24 PATHOLOGY: WILSON AND WORCESTER Proc. N. A. S.

In a single-mutant strain, mutations may occur in other genes for resis-
tance; and when two mutant genes are together in one individual (double
mutants) their effect is cumulative. Moreover, it happens that the re-
sistance of a double mutant is higher than the sum of resistances of two
single mutants. If a third gene for resistance, a fourth, etc., mutate in the
same line, the combined effect of all these mutations is a high degree of re-
sistance or complete resistance.
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Summary.—In experiments with Staphylococcus aureus, strains resistant
to penicillin were developed, which retained the property of resistance dur-
ing the period covered by the experiments. Evidence is presented indicat-
ing that resistance is not induced by the action of penicillin on bacteria, but
originates through mutation, and that penicillin acts as a selective agent to
eliminate nonresistant individuals. Degree of resistance can be increased.
by exposure to higher concentrations of penicillin, and this increase is in-
terpreted as due to summation of the effects of several independent genetic
factors for resistance which undergo consecutive mutation.
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THE LAW OF MASS ACTION IN EPIDEMIOLOGY
By EpwiN B. WILSON AND JANE WORCESTER
HARVARD ScHOOL OF PuBLIC HEALTH

Communicated December 13, 1944

Almost all workers in the analytical theory of epidemics assume that
the rate at which an infection passes in a population is proportional jointly
to the product of the number of persons I who are infectious and the num-
ber of persons S who are susceptible to the infection.!~® This is called the
law of mass action. Thus if the rate of new infections be C the law is
written as

' C=rIS, 1)
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where 7 is a constant. The a priori rationalization of the law generally is
based upon the assumption, explicit or implicit, that the infectious I are
mixing uniformly with the susceptibles S throughout the population. Ac-
cording to the law, if we had a population with twice as many susceptibles
and infectious and with the same rate r of mixing, the rate C at which the
infection passed would be not twice but four times as great. As a matter
of fact, it is unlikely that any such condition exists in detail. For example,
it is known that for the childhood infectious diseases such as measles the
liability to infection within the family is greater than within the schoolroom
and this is in turn greater than that within the community at large. The
mixing of the susceptibles and infectious is not uniform throughout the
population. Thus the real utility of the assumption for the explanation of
the course of an epidemic must be found from the a posteriori observation
that with the proper choice of a constant 7 the equation (1) yields a theo-
retical curve of new cases which is in satisfactory agreement with the ob-
served curve of new cases. Such a value of 7 is presumably some compli-
cated sort of average value of the different values of » under different de-
grees of intimacy of contact between different groups of infectious and sus-
ceptibles within the population.

In the application of (1) the analytical developments vary according to
the special assumptions made with respect to the particular disease under
consideration. For example, if one is considering malaria and assumes
that those once infectious remain so indefinitely and if one neglects acces-
sions to or losses from the population and further neglects the incubation
period whether in man or in mosquito, one writes

dal :
=2—E=fIS, S=SB—I, - (2)

where Sg is the number of susceptibles at the beginning; then (1) leads to

215 -, ®

which on integration gives
I = 1/,S5[1 + tanh Y/ Ss(t — )], (4)
C = 1/urSy? sech? /Syt — to). (5)

This means that the curve of total cases I is the logistic or growth curve,
and the curve of new cases is symmetrical with respect to £ = #%. The
rate of new cases when ¢ =t is 7Sp%/4 and the number of susceptibles re-
maining at that time is Sp/2, half of those at the beginning. In due time
all the susceptibles are exhausted.
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On the other hand, if the disease is one like measles in which it is gener-
ally assumed that there is an incubation period 7 and a short period of in-
fectiousness one may write

C=17rSC(t — 1)or C = (S/m)C(t — 1), (6)

where m = 1/r is the number of susceptibles just sufficient for one infec-
tious case at £ —  to generate a new infectious case at .. Then, following
Soper, and using C = —dS/dt w1th u = log C, one may obtain, to the order
of approximation he uses,

d*u r
(E{ = —'; ex. (7)
The integral is
u = 2 log sech 'C° 2 (¢t — 1) + 10g Go ®)

where C, is the rate of new cases when t = Iy, and then
C = Csech? \/%Cf t — to). ©)

It should be noted that the curve of new cases (or, more precisely, the
curve of the rate of new cases) is under these assumptions and approxi-
mations of the same type as (5) which arose under very different assump-
tions.

In the third place if one modifies the law of mass action by assuming
that the rate of new cases is proportional jointly to some power p of the
number of susceptibles’ and to the case rate lagged by 7, i.e.,

= (S/m)*C(¢ — 7) (10)

and eliminates S by C = —d.S/dt with u = log C one finds

P2 e an

dt’2 mr

where the first correction term (1/p — 1/2)(du/dt) has been kept in the ex-
ponent on the right. This term is neglected by Soper and was neglected,
in the analysis above, for p = 1; it would appear to be equally negligible
for other small values of p, and will be neglected. The integral is then

. - pCo (; —
C = Cosech® yo =2 (¢ t), (12)
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and is still of the same type as (9) and (5). It is therefore clear that the
form of the curve of new cases, apart from an interpretation of the constants
which are involved and the assumptions which have been made in its
derivation, cannot discriminate between a number of different laws of
epidemic spread.® One could apparently get Soper’s equation (7) and an
epidemic curve of new cases as the derivative of the growth curve with
better approximation from (11) if p = 2 thanif p = 1.

As a matter of fact, one may show directly that when p = 2 equation
(10) with C = —dS/dt is exactly satisfied by a SOll.lthl’l of type (12). For,
given

o dS _ [(S)\4S ,
= (el (109
we may substitute therein
. t—1to
S=m[cosha—smhatanha—1:| (13)
and find that the equation is satisfied identically. Then
C—% "M nh asechtat™h (14)
dt T T

and the value of « is connected with the case rate when maximum by

120

_ G|, _ Cor Cor . ,
N N N S

For this case the initial and final values of .S are

‘Co=’§asinha=1[a2+ + 24 ] (15)

or

Sz = m(cosh ¢'x + sinh a), Sz = m(cosh a — sinh a)

and the value of .S at the peak of the epidemic is S = m cosh a which is
halfway between the initial and final values; moreover, SpSg = m? so
that the ‘“‘equilibrium value” m is the geometric mean of the initial and final
values of S.

If we return to the genera.l case where p ¥ 2 and approximations are
made in deriving (12) we obtain on integrating (12)
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- _ G G, _ (13’
. S = const J » tanh o @t — t). (13

The total number of cases from beginning to end of the epidemic is

Total cases = Sz — Sg = 242""6‘" (16)
and to the order of approximaition used we-find
m total cases)? .
m _ (total cases)* 7

p  8(peak cases)’ ,

provided we agree to call Cor, which is the case rate at the peak of the epi-
demic multiplied by the incubation interval 7, the ‘‘peak cases.” Thus
what could be determined from an observed epidemic would not be either
m or p severally but their ratio. In any such determination it would, of
course, be necessary to use the estimated real numbers of total cases and
of peak cases and not the total cases or peak cases reported unless the
reporting were complete. It should further be observed that actually an
epidemic may last over a considerable time and that recruits are- coming
into the population of susceptibles, which might well make necessary
some modification in (17).

Instead of pursuing these considerations at this time we shall turn to the
matter of the exact stepwise integration of (10). For notational simplifi-
cation we introduce as in earlier papers,® x = S/m, and T = ¢/7 so that (10)
becomes

dx dx 1dx dx
dT = ¥ dT\- " @ dT ~ aTlr (107
The equation may be integrated exactly as®
1 1
97- + xp1=k = q—x; + %, (18)
T 0

where g = p —land X9, X — are any two values of x which are one incuba-
tion period apart. At the beginning and end of the epidemic there are no
cases and x, = x,— 1. Hence the equation

1
Ei—q+x—k=00rae‘"+e'—k=0 (19)

with v = log x will have as solutions the initial and final values x5, xg of x
or their logarithms. We have



Vo. 31, 1945 PATHOLOGY: WILSON AND WORCESTER 29

fo) =temte—k f) = e+ e

Qe

f'(®) + f'(—v) = 2(cosh v — cosh qv).

Hence the plot of f(v) has a minimum at 9 = 0, and the (positive) slope for a
positive value of v is numerically greater than the (negative) slope for the
same numerical but negative value of », provided ¢ < 1, but for ¢ > 1t
is less. This means that vp + vx < 0 or xpxg < 1 when ¢ < 1, i.e., when
0 < p = 2, but that xzxx > 1 wheng > 1, i.e., when p > 2.

At the end of the epidemic where the case rates are very small and the
values of x are not changing appreciably, C/C — being x? is essentially con-
stant and hence the curve of case rates in portions remote from the mode
is essentially an exponential curve with a constant difference p log x5 for
the ascending tail and with a constant (negative) difference p log xg for the
descending tail. The rise will be faster than. the fall if xgxz > 1, i.e., if
p > 2, but will be slower than the fall if xgxz < 1,i.e.,if p < 2. We have
seen that for p = 2 the curve of case rates is strictly symmetrical. It
appears, however, that for p > 2 the longer tail would be on the right
whereas for p < 2 it would be on the left.

1 Ross, Sir Ronald, ‘‘Application of the Theory of Probabilities to the Study of a
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7 A word should be said about the assumption that we might use some power p of S
in (10). The assumption may be difficult to justify on a priori grounds, but the justifi-
cation for the case p = 1 is none too satisfactory. It would, in fact, be remarkable in a
situation so complex as that of the passage of an epidemic over a community if any sim-
ple law adequately represented the phenomenon in detail—even to assume that the new
case rate should be set equal to any function f(S) of the susceptibles multiplied by the
case rate one incubation period earlier might be questioned. 'We propose to discuss the
assumption (10) merely as a possible empirical variant of the case p = 1 to see what its
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consequences may be. Although mathematics is used to develop the logical inferences
from known laws, it may also be used to investigate the consequences of various as-
sumptions when the laws are not known, i.e., one of the functions of mathematical and
philosophical reasoning is to keep us alive to what may be only possibilities when the
actualities are not yet known.

8 Ross (Part I, p. 226) develops under the case of ‘‘proportional happening’’ consider-
ations of circumstances which he says ‘‘are probably just the conditions which hold in
many of the short and sharp epidemics of zymotic diseases, such as measles, scarlatina
and dengue.” It is perfectly true that the curve of new cases has the form found in
epidemics of those diseases, but we have seen that this sort of curve may arise under a
variety of different hypotheses. It seems tolerably clear that Ross’s theory of happen-
ings, despite its generality, does not include the hypotheses appropriate to the discus-
sion of epidemics of such diseases as measles, for he assumes that his population P has
only two divisions, namely, the affected population Z and the susceptible population 4
and that immunity and the affected condition disappear together. In the case .of
measles and similar diseases there is a third population, namely, the immunes, let us say
Y,sothat P = Z + A + Y and his fundamental equations would be replaced by some-
thing like:

dP =(n—m+i—eAdt + (N — M+I— E)Zdt+ (N — M +1I' — E')Yat,
dA = (n—m+1i—e— BAdt + (N 4 rZdt + (N’ + r")Yds,

dZ = hddt + (—M + I — E — r — 5)Zdt,

dY = (=M' 4+ I' — E' — r")Ydt + sZdt.

Here n, m, i, e and their correlatives in capitals are natality, mortality, immigration and
emigration rates, 7 is the rate at which the affected return to the susceptibles directly
according to Ross’s assumption of simultaneous cure and loss of immunity, 7’ is the rate
at which the immunes lose their immunity, s is the rate at which the affected become
cured and immune, and 5 is a factor which under the assumption of proportional hap-
pening has the form cZ. These equations do not allow for lag; they assume that births
to the affected and to the immunes are susceptible rather than either affected or immune,
though for measles children born to the immune mothers are generally themselves im-
mune for a time.

We have tried to reconcile Ross’s formulation (which is abstracted by C. O. Stally-
brass in his Principles of Epidemiology, 1931, pp. 515 ff) and in particular the statement
that in infectious diseases the reversion element rZd¢ implies loss of both immunity and
infectiousness, not recovery from disease, by considering the population of affected per-
sons Z to remain affected whether infectious or not as long as they remain immune, but
this construction appears impossible. We therefore seem to be forced to the conclusions
that Ross’s a priori pathometry does not cover those zymotic diseases in which immunity
with non-infectiousness is a prime phenomenon; it might well cover those in which
immunes were permanent carriers, especially if the rates of transfer of infection from the
ill and from carriers to susceptibles were not materially different.

9 If in equation (18) we take x = 1 when " = O and assume x = 1 + aT + bT? +
¢T3 + dT* + eT%, we find, on equating coefficients of powers of T, the following values of
b, ¢, d, e, k in terms of a, good to the power a5, inclusive.

b=pa’[:ll+ a+ "o

p—2  pr—2p  pt—2pt ,]
48 2 “t T7es
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1 7—6
= patl =
¢ "“[6"' 72 °

11p* — -
LU —2p 412 97pt — 2299 + 168p a,]
432 10368

+

5p—2 8pt— 16p + 12 79p% — 186p* + 168p
d = pat A
be [ 48 288 o+ 6012 “’]

e=1>a'[£ 15 — 24p + 24 +35P'—84?’+84Pa,]

30 1440 ¢ 8640
2 3 2 4 3 2
pe—P gy P P 13— Ap+2p | 35p - 8P+ 84
p—1 12 180 8640 51840
For any assumed slope of the x-curve at x = 1 one could plot a short range of that

curve, say from T = —1/,to T = +1/,. With the value of # one could then proceed
stepwise from (18) to any other value of x removed an integral number of units of time
for any value assumed within that range.

Particularly interesting, however, is to derive expressions in terms of the maximum
case rate 5o = Cor/m. This requires the value of T when d%x/dT? = 0, which is

1, p—2 | 5pP—10p 11pd —26p* +12p — 8 |
sttt e T 3072 "

o

and is valid only to the term in a® whereas x was valid to the term in a. For this value
of T, z = —dx/dT takes the value 2, viz.,

2
2 = —-a+—§a’——a‘ or @ = —z¢+§zo’—£zo'.

v

p?
96 48

Hence a may be found in terms of 2, good to the term in 2?3, inclusive. With this value
of a one may derive expressions in 2 for & and for the value of x, of x at the peak of the
epidemic, as follows:

4 4 p*

= —— —_ e g2 —_— g8
k p_1+zo 2420-?-18020. , (A)

1 1 113p* — 290p
=14z — - g B
%o 1+2zo PYhal Tis20 ® (B)

With these values one may compute stepwise from (18) the values of x for successive
values of x removed from the mode by integral numbers of units of time under any as-
sumed value of the ratio Cor/m and for any value of p.

For the approximation that leads to the symmetrical curve, we may write (13’) nearly

enough as
1 2rmCy pCo ., \
S=m+; Cor — ‘I——P tanh 4o~ & — %). ©
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Therefore for the beginning and end of the epidemic we should have

1 2rmC, 1 2rm C,
s,=m+écor+v"? ° s,=m+§c,1—V"Z L]

In general for x at the beginning and end, equation (19) for x may be solved in series.
If we set

2 ) 2 1 )
Yz— ——— = - —— —_
p( p—l) plo 1220’+9020‘.

N TS~ L LR P
0+ D@ — DEp =~ Bp +29) Ly,
17280

and xp will be the value with the positive sign, xg that with the negative, and

+M:.L)Y'/a+

Total cases = 2Y'/
36

b+ D@~ DEP —Bp+2)
. 8640

provided we measure cases relative to m. Transformed to actual numbers

Total cases = m[2Y'/’ + @—-F% Y/ 4
(»+1)@2p — 1)@2p* — 23p + 23)
e v, (D)
_2Gr _1(Gr\ p(GCr)
y_pm 12(m) +90(m)' (&)

Equation (D) with Y defined as in (E) gives a relationship between total cases, peak
cases Cor and m and p which may be solved for any one of those four quantities in terms
of the other three to give a more exact expression than (17) which was based on an ap-
proximation. If we solve for m and retain only the first approximation beyond (17) we
find .

4]

(total cases)? [ 5p® + 4p —4(peakcases ’]
m=p 1-

8(peak cases) - 9p? total cases/ |

For p = 1 the correction term in (F) is at most two-thirds of the square of the ratio of
peak cases to total cases. This ratio in sharp epidemics of measles (after allowance for
under-reporting) is rarely as much as !/s so that the correction rarely amounts to more
than two percent, and, therefore, considering the difficulty of accurate estimation of
actual total cases or peak cases, we may consider (17) a sufficiently good approximation.
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10 The actual calculation of the course of S = mx from (18) for three comparative

special cases, with s = — dx/dT = C/m, is as follows:

p=1,m=1,2 =03

S
1.9789

1.9788
1.9786
1.9782
1.9774
1.9758
1.9726
1.9663
1.9540
1,9302
1,8847
1.8010
1.6564
1,4333
1.1467
0.8610
0.6470
0.5224
0.4612
0.4338
0.4221
0.4172
0.4151
0.4142
0.4139
0.4137

Cases
0.0001

0.0002

0.0004
0.0008
0.0016
0.0032
0.0063
0.0123
0.0238
0.0455
0.0837
0.1446
0.2231
0.2866
0.2857
0.2140
0.1246
0.0612
0.0274
0.0117
0.0049
0.0021
0.0009
0.0003
0.0002

p=2,m=2,3=15

S

2.9326
2.9324
2.9322
‘ 2.9318
2.9310
2.9292
2.9254
2.9170
2.8992
2.8624
2.7892
2.6536
2.4346
2.1482
1.8618
J1.6428
1.5072
1.4340
1.3974
1.3796
1.3712
1.3674
1.3656
1.3648
1.3644
1.3642
1.3640

Cases

0.0002
0.0002
0.0004
0.0008
0.0018
0.0038
0.0084
0.0178
0.0368
0.0732
0.1356
0.2190
0.2864
0.2864
0.2190
0.1356
0.0732
0.0366
0.0178

.0.0084

0.0038
0.0018

0.0008

0.0004
0.0002
0.0002

3.9165
3.9162
3.9156
3.9141
3.9108
3.9036
3.8880
3.8544
3.7848
3.6528
3.4353
3.1488
2.8623
2.6418
2.5029
2.4261
2.3865
2.3667
2.3571
2.35623
2.3499
2.3490
2.3484
2.3481

0.0003
0.0006
0.0015
0.0033
0.0072
0.0156
0.0336
0.0694
0.1320
0.2175
0.2865
0.2865
0.2205
0.1389
0.0768
0.0396
0.0198
0.0096
0.0048
0.0024
0.0009
0.0006
0.0003
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The left-hand skewness for p = 1 and right-hand skewness for p = 3 show in the figures.
The different values of z were chosen so that the case rates at maximum Cor = zm and
total cases should be the same provided the approximate formula (16) were used and the
value of xo were taken from (B) in footnote 9. Slight irregularities in the numbers must
be expected due to the limited number of places carried, and slight discrepancies in
verifying (16) from the calculations because of the approximative nature of (16) and (B).

J. Brownlee stated, Proc. Roy. Soc. Med., Epid. Sect., 2, Part 2, 243-258 (1909):
. . . the symmetry of the course of the epidemic is an obvious and marked feature. The
deduction from this phenomenon is direct and complete, namely, that the want of per-
sons liable to infection is not the cause of the decay of the epidemic. On no law of in-
fection which I have been able to devise would such a cause permit epidemic symmetry.
The fall must in all cases be much more rapid than the rise, though, on the contrary,
when asymmetry is markedly present the opposite holds. Ross! comments on this
statement. We may point out that if we accept the generalization of the law of mass
action suggested in (10) there is symmetry for § = 2, negative skewness for p < 2 and
positive skewness for p > 2. " Thus a rather simple law has been devised which may ex-
plain symmetry or skewness of either sign. Furthermore, in the examples above which
correspond to rather severe epidemics of measles the rise is at the (logarithmic) rate p
log x5 or 0.68, 0.77, 0.81, respectively, for p = 1, 2, 3; and the rate of the fall is —p
log xz or 0.89, 0.77, 0.74, respectively. In the first case the rate of fall is considerably
greater than the rate of rise, in the second case they are equal, and in the third case the
rate of fall is but slightly less than the rate of rise. With higher values of p the rate of
fall would become considerably less than the rate of rise, but even with very high values
of p and with the same values of peak cases and of total cases as in the illustrations above
the rate of rise could probably not exceed 0.89 and the rate of fall not be lower than 0.69.

A LETTER FROM LORD RAYLEIGH TO J. WILLARD GIBBS AND
HIS REPLY

By EpwiN B. WILSON
HARVARD SCHOOL OF PuBLIC HEALTR
Communicated December 4, 1944

In the small collection of letters left by J. W. Gibbs and now in the
possession of Ralph G. Van Name is one from Lord Rayleigh the answer to
which I presumed still existed because the present Lord Rayleigh quoted
three sentences from it in his biography of his father.! When I sent a copy
of his father’s letter to Lord Rayleigh, he kindly sent me a transcript of
Gibbs’s reply. As this exchange of letters between a foreign associate aad
a member of this Academy seems to me likely to be of sufficient interest to
our members and of sufficient importance to the history of science to justify
publication in full even at this late date, I have secured the permission of
Lord Rayleigh and of Professor Van Name to print them here.



