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Key Points

• After transplantation,
aged CD61High HSCs
function similarly
compared with young
HSCs.

• CD61 expression
marks a functionally
superior population of
quiescent long-term
HSCs.
Aging leads to a decline in function of hematopoietic stem cells (HSCs) and increases

susceptibility to hematological disease. We found CD61 to be highly expressed in aged

murine HSCs. Here, we investigate the role of CD61 in identifying distinct subpopulations of

aged HSCs and assess how expression of CD61 affects stem cell function. We show that HSCs

with high expression of CD61 are functionality superior and retain self-renewal capacity in

serial transplantations. In primary transplantations, aged CD61High HSCs function similarly

to young HSCs. CD61High HSCs are more quiescent than their CD61Low counterparts. We also

show that in aged bone marrow, CD61High and CD61Low HSCs are transcriptomically distinct

populations. Collectively, our research identifies CD61 as a key player in maintaining stem

cell quiescence, ensuring the preservation of their functional integrity and potential during

aging. Moreover, CD61 emerges as a marker to prospectively isolate a superior, highly

dormant population of young and aged HSCs, making it a valuable tool both in fundamental

and clinical research.
Introduction

Hematopoietic stem cells (HSCs) are at the top of the hematopoietic hierarchy and are defined by their
unique regenerative potential and ability to give rise to all the blood lineages throughout the lifetime of
an organism. Nevertheless, normal aging has been shown to lead to a gradual functional decline of the
HSCs.1-3 Upon aging, murine HSCs lose their overall self-renewal and regenerative potential, skew
toward the myeloid lineage, and expand in numbers.4-7

Long-term transplantation assays show that aged HSCs, when transplanted into a young bone marrow
(BM) microenvironment, display a reduced functional activity, hence the age-related decrease in HSC
activity seems to mainly be intrinsically driven.8 Numerous cell-intrinsic defects have been suggested to
contribute to the decreased overall potential of aged HSCs, such as the loss of polarity,9,10 impaired
autophagy,11,12 DNA damage accumulation,13,14 and epigenetic modifications.15,16 However, it has
also been shown that an altered BM microenvironment affects the functional activity of aged HSCs. For
example, aged HSCs transplanted into young recipients exhibited reduced myeloid skewing compared
with those transplanted into old recipients.17 In addition, BM niche remodeling and localization of HSCs
in their niche affect the aging process.18,19 HSC aging is thus a very heterogenous process influenced
and regulated by numerous intrinsic and extrinsic mechanisms, with not every individual HSC being
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equally susceptible to, or affected by, the aging process.20-22

Interestingly, some individual aged HSCs have been shown to
function as if they have not aged at all.4,6

Recently, we published a meta-analysis of 16 independent studies
in which the transcriptomes of young and aged murine HSCs had
been assessed. From these studies, we were able to derive an
HSC aging signature, a robust list of genes that are differentially
expressed upon murine HSC aging.23 This signature, consisting of
~200 genes, included an abundance of novel genes previously not
associated with aging nor with HSCs. Unexpectedly, almost 50%
of the genes in the aging signature encode for membrane-
associated genes, which suggests that communication between
HSCs and the BM environment is altered during aging.

Itgb3, a membrane-associated gene that encodes for CD61, a
widely expressed β-integrin from the integrin family,24,25 was
upregulated in 9 of 12 studies used to establish the aging signa-
ture. CD61 acts in heterodimers with the α-integrins CD41 and
CD51 and is known to regulate cell adhesion, cell signaling, and
cell differentiation.26-28 Notably, it is the only member of the integrin
family to be present in the aging signature. The role of CD61 in
regulating HSCs has been studied previously, and CD61 has been
reported to affect several HSC-niche communication pathways,
including thrombopoietin-mediated HSC regulation,29 cell adhe-
sion, and inflammation response.30 High expression of CD61 has
also been shown to be correlated with a more quiescent sub-
population of HSCs in young mice.31 In contrast, it has also been
shown that downregulation or deletion of CD61 in HSCs had little
to no effect on the overall functionality of HSCs.29,32 CD61 has, to
our knowledge, never been studied in the context of HSC aging.

Because we found CD61 to be 1 of the most robustly upregulated
genes in aged HSCs, we aimed to assess whether altered expres-
sion of CD61 on aged HSCs coincides with stem cell functioning.
Our study shows that CD61 expression identifies a functionally
superior population of long-term HSCs (LT-HSCs). This is particu-
larly prominent in aged LT-HSCs, in which CD61 expression can be
used to prospectively isolate the most potent LT-HSCs.

Materials and methods

Mice

All experiments were approved by the Central Commission for
animal testing and the local Animal Ethical Committee of the Uni-
versity of Groningen. Young (2-4 months old), middle-aged (10-
12 months old), and aged (>22 months old) C57BL/6J mice were
obtained from either Centrum voor Dierproeven, UMCG or Janvier
laboratories, France. Mice were housed in temperature- and day
cycle–controlled conditions.

Flow cytometry

BM was isolated from long bones, and erythrocytes were lysed. For
cell isolation, the lysed BM cells were stained with antibodies used
to detect stem cells. Cells were isolated on MoFlo Astrios or MoFlo
XDP cell sorters.

In vitro experiments

Single-cell colony assay. Single LT-HSCs were sorted and
cultured for 14 days in StemSpan supplemented with 100 U/mL
100 SKINDER et al
penicillin, 100 μg/mL streptomycin, 10% Australian fetal calf
serum, 300 ng/mL stem cell factor (SCF), 20 ng/mL interleukin-11,
and 1 ng/mL Flt3 ligand. The size of the colonies was analyzed after
7 and 14 days.

Single-cell division assay. Single LT-HSCs were sorted and
cultured for 2 days in StemSpan supplemented with cytokines
(described earlier). The number of cells was analyzed after 48 hours.

γH2AX immunofluorescence staining. LT-HSCs (1000-2000
cells) were sorted on adhesion slide. Cells were fixed, per-
meabilized, and blocked. Cells were stained with primary α-γH2A
histone family member X (H2AX) and secondary conjugated anti-
body, and the coverslip was mounted. The slide was imaged on a
Leica Sp8 confocal microscope. The data were analyzed using Fiji
Image J.

Cell cycle analysis. LT-HSCs were sorted, fixed, and stained
following the manufacturer’s protocol. Cells were stained with
α-Ki67 antibody and 4′,6-diamidino-2-phenylindole. Samples were
analyzed on a BD fluorescence-activated cell (FAC) sorter Canto II
or BD Symphony.

Inhibitor treatment. The inhibitor treatment was done in single-
cell proliferation assays, division assays, and cell cycle analyses
according to the protocol described earlier with medium supple-
mented with 50 ng/mL cyclo cyclic tripeptide Arg-Gly-Asp
(RGDγK), 25 ng/mL tirofiban, or dimethyl sulfoxide (DMSO).

For single-cell expansion assays, HemEx-Type9A medium was
supplemented with 100 ng/mL thrombopoietin, 10 ng/mL SCF,
50 ng/mL cycloRGDγK, and 25 ng/mL tirofiban or DMSO.

Quantitative polymerase chain reaction (qPCR) analysis.
RNA was isolated by using a RNeasy Micro kit. The RNA was
transcribed using SuperScript VILO complementary DNA Synthe-
sis kit. The amplicons for CD61 and housekeeping gene Gapdh
were amplified and quantified via qPCR using a LightCycler 480
Instrument.

Transplantation

CD61High and CD61Low LT-HSC transplantation. CD61High

and CD61Low LT-HSCs were transplanted together with 2 × 106

competitor W41 mouse (C57BL/6J-KitW-41J/J) BM cells into sex-
matched, lethally irradiated (9 Gy) recipients. At 16 weeks after
transplantation, donor-derived LT-HSCs were transplanted along-
side 2 × 106 competitor W41 mouse (C57BL/6J-KitW-41J/J) BM
cells into sex-matched, lethally irradiated secondary recipients.

CD61KD LT-HSC transplantation

TRANSDUCTION. LT-HSCs were isolated and plated 24 hours
before transduction in HemEx-Type9A medium supplemented with
100 ng/mL thrombopoietin and 10 ng/mL SCF. The viral super-
natant was added to the LT-HSCs the next day.

TRANSPLANTATION. After 5 days, mCherry+ LT-HSCs were trans-
planted alongside 2 × 106 competitor W41 BM cells into sex-
matched, lethally irradiated recipients.
9 JANUARY 2024 • VOLUME 8, NUMBER 1



PB count. Peripheral blood (PB) was collected from the retro-
orbital venous plexus in heparinized capillary tubes. PB (25 μL)
was used for cell counting using Medonic CA-620.

RNA sequencing

Total RNA was isolated from 5000 LT-HSCs using an RNeasy
Plus Micro kit (Qiagen, 74034) according to the manufacturer’s
instructions. Library preparation was performed with SMART
Ultra-Low Input kit version 4 (Takara) and Nextera XT Library
Preparation kit (Illumina). Samples were sequenced using a
NextSeq 5000 (Illumina) in the same flow cell and were pulled
equimolarly.

Data analysis. Fastq files were quality-control checked using
FastQC (0.11.9) and Picard (2.23.0). Reads were mapped to
reference mouse genome (GENCODE, GRCm38, M21) using
STAR (2.7.0d) with standard arguments and “–out-
FilterMatchNminOverLread 0.4 –outFilterScoreMinOverLread 0.4.”
Unstranded read counts were used to perform differential expres-
sion analysis using DESeq2.

Statistical analysis

All experiments were performed as least 2 times. The number of
mice or technical replicates is indicated in the figure legends. Data
are shown as mean ± standard deviation. Unpaired, 2-tailed Stu-
dent t test and 2-way analysis of variance with Šidák multiple
comparison test were performed in GraphPad Prism versions 9.0
and 10.0. Significant P value was indicated as *P < .05, **P < .01,
***P < .001, and ****P < .0001.

Results

During aging expression of CD61 is specifically

increased in the most primitive HSCs

Recently, we published a transcriptome meta-analysis that revealed
that Itgb3, the gene encoding for CD61, is the only consistently
reported integrin family member that is differentially expressed on
murine HSC aging (Figure 1A). Using quantitative reverse tran-
scription PCR, we analyzed various subpopulations within the
progenitor cell compartment (Lin−Sca1+c-Kit+) and found that
Itgb3 is exclusively upregulated in the most primitive LT-HSCs
(Lin−Sca1+c-Kit+CD150+CD48−; Figure 1B; supplemental
Figure 1A). With FAC sorting (FACS), we confirmed that
increased Itgb3 messenger RNA expression in aged LT-HSCs
correlates with increased protein levels (Figure 1C-D).

Furthermore, to assess how expression of CD61 changes during
the aging trajectory, we analyzed its expression at different ages.
This revealed that CD61 expression increases gradually throughout
the lifetime of a mouse (Figure 1C-D).

Aged CD61High and CD61Low express distinct

transcriptomes

To better understand the role of CD61 upregulation in LT-HSCs
upon aging, we performed RNA sequencing on purified aged LT-
HSCs separated by CD61 expression. To this end we isolated
the 10% highest (CD61High) and lowest (CD61Low) CD61-
expressing LT-HSCs (Figure 2A and B).
9 JANUARY 2024 • VOLUME 8, NUMBER 1
Although Lin−Sca1+c-Kit+CD150+CD48− cells are highly purified,
we found that within this population CD61High and CD61Low

expressing cells differed significantly in their transcriptomic land-
scape (Figure 2C). We identified 278 genes that were significantly
differentially expressed between CD61High and CD61Low LT-HSCs
(Figure 2D). To compare CD61High and CD61Low LT-HSC tran-
scriptome signatures, we performed gene set enrichment analysis
for previously published LT-HSC gene signatures (Rodriguez-Fra-
ticelli, 2020; Cabezas-Wallscheid, 2017). Interestingly, CD61High

LT-HSCs showed enrichment for a dormant HSC signature, as
well as a low-output HSC signature (Figure 2E-F). Both low-output
and dormant HSCs are stem cell populations associated with
superior reconstitution and self-renewal potential.33,34 We also
found CD61High LT-HSCs to express a myeloid signature
(supplemental Figure 2A), and the aging signature was enriched in
these cells as well (supplemental Figure 2B-D). Additionally, gene
set enrichment analysis showed enrichment of cell cycle–related
pathways in CD61Low LT-HSCs, suggesting that these cells are
actively cycling, compared with CD61High LT-HSCs (Figure 2G).
Together, these data show that aged CD61High LT-HSCs are
molecularly distinct from CD61Low LT-HSCs and exhibit a signa-
ture that is associated with superior stem cell functionality.

High expression of CD61 in aged LT-HSCs is

associated with quiescence

The RNA-sequencing data revealed that aged LT-HSCs with dif-
ferential CD61 expression are molecularly distinct. Next, we tested
whether these molecular differences would translate into functional
consequences (Figure 3A).

First, we analyzed the proliferation potential of CD61Low and
CD61High LT-HSCs, isolated from young or aged mice, by sorting
single LT-HSCs in a well and culturing these for 14 days. We
analyzed the size of the colony that single LT-HSCs produced.
After 14 days, young CD61High and CD61Low LT-HSCs prolifer-
ated equally (Figure 3B). However, when isolated from aged mice,
CD61Low LT-HSCs proliferated significantly less, with a large
fraction of cells not producing a colony at all (Figure 3B). Aged
CD61High LT-HSCs proliferated not significantly different
compared with cells isolated from young mice, confirming their
“young-like” phenotype.

Because the transcriptome data suggested that CD61High and
CD61Low LT-HSCs may differ in their cell cycle activity, we per-
formed cell cycle analysis (supplemental Figure 3A). It showed that
young CD61High and CD61Low LT-HSCs did not differ significantly
in their cell cycle activity (Figure 3C). In contrast, in aged LT-HSCs
essentially all CD61High LT-HSCs resided in G0 phase, whereas
CD61Low cells were more abundant in G1 and G2-S-M phases
(Figure 3D).

Next, we analyzed the division rate of young and aged CD61High

and CD61Low LT-HSCs by sorting single cells into a well and
counting the fraction of wells in which a cell division had occurred
after 48 hours, that it, in which >1 cell was present. For both young
and aged LT-HSCs we found CD61High cells to divide slower
(Figure 3E). These functional data corroborate the molecular data
and show that CD61High LT-HSCs are more quiescent. Further-
more, these results indicate that the relevance of CD61 is signifi-
cantly enhanced with age.
CD61 MARKS SUPERIOR AGED HEMATOPOIETIC STEM CELLS 101
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Figure 1. CD61 expression in LT-HSCs. (A) Number of

reports used in the aging signature, reporting differential

expression of genes of the integrin family. (B) CD61

messenger RNA (mRNA) expression measured by reverse

transcription PCR in LT-HSCs, short-term HSCs (ST-HSCs),

and MPP isolated from young (2-4 months old) and aged

(>22 months old) mice. (C) Protein level of CD61 on LT-

HSCs from young (2-4 months old), middle-aged (10-

12 months old) and aged (>22 months old) mice measured

by flow cytometry. (D) Protein level of CD61 on LT-HSCs,

ST-HSCs, and MPPs from young, middle-aged, and aged

mice measured by flow cytometry. MPP, multipotent

progenitor.
LT-HSCs with low expression of CD61 accumulate

significantly more DNA damage

Hypothesizing that the higher than usual proliferation rate of aged
CD61Low LT-HSCs may result in increased accumulation of DNA
damage and subsequent cell death, we analyzed levels of DNA
damage in aged HSCs. We stained freshly isolated aged CD61High

and CD61Low LT-HSCs with an anti-γH2AX antibody. Using
confocal microscopy, we imaged cells and counted the number of
γH2AX foci. Figure 3G shows a representative comparison
between aged CD61High and CD61Low cells. The analysis revealed
that CD61Low LT-HSCs exhibited a significantly larger number of
foci per cell than CD61High cells (Figure 3F-G). Aged LT-HSCs
with low CD61 expression accumulate more DNA damage, likely
because of their higher division rate and proliferative potential. As
expected, we observed less DNA damage in young LT-HSCs.
Interestingly, in young LT-HSCs we did not detect significant dif-
ferences in DNA damage accumulation in CD61High and CD61Low

cells (supplemental Figure 3B-C). Consequently, increased DNA
damage may trigger apoptosis, providing a possible explanation for
their lower output in in vitro single-cell proliferation assays.
102 SKINDER et al
CD61-CD51 dimerization drives CD61-mediated

maintenance of aged LT-HSCs quiescence

Integrins dimerize into distinct heterodimers and homodimers to
facilitate biological processes. CD61 can heterodimerize with
CD51 (Itgav) or CD41 (Itga2b)35 (Figure 4A). To further
understand the mechanism of CD61-mediated LT-HSCs quies-
cence we explored which CD61 heterodimer is involved in this
process.

We first determined whether either CD51 or CD41 is coexpressed
with CD61 in aged LT-HSCs. As shown in Figure 4B-C, CD51
expression levels correlated with CD61 expression, not CD41. This
suggests that specifically CD61-CD51 dimerization may occur in
aged LT-HSCs, similar to that in young HSCs (supplemental
Figure 4A).

We then cultured aged LT-HSCs in the presence of dimer-specific
small-molecule inhibitors, tirofiban for CD61-CD41, and cyclo-
RGDγK for CD61-CD51 (Figure 4B-C). Both inhibitors reportedly
selectively inhibit the activity of their target dimer.36,37 We analyzed
whether these inhibitors affected proliferation kinetics of aged
9 JANUARY 2024 • VOLUME 8, NUMBER 1
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CD61High and CD61Low LT-HSCs. As expected, tirofiban had a
minimal effect, whereas cycloRGDγK supplementation induced
increased cycling in LT-HSCs in serum-containing cultures
(Figure 4D). Interestingly, this effect was restricted to (quiescent)
CD61High stem cells, increasing their division rates comparable
with those of CD61Low LT-HSCs. The release of quiescence was
not detectable in unfractionated LT-HSCs, which suggests that
CD61–CD51 heterodimerization occurs specifically in LT-HSCs
with highest CD61 expression (supplemental Figure 4B-C). In
serum-free cultures we did not observe effects on cell cycling in the
presence of these inhibitors, suggesting that heterodimerization
occurs only in the presence of a serum-containing ligand
(Figure 4E). Cell cycle analysis confirmed that CD61High LT-HSCs
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treated with cycloRGDγK had a higher percentage of cells in G2-
S-M phases than DMSO-treated control cells (supplemental
Figure 4D).

CD61 expression marks a subpopulation of

functionally superior aged LT-HSCs

The transcriptomic data as well as in vitro experiments indicated
that CD61 expression marks distinct populations of LT-HSCs.
We then asked whether these differences would also translate
in functional differences in in vivo assays. To this end we used
competitive transplantation assays using freshly isolated
CD61High and CD61Low LT-HSCs (CD45.2+). We transplanted
500 CD61High and 500 CD61Low LT-HSCs, along with 2 × 106
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whole BM cells obtained from W41 mice (C57BL/6J-KitW-41J/J),
into lethally irradiated recipient mice (CD45.1+; Figure 5A).
Chimerism levels in the PB of recipient mice were analyzed every
4 weeks for at least 16 weeks using FACS (supplemental
Figure 5A). After 16 weeks, recipient mice were sacrificed and
their BM analyzed. Next, 500 LT-HSCs collected from primary
recipients were serially competitively transplanted into secondary
recipients, and chimerism levels were analyzed for another
16 weeks. After the second 16-week period bones were har-
vested and analyzed.

First, we competitively transplanted CD61High and CD61Low

LT-HSCs from young mice. In young LT-HSCs, differential expression
of CD61 did not affect the reconstituting potential in primary trans-
plantations (Figure 5B,D; supplemental Figure 5B-C). CD61High and
CD61Low LT-HSCs isolated from young mice possessed comparable
lineage contribution to all PB cell compartments (supplemental
Figure 5D-F). However, when we performed these experiments
using aged mice as donors, we did observe significant differences in
chimerism levels among mice that received transplantation with
CD61High or CD61Low LT-HSCs as early as 4 weeks after trans-
plantation (Figure 5C-D; supplemental Figure 5G-H).

Aged CD61Low LT-HSCs produced significantly fewer PB cells
than CD61High LT-HSCs. Chimerism levels in mice that received
transplantation with aged CD61Low LT-HSCs remained <25%,
whereas the contribution derived from aged CD61High cells grad-
ually increased and were comparable with that of young HSCs
(Figure 5B-C). The lineage contribution to different PB cell pop-
ulations was similar between CD61High and CD61Low LT-HSCs
(supplemental Figure 5I-K).

After 16 weeks, the BM of primary recipient mice was analyzed,
and although no significant differences were found in the BM of
recipient mice that received transplantation with young CD61High

or CD61Low LT-HSCs, we discovered an average eightfold
increase in the frequency of the donor-derived aged CD61Low

LT-HSCs (Figure 5E). Because HSCs highly rely on their self-
renewal/differentiation ratio and its balance to maintain their
activity throughout the lifetime of the organism, we hypothesized
that the reason for this increase is a higher proliferation rate of cells
with decreased CD61 expression.

We performed secondary transplantations to determine self-
renewal potential of LT-HSCs. Whereas young CD61Low

LT-HSCs engrafted perfectly fine in primary recipients, upon sec-
ondary transplantation, young CD61Low LT-HSCs significantly
declined in their repopulation capacity (Figure 5F,H; supplemental
Figure 5L-M). Secondary transplantation of aged LT-HSCs
revealed that CD61High LT-HSCs retain some self-renewal
capacity, whereas aged CD61Low LT-HSCs showed a complete
failure in reconstituting the hematopoietic system (Figure 5G-H;
supplemental Figure 5N).

Although secondary transplantation of young and aged CD61High

and CD61Low LT-HSCs showed differential reconstitution capacity,
the contribution to distinct PB cell populations remained evenly
distributed, both in primary and secondary transplantation
(supplemental Figure 5D-F,I-K,O-T).

Because expression of CD150 has been associated with func-
tional activity of HSCs,38 we assessed whether CD61 expression
correlates with expression of CD150. We found no correlation
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between expression levels of CD61 and CD150 (supplemental
Figure 5U). Thus, differential CD61 expression identifies function-
ally distinct LT-HSCs populations, independent of CD150
expression.

Collectively, our data show that CD61 marks a functionally superior
stem cell population, both in young and aged mice. In aged mice,
CD61 marks a population of LT-HSCs that performs functionally
similar to young LT-HSCs.

Repression of CD61 in aged and young LT-HSCs

leads to impairment of reconstitution potential

To further assess the role of CD61, we asked whether perturbation
of CD61 expression would affect HSC functioning. We repressed
CD61 in young and aged LT-HSCs using short-hairpin RNA
(shRNA), with a scrambled shRNA as a negative control
(Figure 6A). We isolated LT-HSCs and infected cells ex vivo with a
lentiviral pLKO.1-shRNA-mCherry construct. After 5 days of cul-
ture, we transplanted mCherry+ cells into lethally irradiated recipi-
ents alongside 2 × 106 whole BM W41 competitor cells.
Downregulation of CD61 was confirmed both on transcriptome
and protein level (Figure 6B-C).

Our data revealed that repression of CD61 expression in aged
LT-HSCs is detrimental for their reconstitution potential (Figure 6D-
E; supplemental Figure 6A). In contrast, to control cells that
gradually increased their overall contribution to blood production,
engraftment of CD61KD LT-HSCs remained stable throughout the
whole duration of the experiment. Although the reconstitution
potential of CD61KD was limited, the overall ratio of blood cells
produced was comparable with that of the control, with a trend
toward higher myeloid cells output (Figure 6F; supplemental
Figure 6B). After 16 weeks, the BM of the recipient mice was
analyzed. Interestingly, we found a twofold increase in the per-
centage of donor-derived LT-HSCs in CD61KD group, in compar-
ison with the scrambled shRNA (Figure 6G). The observed results
align closely with the findings from recipient mice that received
transplantation with aged CD61Low LT-HSCs (Figure 5C,E).

Finally, we assessed whether perturbing CD61 expression levels in
young LT-HSCs also affected functioning. Unexpectedly, down-
regulation of CD61 in young LT-HSCs almost completely dimin-
ishes their ability to replenish the hematopoietic system in a
competitive transplantation experiment (Figure 6H). Collectively,
we show that repression of CD61 expression is detrimental to the
engraftment of young and aged LT-HSCs.
Discussion

In this study, we show that differential expression of CD61 identifies
transcriptionally and functionally distinct populations of LT-HSCs
within aged BM. Notably, we found that LT-HSCs exhibiting high
levels of CD61 expression are more quiescent and are functionally
superior compared with CD61Low LT-HSCs. Our findings demon-
strate that CD61 is not only a marker that can be used to identify this
superior LT-HSC population but is also essential for the proper
functioning of both young and aged LT-HSCs. Additionally, we pro-
vide evidence that aged LT-HSCs expressing high levels of CD61
exhibit a phenotype similar to young-like LT-HSCs, suggesting that
HSCs displaying increased CD61 expression demonstrate enhanced
resilience to the aging process.
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The role of CD61 has not been well studied in the context of HSC
aging, although we have recently shown that it is 1 of the most
robustly upregulated genes upon aging.23 It has been shown that
young CD61High HSCs display enhanced quiescence and higher
108 SKINDER et al
repopulation capacity,31 and our data confirm these findings.
CD61-deficient mice are mostly embryonically lethal, but the few
surviving mice exhibited a phenotype similar to our young CD61Low

HSCs.29,39 Young CD61-deficient HSCs did not show distinct
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phenotypic changes in primary transplantation but lost their self-
renewal ability and failed in secondary transplantation, reinforcing
the essential role of CD61 expression in HSC self-renewal,
possibly by preserving dormancy.29 It has been reported that
although CD61 is dispensable for hematopoiesis, it is required for
leukemogenesis.32

CD61 expression has been associated with myeloid skewing in
aged HSCs,40 but our functional experiments did not show any
myeloid skewing. However, we did find a myeloid signature in
CD61High LT-HSCs, confirming that, at least on transcriptomic
level, CD61High cells might have a myeloid bias40 (supplemental
Figure 2A).

It remains unknown why CD61 is upregulated in the aged LT-HSC
compartment. In aged BM, we observed increased expression of
CD61 preferentially in the most primitive compartments, which
coincided with an increase in the population of CD61High

LT-HSCs.

Elevated expression of CD61 in primitive LT-HSCs could be the
result of age-associated epigenetic alterations, which are known to
occur in aged stem cells.15,16,41 In parallel investigations, we,
therefore, explored whether the epigenetic status of the Itgb3 locus
is altered in aged LT-HSCs. However, we have not been able to
discern any significant modifications in overall chromatin accessi-
bility; H3K4me3, H3K27me3, or H3K36me3; or DNA methylation
patterns between young and aged LT-HSCs (data not shown).

We hypothesize that the age-dependent increase in the population
of CD61High LT-HSCs may be the result of a selection process.
During aging, dormant CD61High LT-HSCs may preferentially be
retained within the aged BM environment, possibly as a result of
the many dynamic changes of BM remodeling that occur during
aging. Age-associated BM microenvironmental changes involve
both cellular as well as noncellular constituents. One such change
is the downregulation of a CD61 ligand, osteopontin, in the aged
BM.42 As a supplementary investigation, we examined the CD61
levels in LT-HSCs from osteopontin-knockout mice and observed a
twofold increase in its expression in comparison with that in wild-
type mice of the same age, suggesting a potential interplay
between CD61 and its ligand as a compensatory system in the
context of aging (data not shown). This finding highlights the
complexity of the interactions between CD61 and its various
ligands within the extra cellular matrix during aging and might
explain the favored CD61High expression in aged HSCs.

Our data also show that CD61High LT-HSCs are quiescent and are
functionally superior, and that inhibition of CD61–CD51 hetero-
dimerization induces cell cycling of CD61High HSCs. Upon aging,
alterations in the BM niche may cause stress to the HSCs residing
in it, and we propose that CD61–CD51-mediated maintenance of
HSC dormancy is 1 way for the stem cells to retain their
9 JANUARY 2024 • VOLUME 8, NUMBER 1
repopulating potential and protect themselves against the detri-
mental changes of the environment.

Finally, our study reveals that highly purified LT-HSCs can be further
fractionated based on differential CD61 expression into populations
of cells with distinct repopulating ability. This is particularly evident for
aged LT-HSCs, but differential effects are also seen in young cells.
Notably, a small population of aged CD61High HSCs demonstrated
stem cell potential and self-renewal capacity that was comparable
with that of their young counterparts. This finding supports the exis-
tence and allows for the prospective isolation of young-like stem cells
within an aged stem cell compartment. As it has been well demon-
strated that dormant HSCs engraft and repopulate better than cycling
HSCs,34 we assume that CD61-mediated quiescence directly con-
tributes to repopulating potential. In addition, it is likely that CD61High

LT-HSCs have accumulated less replicative stress (supported also by
lower levels of DNA damage), and are functionally younger and more
potent. Furthermore, previous research has indicated that CD61 is
transcriptionally upregulated upon human HSC aging.43 This finding
suggests the potential significance of CD61 in the context of aged
HSCs in humans as well. If our findings can be corroborated for
human HSCs, this may open avenues to prospectively isolate func-
tionally superior stem cells for clinical transplantations.
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