as biomarkers across the
present and prior studies could be due to different ionization
sources. The mass spectrometers with different ionization
sources generally produce distinct SMFs in metabolic analysis,
which can yield a particular machine learning model, resulting
in the difference of high contribution biomarkers. On the other
hand, in the present study, the purpose of the construction of
biomarker panel is to efficiently identify SLE patients with the
use of as few biomarkers as possible, which caused that m/z
features of some differential metabolites were not selected to the
biomarker panel and identified. In clinical practice, employing
the 4 selected metabolites as biomarkers is more practical and
feasible than attempting to use the entire set of 66 features.
These 4 metabolites have demonstrated substantial diagnostic
performance and can be readily utilized for diagnostic purposes
in a clinical setting. They offer a balance between accuracy and
clinical applicability, making them suitable for translation into
clinical practice.

5. Conclusion

We acquired the SMFs of 915 individuals by nano-assisted LDI
MS and achieved the SLE diagnosis with AUC of 0.950–0.992
by sparse learning of the SMFs. We preliminarily constructed a
biomarker panel of 4 metabolites for SLE patients, demonstrat-
ing their unique metabolic pattern compared to HCs and RA pa-
tients. In parallel to recent genomic and proteomic advances, this
work would inspire the pathogenic insights of SLE emerging in
metabolomics and shed light on the clinical tool for precision di-
agnosis and monitoring in the near future.

There are still several limitations and future research lines
to be stated, including that 1) MS system is required to record
the SMFs and may hinder its potential application in point-of-
care (POC) testing; 2) There are opportunities for enhancing co-
hort collection, including improving the matching between pa-
tient and healthy groups, conducting screenings for untreated
patients, incorporating disease control groups (such as Sjogren’s
syndrome), and gathering samples from diverse ethnic back-

grounds. These efforts will aid in achieving a more compre-
hensive understanding of the mechanisms underlying SLE; 4)
a combination of multi-modal information would enhance the
outreach and applicability of our approach.
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the author.

Acknowledgements
S.L., H.D., and Z.Q. contributed equally to this work. The authors ex-
press the gratitude to the patients and healthy volunteers who made
this work possible. The authors are grateful for the financial support
from Project 2022YFC2502800 by Natioanl Key R&D Program of China,
Projects 22074044, 22122404, 81971771, and 82001709 by National Nat-
ural Science Foundation of China, Project KF2105 by State Key Lab-
oratory of Oncogenes and Related Genes, Projects 2017YFE0124400,
2017YFC0909000, 2021YFF0703500, and 2021YFA0910104 by Ministry of
Science and Technology of the People’s Republic of China, and Project
2021-01-07-00-02-E00083 by Shanghai Institutions of Higher Learning.
This work was also sponsored by the Shanghai Rising-Star Programme
(19QA1404800), Innovation Group Project of Shanghai Municipal Health
Commission (2019CXJQ03), Innovation Research Plan by the Shang-
hai Municipal Education Commission (ZXWF082101), and Programme
for Professor of Special Appointment (Eastern Scholar) at Shanghai
Institutions of Higher Learning. Renji Hospital Biobank was funded
by the National Human Genetic Resources Sharing Service Platform
(2005DKA21300).

Conflict of Interest
The authors have filed patents using the nano-assisted LDI MS methods
to detect and diagnose SLE patients.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
diagnostics, mass spectrometry, metabolites, systemic lupus erythemato-
sus

Received: July 7, 2023
Revised: October 1, 2023

Published online: November 12, 2023

[1] a) A. Rahman, D. A. Isenberg, N. Engl. J. Med. 2008, 358, 929; b) E.
E. Carter, S. G. Barr, A. E. Clarke, Nat. Rev. Rheumatol. 2016, 12, 605.

[2] G. C. Tsokos, Nat. Immunol. 2020, 21, 605.
[3] K. R. Bashant, A. M. Aponte, D. Randazzo, P. Rezvan Sangsari, A J.

Wood, J. A. Bibby, E. E. West, A. Vassallo, Z. G. Manna, M. P. Playford,
N. Jordan, S. Hasni, M. Gucek, C. Kemper, A. Conway Morris, N.
Y. Morgan, N. Toepfner, J. Guck, N. N. Mehta, E. R. Chilvers, C.
Summers, M. J. Kaplan, Ann. Rheum. Dis. 2021, 80, 209.

Adv. Sci. 2024, 11, 2304610 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304610 (8 of 10)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

[4] a) J. Cao, X. Shi, D. D. Gurav, L. Huang, H. Su, K. Li, J. Niu, M. Zhang,
Q. Wang, M. Jiang, K. Qian, Adv. Mater. 2020, 32, 2000906; b) H. Ding,
C. Mohan, Nat. Rev. Rheumatol. 2016, 12, 627; c) W. Xu, L. Wang, Ru
Zhang, X. Sun, L. Huang, H. Su, X. Wei, C.-C. Chen, J. Lou, H. Dai, K.
Qian, Nat. Commun. 2020, 11, 1654.

[5] a) G. J. Hou, I. T. W. Harley, X. M. Lu, T. Zhou, N. Xu, C. Yao, Y. T. Qin,
Y. Ouyang, J. Y. Ma, X. Y. Zhu, X. Yu, H. Xu, D. Dai, H. H. Ding, Z. H.
Yin, Z. Z. Ye, J. Deng, M. Zhou, Y. J. Tang, B. Namjou, Y. Guo, M. T.
Weirauch, L. C. Kottyan, J. B. Harley, N. Shen, Nat. Commun. 2021,
12, 19; b) M. Zhao, Y. Zhou, B. Zhu, M. Wan, T. Jiang, Q. Tan, Y. Liu, J.
Jiang, S. Luo, Y. Tan, H. Wu, P. Renauer, M. Del Mar Ayala Gutiérrez,
M. J. Castillo Palma, R. Ortega Castro, C. Fernández-Roldán, E. Raya,
R. Faria, C. Carvalho, M. E. Alarcón-Riquelme, Z. Xiang, J. Chen, F. Li,
G. Ling, H. Zhao, X. Liao, Y. Lin, A. H. Sawalha, Q. Lu, Ann. Rheum.
Dis. 2016, 75, 1998; c) X. Liu, W. Zhang, M. Zhao, L. Fu, L. Liu, J.
Wu, S. Luo, L. Wang, Z. Wang, L. Lin, Y. Liu, S. Wang, Y. Yang, L. Luo,
J. Jiang, X. Wang, Y. Tan, T. Li, B. Zhu, Y. Zhao, X. Gao, Z. Wan, C.
Huang, M. Fang, Q. Li, H. Peng, X. Liao, J. Chen, F. Li, G. Ling, et al.,
Ann. Rheum. Dis. 2019, 78, 1070.

[6] a) L. Huang, D. D. Gurav, S. Wu, W. Xu, V. Vedarethinam, J. Yang, H.
Su, X. Wan, Y. Fang, B. Shen, C.-A. H. Price, E. Velliou, J. Liu, K. Qian,
Matter 2019, 1, 1669; b) J. Yang, R. Wang, L. Huang, M. Zhang, J. Niu,
C. Bao, N. Shen, M. Dai, Q. Guo, Q. Wang, Q. Wang, Q. Fu, K. Qian,
Angew. Chem., Int. Ed. 2020, 59, 1703.

[7] a) S.-C. Choi, J. Brown, M. Gong, Y. Ge, M. Zadeh, W. Li, B. P. Croker,
G. Michailidis, T. J. Garrett, M. Mohamadzadeh, L. Morel, Sci. Transl.
Med. 2020, 12,15; b) B. Parker, M. B. Urowitz, D. D. Gladman, M.
Lunt, R. Donn, S.-C. Bae, J. Sanchez-Guerrero, J. Romero-Diaz, C.
Gordon, D. J. Wallace, A. E. Clarke, S. Bernatsky, E. M. Ginzler, D.
A. Isenberg, A. Rahman, J. T. Merrill, G. S. Alarcón, B. J. Fessler, P.
R. Fortin, J. G. Hanly, M. Petri, K. Steinsson, M. A. Dooley, S. Manzi,
M. A. Khamashta, R. Ramsey-Goldman, A. A. Zoma, G. K. Sturfelt, O.
Nived, C. Aranow, et al., Ann. Rheum. Dis. 2015, 74, 1530.

[8] a) L. Huang, L. Wang, X. Hu, S. Chen, Y. Tao, H. Su, J. Yang, W. Xu, V.
Vedarethinam, S. Wu, B. Liu, X. Wan, J. Lou, Q. Wang, K. Qian, Nat.
Commun. 2020, 11, 3556; b) P. Luo, P. Yin, R. Hua, Y. Tan, Z. Li, G.
Qiu, Z. Yin, X. Xie, X. Wang, W. Chen, L. Zhou, X. Wang, Y. Li, H. Chen,
L. Gao, X. Lu, T. Wu, H. Wang, J. Niu, G. Xu, Hepatology 2018, 67, 662.

[9] P. K. Luukkonen, S. Dufour, K. Lyu, X.-M. Zhang, A. Hakkarainen, T. E.
Lehtimäki, G. W. Cline, K. F. Petersen, G. I. Shulman, H. Yki-Järvinen,
Proc. Natl. Acad. Sci. USA 2020, 117, 7347.

[10] a) X. Jiang, R. Sidhu, F. D. Porter, N. M. Yanjanin, A. O. Speak, D.
T. Te Vruchte, F. M. Platt, H. Fujiwara, D. E. Scherrer, J. Zhang, D.
J. Dietzen, J. E. Schaffer, D. S. Ory, J. Lipid Res. 2011, 52, 1435; b)
E. J. Want, I. D. Wilson, H. Gika, G. Theodoridis, R. S. Plumb, J.
Shockcor, E. Holmes, J. K. Nicholson, Nat. Protoc. 2010, 5, 1005; c)
H. K. Pedersen, V. Gudmundsdottir, H. B. Nielsen, T. Hyotylainen,
T. Nielsen, B. A. H. Jensen, K. Forslund, F. Hildebrand, E. Prifti, G.
Falony, E. Le Chatelier, F. Levenez, J. Doré, I. Mattila, D. R. Plichta,
P. Pöhö, L. I. Hellgren, M. Arumugam, S. Sunagawa, S. Vieira-Silva,
T. Jørgensen, J. B. Holm, K. Trost, M. Consortium, K. Kristiansen, S.
Brix, J. Raes, J. Wang, T. Hansen, P. Bork, et al., Nature 2016, 535,
376; d) C. Yang, Y. Pan, H. Yu, X. Hu, X. Li, C. Deng, Adv. Sci. 2023,
10, 2302109; e) C. Yang, A. Miao, C. Yang, C. Huang, H. Chen, Y. Jiang,
C. Deng, N. Sun, Adv. Sci. 2022, 9, 2105905.

[11] M. Petri, A.-M. Orbai, G. S. Alarcón, C. Gordon, J. T. Merrill, P. R.
Fortin, I. N. Bruce, D. Isenberg, D. J. Wallace, O. Nived, G. Sturfelt,
R. Ramsey-Goldman, S.-C. Bae, J. G. Hanly, J. Sánchez-Guerrero, A.
Clarke, C. Aranow, S. Manzi, M. Urowitz, D. Gladman, K. Kalunian,
M. Costner, V. P. Werth, A. Zoma, S. Bernatsky, G. Ruiz-Irastorza, M.
A. Khamashta, S. Jacobsen, J. P. Buyon, P. Maddison, et al., Arthritis
Rheumatol. 2012, 64, 2677.

[12] a) H. Zhao, Y. Li, J. Wang, M. Cheng, Z. Zhao, H. Zhang, C. Wang, J.
Wang, Y. Qiao, J. Wang, ACS Appl. Mater. Interfaces 2018, 10, 37732;

b) Y. Li, X. Cao, L. Zhan, J. Xue, J. Wang, C. Xiong, Z. Nie, Chem.
Commun. 2018, 54, 10905;

[13] a) J. Wang, J. Sun, J. Wang, H. Liu, J. Xue, Z. Nie, Chem. Commun.
2017, 53, 8114; b) H. Liu, Y. Zhou, J. Wang, C. Xiong, J. Xue, L. Zhan,
Z. Nie, Anal. Chem. 2018, 90, 729.

[14] W. B. Dunn, D. Broadhurst, P. Begley, E. Zelena, S. Francis-McIntyre,
N. Anderson, M. Brown, J. D. Knowles, A. Halsall, J. N. Haselden,
A. W. Nicholls, I. D. Wilson, D. B. Kell, R. Goodacre, Human Serum
Metabolome (HUSERMET) Consortium, Nat. Protoc. 2011, 6, 1060.

[15] D. S. Wishart, T. Jewison, An C Guo, M. Wilson, C. Knox, Y. Liu, Y.
Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D.
Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner,
F. Allen, V. Neveu, R. Greiner, A. Scalbert, Nucleic Acids Res. 2013, 41,
D801.

[16] a) M. Icen, P. J. Nicola, H. Maradit-Kremers, C. S. Crowson, T. M.
Therneau, E. L. Matteson, S. E. Gabriel, J. Rheumatol. 2009, 36,
50; b) M. A. Pabón-Porras, S. Molina-Ríos, J. B. Flórez-Suárez, P.
X. Coral-Alvarado, P. Méndez-Patarroyo, G. Quintana-López, SAGE
Open Med. 2019, 7, 205031211987614; c) G. Orozco, S. Eyre, A.
Hinks, J. Bowes, A. W. Morgan, A. G. Wilson, P. Wordsworth, S. Steer,
L. Hocking, W. Thomson, J. Worthington, A. Barton, Ann. Rheum. Dis.
2011, 70, 463.

[17] C. Adamichou, D. Nikolopoulos, I. Genitsaridi, A. Bortoluzzi, A.
Fanouriakis, E. Papastefanakis, E. Kalogiannaki, I. Gergianaki, P.
Sidiropoulos, D. T. Boumpas, G. K. Bertsias, Ann. Rheum. Dis. 2020,
79, 232.

[18] a) X. Zhang, H. Shu, F. Zhang, X. Tian, Y. Dong, Ann. Rheum. Dis.
2007, 66, 530; b) N. Bizzaro, D. Villalta, D. Giavarina, R. Tozzoli, Au-
toimmun. Rev. 2012, 12, 97; c) B. Yan, J. Huang, C. Zhang, X. Hu, M.
Gao, A. Shi, W. Zha, L. Shi, C. Huang, L. Yang, Mod. Rheumatol. 2016,
26, 914.

[19] Q. Zhang, X. Yin, H. Wang, X. Wu, X. Li, Y. Li, X. Zhang, C. Fu, H. Li,
Y. Qiu, Front. Immunol. 2019, 10, 976.

[20] a) S. Kalantari, S. Chashmniam, M. Nafar, Z. Zakeri, M. Parvin, Iran.
J. Basic Med. Sci. 2019, 22, 1288; b) A. Guleria, A. Pratap, D. Dubey,
A. Rawat, S. Chaurasia, E. Sukesh, S. Phatak, S. Ajmani, U. Kumar,
C. L. Khetrapal, P. Bacon, R. Misra, D. Kumar, Sci. Rep. 2016, 6,
35309.

[21] K. J. Bruemmer, O. Green, T. A. Su, D. Shabat, C. J. Chang, Angew.
Chem., Int. Ed. 2018, 57, 7508.

[22] B. Diehl, NMR Spectroscopy in Pharmaceutical Analysis (Eds: U. Holz-
grabe, I. Wawer, B. Diehl), Elsevier, Amsterdam 2008.

[23] S. A. Stopka, C. Rong, A. R. Korte, S. Yadavilli, J. Nazarian, T. T.
Razunguzwa, N. J. Morris, A. Vertes, Angew. Chem., Int. Ed. 2016, 55,
4482.

[24] S. A. Stopka, X. A. Holmes, A. R. Korte, L. R. Compton, S. T. Retterer,
A. Vertes, Adv. Funct. Mater. 2018, 28, 9.

[25] a) Y. Wang, W. Shu, S. Lin, J. Wu, M. Jiang, S. Li, C. Liu, R. Li, C. Pei,
Y. Ding, J. Wan, W. Di, Small 2022, 18, 2106412; b) J. Chen, Y. Li, Y.
Jiang, L. Mao, Mi Lai, L. Jiang, H. Liu, Z. Nie, Adv. Funct. Mater. 2021,
31, 2106743.

[26] G. Wong, J. Chan, B. A. Kingwell, C. Leckie, P. J. Meikle, Bioinformatics
2014, 30, 2832.

[27] a) A. A. Bengtsson, J. Trygg, D. M. Wuttge, G. Sturfelt, E. Theander,
M. Donten, T. Moritz, C.-J. Sennbro, F. Torell, C. Lood, I. Surowiec, S.
Rannar, T. Lundstedt, PLoS One 2016, 11, e0159384. b) A. Guleria, S.
Phatak, D. Dubey, S. Kumar, A. Zanwar, S. Chaurasia, U. Kumar, R.
Gupta, A. Aggarwal, D. Kumar, R. Misra, J. Proteome Res. 2018, 17,
2440.

[28] Y. Yin, S.-C. Choi, Z. Xu, D. J. Perry, H. Seay, B. P. Croker, E. S. Sobel,
T. M. Brusko, L. Morel, Sci. Transl. Med. 2015, 7, 12.

[29] H.-M. Lin, M. P. G. Barnett, N. C. Roy, N. I. Joyce, S. Zhu, K.
Armstrong, N. A. Helsby, L. R. Ferguson, D. D. Rowan, J. Proteome
Res. 2010, 9, 1965.

Adv. Sci. 2024, 11, 2304610 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304610 (9 of 10)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

[30] F. Sun, H. J. Wang, Z. Liu, S. Geng, H. T. Wang, X. Wang, T. Li, L.
Morel, W. Wan, L. Lu, X. Teng, S. Ye, Lancet Rheumatol. 2020, 2, e210.

[31] J. Xu, X. Zhang, Q. Qian, Y. Wang, H. Dong, N. Li, Y. Qian, W. Jin, J.
Neuroinflammation 2018, 15, 41.

[32] L. Willmann, T. Erbes, S. Halbach, T. Brummer, M. Jäger, M.
Hirschfeld, T. Fehm, H. Neubauer, E. Stickeler, B. Kammerer, Sci. Rep.
2015, 5, 13374.

[33] A. K. Ghosh, N. Hirasawa, H. Ohtsu, T. Watanabe, K. Ohuchi, J. Exp.
Med. 2002, 195, 973.

[34] a) Y. H. Li, L. Liang, X. L. Deng, L. J. Zhong, Int. J. Clin. Exp. Pathol.
2019, 12, 857; b) X. Ouyang, Y. Dai, Jl Wen, Lx Wang, Lupus 2011, 20,
1411.

[35] a) D. Y. Ji, Se H Park, S. J. Park, K. H. Kim, C. R. Ku, D. Y. Shin, J. S.
Yoon, Do Y Lee, E. J. Lee, Sci. Rep. 2018, 8, 9262; b) Y. J. Crow, N.
Manel, Nat. Rev. Immunol. 2015, 15, 429.

[36] D. J. Puleston, M. Villa, E. L. Pearce, Cell Metab. 2017, 26,
131.

[37] H.-G. Sprenger, T. Macvicar, A. Bahat, K. U. Fiedler, S. Hermans,
D. Ehrentraut, K. Ried, D. Milenkovic, N. Bonekamp, N.-G.
Larsson, H. Nolte, P. Giavalisco, T. Langer, Nat. Metab. 2021, 3,
636.

[38] a) Y. Wu, J. Messing, PLoS One 2012, 7, 9; b) Q. Zhang, X. Li, X. Yin,
H. Wang, C. Fu, H. Wang, K. Li, Y. Li, X. Zhang, H. Liang, K. Li, H. Li,
Y. Qiu, Rheumatology 2021, 60, 598.

Adv. Sci. 2024, 11, 2304610 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2304610 (10 of 10)

http://www.advancedsciencenews.com
http://www.advancedscience.com

