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Abstract

Long non-coding RNAs (lncRNAs) play an important role in gene regulation and contribute to 

tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult 

malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, 

we curated RNA sequencing data for 1,044 pediatric leukemia and extra-cranial solid tumors and 

integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models 

to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs 

were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated 

expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion 

comparable to protein coding genes. Application of a multi-dimensional framework to identify 

and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric 

cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis 

of upstream regulation via cell-type specific transcription factors further implicated distinct 

histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs 

for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-

specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the 

computational predictions. Taken together, these data provide a comprehensive characterization 

of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic 

studies.
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Introduction

Long non-coding RNAs (lncRNAs) are transcribed RNA molecules greater than 200 

nucleotides in length that do not code for proteins. These molecules account for 70% of the 

expressed human transcriptome and provide a key aspect of gene regulation[1, 2]. Compared 

to protein coding genes (PCGs), lncRNAs typically have fewer exons, weaker conservation, 

and lower abundance[1]. Despite this, lncRNAs have been shown to play significant roles 

in both transcriptional and post-transcriptional gene regulation[3]. LncRNAs perform these 

roles by physically interacting with a variety of substrates, including proteins (transcription 

co-factors), RNAs (microRNA sponges), and DNA (chromatin interaction scaffolds). While 

the mechanisms and function for the majority of lncRNAs remain unknown[2], those that 

have been experimentally characterized are involved in a variety of cellular processes, 

including gene silencing (ANRIL)[4], modulation of chromatin architecture (Xist)[5], and 

pre-mRNA processing (MALAT1)[6]. LncRNAs are also important in development. For 

Modi et al. Page 2

Cancer Res. Author manuscript; available in PMC 2024 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



example, the H19 lncRNA is involved in imprinting[7], while the well-conserved TUNA 
lncRNA controls stem cell pluripotency and lineage differentiation[8].

Dysregulation of lncRNA expression has been widely observed in cancer[1, 9, 10] 

and studies have shown that lncRNAs play important roles in tumor initiation and 

progression[11]. LncRNAs can function as tumor suppressors, such as the PANDA 
lncRNA which regulates DNA damage response in diffuse large B-cell lymphoma[12]; 

however, many more lncRNAs appear to be oncogenes. Examples include the HOTAIR 
and PVT1 lncRNAs which promote proliferation in various cancers through tissue specific 

mechanisms[13, 14]. Pan-cancer analyses of lncRNA expression in adult malignancies 

have uncovered many cancer-associated lncRNAs[1, 9–11, 15, 16]. Identification of 

functional lncRNAs amongst the large set of cancer-associated lncRNAs, however, remains 

challenging[9, 17]. Current methods to identify putative functional lncRNAs involve 

identifying lncRNA-specific genetic aberrations [9, 10] or using lncRNA expression to 

predict overall patient survival[10]. To more systematically address how lncRNAs drive 

the pathogenesis of cancer, recent computational methods seek to assign function to these 

molecules based on predicted target genes and regulatory network models. These methods 

have been applied to adult malignancies and allow for more focused hypotheses to be 

tested[15, 16].

LncRNA studies in pediatric cancers have limited their focused to single histotypes, 

specifically neuroblastoma, leukemias, and brain cancer[18–23]. CASC15 and NBAT-1 
are a sense-antisense lncRNA pair that map to a NBL susceptibility locus identified by 

genome-wide association study[24, 25]. Both lncRNAs are downregulated in high-risk NBL 

tumors and have been shown to be involved in cell proliferation and differentiation[18, 24]. 

In pediatric T-ALL, the NOTCH-regulated lncRNA, LUNAR1, promotes T-ALL cell growth 

by sustaining IGF1 signaling[21]. To date, it is unknown whether lncRNAs function as 

common drivers across multiple pediatric cancers, or if instead, the majority of lncRNAs 

influence oncogenesis in a histotype-specific manner. Furthermore, given that pediatric 

cancers typically arise from primitive embryonic and mesodermal cells, rather than adult 

epithelial cells, it is unclear whether adult cancer lncRNA drivers will also be implicated in 

childhood cancer.

Here, we perform a pan-pediatric cancer study of lncRNAs across 1,044 pediatric leukemias 

and extra-cranial solid tumors. We present the landscape of lncRNA expression across these 

childhood cancers and perform integrative multi-omic analyses to assess tissue elevated 

expression, regulation, and putative function. To validate our approach, we show that 

silencing of the top-prioritized NBL-specific lncRNA, TBX2-AS1, impairs NBL cell growth 

in human-derived NBL cell line models.

Materials and Methods

RNA-seq data processing.

A comprehensive RNA-seq analysis pipeline was used on all samples (Supplementary 

Table S1, Supplementary Fig. S1). First, FASTQC (RRID:SCR_014583) was run on all 

samples and any samples that had a Phred score < 30 for more than 25% of read 
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bases were removed. Samples were then aligned using STAR_2.4.2a (RRID:SCR_004463) 

[26] with the following parameters: “STAR --runMode alignReads --runThreadN 

10 --twopassMode Basic --twopass1readsN −1 --chimSegmentMin 15 --chimOutType 

WithinBAM –genomeDir X--genomeFastaFiles ucsc.hg19.fa --readFilesIn fasta1 fasta2 

--readFilesCommand zcat --outSAMtype BAM SortedByCoordinate --outFileNamePrefix 

X --outSAMstrandField intronMotif --quantMode TranscriptomeSAM GeneCounts --

sjdbGTFfile gencode.v19.annotation.gtf --sjdbOverhang X.” To assess the quality of the 

aligned RNA-seq data we ran MultiQC [27] (RRID:SCR_014982), and removed samples 

with < 70% uniquely mapped reads and < 10 million mapped reads. Details of RNA-seq data 

read quantification can be found in Supplementary Methods.

Tissue specific gene expression.

The tau score, a measure of the tissue specific expression of a gene was calculated as 

described by Yanai et. al[28]. The formula for the score is listed below. xi is defined as 

the mean expression of a gene in a particular cancer and n is the total number of cancers 

considered, in this case n = 6.

τ = Σi = 1
n 1 − xi

n − 1 ; xi = xi
max

1 ≤ x ≤ n
xi

CNV and structural variant detection.

Copy number calls were made by Complete Genomics (CGI) from WGS for NBL, 

WT, AML, and B-ALL. We used CGI files “somaticCnvDetailsDiploidBeta” containing 

ploidy estimates and tumor/blood coverage along 2kb bins across the genome. To create 

segmentation files, we used custom scripts to reformat CGI coverage data to meet 

requirements of the “copynumber” R bioconductor package (RRID:SCR_006442) as 

previously described[29]. Segmentation files were visualized using the R package svpluscnv 

[30]. We then ran GISTIC2.0 (RRID:SCR_000151), using segmentation data as inputs 

using parameters: “GISTIC2 -v 30 -refgene hg19 -genegistic 1 -smallmem 1 -broad 1 

-twoside 1 -brlen 0.98 -conf 0.90 -armpeel 1 -savegene 1 -gcm extreme -js 2 -rx 0”. 

To determine genes impacted by copy number we intersected CNV regions listed in the 

“all_lesions.conf_90.txt” file from GISTIC output with gene positions. We used section 1 

from the “all_lesions.conf_90.txt” file to assign a binary descriptor to each gene as either 

being not amplified or deleted (CNV-no) if the sample had actual copy gain 0 for the region 

containing the gene. We assigned CNV-yes if the region containing the gene was amplified 

or deleted, which included samples with actual copy gain 1 or 2, where 1 indicates low 

level copy number aberration (exceeds low threshold of copy number: 1: 0.1<t< 0.9) and 

2 indicates a high level of copy number aberration, CNV exceeds high threshold (t>0.9) 

according to GISTIC.

Structural variants were identified from WGS as previously described[29]. To 

obtain a high confidence set of junctions, filtering was applied to obtain the 

highConfidenceSomaticAllJunctionsBeta:
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1. DiscordantMatePairAlignments ≥ 10 (10 or more discordant mate pairs in cluster

2. JunctionSequenceResolve = Y (local de novo assembly is successful)

3. Exclude interchromosomal junction if present in any genomes in baseline 

samples (FrequencyInBaseline > 0)

4. Exclude the junction if overlap with known underrepresented repeats 

(KnownUnderrepresentedRepeat = Y): ALR/Alpha, GAATGn, HSATII, 

LSU_rRNA_Hsa, and RSU_rRNA_Hsa

5. Exclude the junction if the length of either of the side sections is less than 70 

base pairs.

Further filtering of these high confidence structural variants included removing rare/common 

germline variants that passed the CGI filters. We used the Database of Genomic Variants 

(DGV v. 2016–05-15, GRCh37 RRID:SCR_007000) to remove SVs that had at least 50% 

reciprocal overlap with DGV annotated common events and were type matched.

Identification of gene regulatory networks using the lncMod framework.

We developed custom Python 2.7 (RRID:SCR_008394) scripts to implement the general 

framework of the lncMod method [31]. We first identified transcription factor target gene 

regulation specific to each cancer by performing motif analysis upstream of all candidate 

target genes. We then delineated genes (TF, target genes, or lncRNAs) that had high 

expression variance (IQR > 1.5). For each differentially expressed lncRNA, we sorted 

cancer samples from low to high lncRNA expression. We then determined the correlation 

(Spearman’s rho) between the expression of all transcription factor and target gene pairs 

for the 25% of samples with the lowest lncRNA expression and separately for the 25% of 

samples with the highest expression for the given lncRNA [15, 16, 31]. Significant lncRNA 

modulators were identified based on a significance difference between the TF-target gene 

correlation in the low vs high lncRNA expression groups, which was assessed using the 

rewiring score. Permutation analysis of randomized lncRNA TF-target gene triplets was 

performed to determine the significance of the rewire score in the context of multiple testing 

hypothesis. Further details about implementation of the lncMod framework can be found in 

the Supplementary Methods.

Promoter-focused Capture C data generation.

High resolution promoter-focused Capture C was performed in the neuroblastoma cell line, 

NB1643 (RRID:CVCL_5627), (untreated) in triplicate. Cell fixation, 3C library generation, 

capture C, and sequencing was performed as previously described [32–35]. For each 

replicate, 107 fixed cells were centrifuged to cell pellets and split to 6 tubes for a pre-

digestion incubation with 0.3%SDS, 1x NEB DpnII restriction buffer, and dH2O for 1hr at 

37ºC shaking at 1,000rpm. A 1.7% solution of Triton X-100 was added to each tube and 

shaking was continued for another hour.10 ul of DpnII (NEB, 50 U/μL) was added to each 

sample tube and continued shaking for 2 days. 100uL Digestion reaction was then removed 

and set aside for digestion efficiency QC. The remaining samples were heat inactivated 

incubated at 1000 rpm in a MultiTherm for 20 min, at 65°C to inactivate the DpnII, and 

cooled on ice for 20 additional minutes. Digested samples were ligated with 8 uL of T4 
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DNA ligase (HC ThermoFisher, 30 U/μL) and 1X ligase buffer at 1,000 rpm overnight at 

16°C. The ligated samples were then de-crosslinked overnight at 65°C with Proteinase K (20 

mg/mL, Denville Scientific) along with pre-digestion and digestion control. Both controls 

and ligated samples were incubated for 30 min at 37°C with RNase A (Millipore), followed 

by phenol/chloroform extraction, ethanol precipitation at −20°C, then the 3C libraries were 

centrifuged at 3000 rpm for 45 min at 4°C to pellet the samples. The pellets of 3C libraries 

and controls were resuspended in 300uL and 20μL dH2O, respectively, and stored at −20°C. 

Sample concentrations were measured by Qubit. Digestion and ligation efficiencies were 

assessed by gel electrophoresis on a 0.9% agarose gel and by quantitative PCR (SYBR 

green, Thermo Fisher).

Isolated DNA from 3C libraries was quantified using a Qubit fluorometer (Life 

technologies), and 10 μg of each library was sheared in dH2O using a QSonica Q800R 

to an average fragment size of 350bp.QSonica settings used were 60% amplitude, 30s on, 

30s off, 2 min intervals, for a total of 5 intervals at 4 °C. After shearing, DNA was purified 

using AMPureXP beads (Agencourt). DNA size was assessed on a Bioanalyzer 2100 using 

a DNA 1000 Chip (Agilent) and DNA concentration was checked via Qubit. SureSelect XT 

library prep kits (Agilent) were used to repair DNA ends and for adaptor ligation following 

the manufacturer protocol. Excess adaptors were removed using AMPureXP beads. Size and 

concentration were checked again by Bioanalyzer 2100 using a DNA 1000 Chip and by 

Qubit fluorometer before hybridization. One microgram of adaptor-ligated library was used 

as input for the SureSelect XT capture kit using manufacturer protocol and custom-designed 

41K promoter Capture-C probe set. The quantity and quality of the captured libraries were 

assessed by Bioanalyzer using a high sensitivity DNA Chip and by Qubit fluorometer. 

SureSelect XT libraries were then paired-end sequenced on Illumina NovaSeq 6000 platform 

(51bp read length) at the Center for Spatial and Functional Genomics at CHOP.

Cell lines and reagents.

NBL cell lines were obtained from the American Type Tissue Culture Collection (ATCC) 

and grown in RPM1–1640 with HEPES, L-glutamine and phenol red, supplemented with 

10% FBS, 1% L-glutamine in an incubator at 37°C with 5% CO2. All cell lines used in 

experiments for this study had a passage less than 15. Cell line identity was confirmed 

biennially through genotyping and confirmation of STR (short tandem repeat) profiles, while 

routine testing for Mycoplasma contamination was confirmed to be negative.

siRNA and growth assays.

The NBL cell lines, NLF (RRID:CVCL_E217) and SKNSH (RRID:CVCL_0531), were 

plated in a 96-well RTCES microelectronic sensor array (ACEA Biosciences, San Diego, 

CA, USA). Cell density measurements were made every hour and were normalized to 24 

hours post-plating (at transfection time). We used siRNAs to knockdown the expression of 

genes in NLF and SKNSH. The siRNAs utilized included a non-targeting negative control 

siRNA (Silencer™ Select Negative Control siRNA, cat #4390843), TBX2 Silencer™ siRNA 

(assay ID 115748), TBX2-AS1 Silencer™ Select siRNA (assay ID n514841) referred to as 

siTBX2-AS1 and siTBX2-AS1-A, TBX2-AS1 Silencer™ Select siRNA (assay ID n550888) 

referred to as siTBX2-AS1-B, TBX2-AS1 Silencer™ Select siRNA (assay ID S197244) 
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referred to as siTBX2-AS1-C, TBX2-AS1 Silencer™ Select siRNA (assay ID n543080) 

referred to as siTBX2-AS1-D, and SMARTpool: ON-TARGETplus PLK1 siRNA (cat # 

L-003290–00-0010). Transfection of cells was done using the DharmaFECT 1 transfection 

reagent (cat # T-2001–02). siRNA at a concentration of 50nM and 2% (NLF) and 2–4% 

(SKNSH) DharmaFECT was added to RPMI medium without 10% FBS or any antibiotic 

separately and then incubated at room temperature for 5 minutes. The siRNA medium 

was then added to the DharmaFECT and incubated for another 20 minutes to form a 

complex. This solution was then mixed with our normal growth media and applied to cells 

24 hours after they had been initially plated. All experiments were repeated in triplicate, 

with technical replicates (n=3) being averaged per biological replicate.

Real time quantitative PCR.

Total RNA was extracted from NBL cells using miRNeasy kit (Qiagen) and the provided 

protocol for animal cells. The concentration of RNA was determined with the Nanodrop 

(Thermo Scientific). cDNA synthesis was performed using the SuperScript™ First-Strand 

Synthesis System for RT-PCR using the SuperScript™ reverse transcriptase (Invitrogen). 

5–20ng of cDNA were mixed with the TaqMan Universal PCR Master Mix (Thermo Fisher 

Scientific) and TaqMan probes/primers for either TBX2-AS1 (Hs00417285_m1) or the 

house keeping gene, HPRT1 (Hs02800695_m1). Gene expression from these reactions were 

measured using RT-qPCR and TBX2-AS1 expression was normalized to HPRT1 expression.

Protein isolation and western blotting.

Whole cell lysates were made using denaturing lysis buffer containing protease/phosphatase 

inhibitors (Cell Signaling Technology 5872). Cells were kept on ice and lysed for 30 min. 

Samples were then sonicated for 5 sec and spun at max speed in a microcentrifuge for 15 

min at 4°C, after which supernatant was collected into a clean tube. Protein was quantified 

using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific 23227) and 30 μg protein 

was then loaded on 4–12% Tris-Glycine gels, transferred to PVDF membrane, and probed 

with antibodies in 5% milk in TBST. Primary antibodies used include: Actin Beta (Santa 

Cruz Biotechnology sc-47778, RRID:AB_626632) used at 1:2500 and TBX2 (Santa Cruz 

Biotechnology sc-514291, RRID:AB_2941848) used at 1:250. The secondary antibody used 

was Goat anti-mouse HRP (Thermo Fisher 31430, RRID:AB_228307) at 1:25,000. Blots 

were developed using SuperSignal West Femto Maximium Sensitivity Substrate (Thermo 

Fisher Scientific 23227) on the Chemidoc Imaging System (Biorad).

Data Availability

All TARGET RNA and DNA-sequencing data analyzed in this study are available through 

the database of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap/) 

under study-id phs000218 and accession number phs000467. GMKF RNA-sequencing data 

are available through dbGAP study accession phs001436.v1.p1. Neuroblastoma cell line 

RNA-sequencing data analyzed in this study are available through GEO at accessions 

GSE89413. NBL histone ChIP-seq and transcription factor ChIP-seq data used in this study 

are both available through GEO at accessions: GSE138315 and GSE94822, respectively. 

RNA-sequencing generated for NLF cells treated with siRNAs in this study is available 
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through GEO at accession: GSE238166. Code used to generate figures and analyze data is 

available at: https://github.com/diskin-lab-chop/PanTARGET_lncRNA_Study. All other raw 

data generated in this study are available upon request from the corresponding author.

Results

Identification of robustly expressed lncRNAs across pediatric cancers

To define the repertoire of highly expressed lncRNAs in childhood cancers, we analyzed 

RNA-sequencing data from six distinct pediatric cancer histotypes profiled through the 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project 

(https://www.cancer.gov/ccg/research/genome-sequencing/target) (Supplementary Table S1). 

This curated set of 1,044 leukemia and solid tumor samples includes 280 acute myeloid 

leukemia (AML), 190 B-lymphoblastic leukemias (B-ALL), 244 T-lymphoblastic leukemias 

(T-ALL), 121 Wilms tumors (WT), 48 extracranial rhabdoid tumors (RT), and 161 

neuroblastomas (NBL) (Fig. 1A). To identify novel cancer-associated lncRNAs, we 

performed guided de novo transcriptome assembly using StringTie v1.3.3[36] with the 

GENCODE v19 database [37] as a gene annotation reference (Supplementary Fig. S1A). 

Expressed gene sequences that did not match exons and transcript structures of any known 

gene in the GENCODE v19 or RefSeq v74 databases were considered putative novel genes 

(Supplementary Fig. S1A–B). Of these novel genes, we identified candidate lncRNAs by 

using the PLEK v1 algorithm[38] to assess non-coding potential, and then additionally 

filtered hits by transcript length, exon read coverage, and genomic location (Fig. 1A, 

Supplementary Fig. S1A). As validation of our lncRNA discovery pipeline, we observed that 

36% (87 of 242) of identified novel lncRNAs not annotated in Gencode v19 (hg19) were 

indeed annotated in the more recent Gencode v29 (hg38) genome build (Supplementary 

Table S2). To ensure that we selected robustly expressed genes in the setting of cancer 

heterogeneity and sequencing variability, we applied a conservative expression cutoff of 

Fragments Per Kilobase of transcript per Million mapped reads (FPKM) >1 in at least 

20% of samples for each cancer. Across all cancers there were 15,588 PCGs, 2,512 known 

lncRNAs, and 145 novel lncRNAs expressed, though the total number of expressed genes 

varied per cancer (Fig. 1B, Supplementary Table S3). Principal component analysis (PCA) 

of lncRNA gene expression showed that blood (AML, B-ALL, T-ALL) and solid (NBL, 

WT, RT) cancers form two distinct groups. Moreover, individual cancer histotypes clustered 

more closely using lncRNA expression than combined PCG and lncRNA expression 

(Supplementary Fig. S2A–C), consistent with the known tissue specific nature of lncRNA 

expression and function[1].

Overall, lncRNAs had lower average expression compared to PCGs resulting in fewer 

highly expressed lncRNAs (Supplementary Fig. S2D). Between 10–100 (3.7%) lncRNAs 

accounted for 50% of the total sum of lncRNA expression (Fig. 1C). In contrast, between 

100–1000 (6.4%) PCGs accounted for 50% of the total sum of PCG expression (Fig. 

1D). We examined the union of the top five most highly expressed lncRNAs across 

pediatric cancers (total 11 lncRNAs). Some of these lncRNAs had higher expression in 

the blood cancers (MALAT1 and RP11–386I14.4), in the solid cancers (H19), or in only 

one cancer, such as MEG3 and RP11–386G11.10 in NBL (Fig. 1E). Five of these highly 
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expressed lncRNAs were among the top 10 lncRNAs expressed across normal tissues in the 

Genotype-Tissue Expression (GTEx) project [39]. Specifically, C17orf76-AS1 (LRRC75A-
AS1), MALAT1, GAS5, SNHG6, SNHG8 were expressed ubiquitously in 30 of the 49 

GTEx tissues (Supplementary Table S4).

Tissue-elevated lncRNA expression distinguishes pediatric cancers

To evaluate more formally the relative expression of lncRNAs, we annotated all genes 

with a tissue specificity index (tau score)[28, 40]. The established tau score ranges from 

0 (ubiquitous expression) to 1 (tissue-elevated). As an example, the highly expressed 

lncRNA C17orf76-AS1 yielded a tau score of 0.296 in this study, indicating ubiquitous 

expression (Supplementary Fig. S2E). In contrast, the highly expressed MEG3 lncRNA, 

which is known to have tissue-elevated expression in NBL[19, 41], yielded a tau score 

of 0.986 (Supplementary Fig. S2F). Overall, we observed that lncRNAs yielded a higher 

tau score range and mean, and thus greater tissue specific expression than PCGs (t-test 

p-value=1.62×10−42). Novel lncRNAs had the greatest tissue specific expression (t-test: 

vs proteins- p-value=1.62×10−42, vs known lncRNAs- p-value = 3.39×10−13) (Fig. 2A). 

A tau score threshold of 0.8 has been suggested to distinguish tissue specific genes[40], 

and using this cutoff we identified 1,142 (42%) tissue elevated (TE) lncRNAs (Fig. 

S2B, Supplementary Table S5). To assess how well TE lncRNAs distinguish cancers, we 

performed clustering based on the top five highest expressed TE lncRNAs per cancer (30 

total). The expression of just these lncRNAs was sufficient to cluster samples of the same 

cancer type (Fig. 2B). Furthermore, the blood and solid cancers separately clustered together 

with little expression overlap observed between the two groups across the 30 genes (Fig. 

2B). Finally, we identified a similar proportion of TE lncRNAs (38%, n = 1624) across 12 

adult cancers from The Cancer Genome Atlas (TCGA) and observed that adult cancer tissue 

types were also well distinguished based on the expression of the top 5 most TS lncRNAs 

(Supplementary Fig. S2G–H).

Notably, NBL tumors expressed 2.5x more TE lncRNAs (n=522) than the cancer with 

the next highest: WT (TE lncRNAs: n=211), and 10x more than AML, which had the 

least number of TE lncRNAs (n=49) (Fig. 2C). To validate NBL’s striking quantity of 

TE lncRNAs, we first assessed whether immune and stromal cell infiltration[42] could 

be contributing to the variety of lncRNAs expressed. We ran the ESTIMATE algorithm 

as previously described[42] to determine levels of immune and stromal cell presence in 

each tumor sample using expression data. We then re-calculated each cancer’s tau score, 

restricting our analysis to NBL samples with either 80% or 90% tumor purity. In both cases, 

we found that NBL still had the greatest number of TE lncRNAs (n =588, NBL 90% purity) 

compared to other cancers (Supplementary Table S6). NBL was the only cancer studied 

that used an un-stranded RNA-seq protocol (Supplementary Table S1). To assess whether 

this explained the high number of TE lncRNAs, we first compared lncRNA quantification 

between 14 samples in our cohort that were later sequenced using stranded RNA-seq as part 

of the Gabriela Miller Kids First (GMKF) cohort. The median expression correlation across 

all lncRNAs and the antisense lncRNAs subset was r=0.691 and r=0.688, respectively. We 

then validated the TE lncRNAs in NBL using the full GMKF cohort (n=223 tumors) and 

observed that 48% of expressed lncRNAs were tissue elevated, an increase from the 31% 
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observed in the TARGET cohort (Supplementary Table S6). These results confirm lncRNA 

abundance in NBL and demonstrate that the tau score robustly identifies TE lncRNAs across 

varying datasets.

Somatic DNA copy number alterations impact lncRNA expression

Many pediatric cancers are marked by a lower somatic single nucleotide variant (SNV) 

and insertion-deletion (indel) burden than observed in adult cancers[42]. Instead, large 

chromosomal events, such as somatic copy number aberrations (SCNAs) and other structural 

variants (SVs) have been shown to dysregulate protein coding driver genes[29, 42]. The 

extent to which large chromosomal alterations impact lncRNAs in pediatric cancers remains 

unknown. We thus sought to identify SCNAs and SVs using whole genome sequencing 

(WGS) data from the TARGET project available for NBL (n=146), B-ALL (n=302), AML 

(n=297), and WT (n=81). We observed that NBL had the greatest frequency of copy number 

events (Supplementary Fig. S3A) and highest correlation between number of lncRNAs in 

CNV regions and expressed lncRNAs per chromosome (Pearson’s r=0.556). The GISTIC 

v2 algorithm[43] was applied to detect regions of recurrent SCNA (q-value < 0.25). We 

identified 673 expressed lncRNAs overlapping 176 significant SCNA regions across the 

cancers (Supplementary Table S7). WGS samples with matched RNA-sequencing were 

then used to compare lncRNA expression in samples with or without an SCNA event and 

determine significant differential expression (DE) (Supplementary Table S8). Across all 

cancers, between 10–30% of expressed genes overlapping SCNA regions showed significant 

differential expression based on SCNA, a proportion that was similar for both PCGs and 

lncRNAs (Fig. 3A). Altogether, there were 198 (29%) unique lncRNAs with significant 

DE due to SCNA (Supplementary Fig. S3B). The majority of the significantly dysregulated 

lncRNAs were identified in the two cancers with the greatest overall number of expressed 

lncRNAs, NBL and WT, and mapped to regions with highly recurrent SCNAs in those 

cancers (chromosomes 1, 7, 11, and 17) (Fig. 3B).

While SCNAs can cause the dysregulation of lncRNA expression based on gene dosage, 

structural variant (SV) breakpoints within a lncRNA could cause loss or gain of 

function[29, 42]. We utilized WGS data to identify lncRNAs disrupted by SV breakpoints 

using a previously described combination approach involving copy number read-depth 

and discordant junction approach[29]. There were 650 unique expressed lncRNA genes 

disrupted by SVs, 89% of which were found in only one sample (Supplementary Fig. S4A). 

We observed 212 SV-impacted lncRNA genes located at SCNA regions (Fig. 3C), and 65% 

of lncRNAs genes disrupted by SV breakpoints in at least five samples that overlapped an 

SCNA regions (Supplementary Fig. S4B, Supplementary Table S9). Indeed, the top-ranked 

SV-impacted lncRNA in both NBL and WT, MYCNOS, associates with the disease-driving 

chr2p24 amplification[44, 45] (Supplementary Fig. S4C–D). In B-ALL, the SV-impacted 

lncRNAs: KIAA0125 and CDKN2B-AS1 (ANRIL) associate with the well-studied IGH 
translocation and CDKN2A/B deletion locus (Supplementary Fig. S4E)[46]. The top-ranked 

SV-impacted lncRNA in AML, MIR181A1HG (MONC), associates with a recurrent SCNA 

deletion on 1q and is mildly up-regulated in the AML dataset (p = 0.061, Supplementary 

Fig. S4F). MIR181A1HG (MONC) was described previously as an oncogene in acute 

megakaryoblastic leukemia[47]. Finally, we observed 30 lncRNAs with pan-cancer (n>3) 
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expression and SV breakpoints (Supplementary Fig. S4G). The most number of breakpoints 

across unique samples was observed in LINC00910, which was shown previously to be 

essential for cell growth in the K562 cell line[48].

Characterization of transcriptional network perturbation mediated by dysregulated 
lncRNAs

To determine how lncRNAs may drive pediatric cancers, we computationally predicted the 

downstream impact of lncRNAs on gene regulation. We focused on identifying lncRNAs 

that mediate transcriptional regulation by modulating TF activity (lncRNA modulators)[49–

51]. We wrote custom scripts implementing the lncMod computational framework[31] to 

first identify DE-lncRNAs, and then to assess their impact on correlated expression between 

a TF and its target genes[15, 31] (Fig. 4A). Across all cancers studied, we identified 313,370 

unique, dysregulated lncMod triplets (lncRNA-TF-target gene), representing 0.02–0.2% of 

possible triplets, which have significant correlation differences between a TF and target gene 

upon lncRNA expression dysregulation (Supplementary Table S10–S11, Supplementary Fig. 

S5A). This proportion was consistent with previous findings from the lncMap study in 

adult cancers[15], although more triplets were identified in datasets with greater sample 

size (Supplementary Table S10–S11). We observed that the majority of lncRNA modulators 

are either intergenic (39%) or antisense (38%) lncRNAs, with only 15% of the antisense 

lncRNAs having a correlation of r>0.6 with their sense-protein coding gene. The majority 

of lncRNA modulators appear to function in trans, with only 5% of lncRNA-TF pairs 

belonging to the same chromosome. LncRNA modulators were categorized into one of three 

categories based on their impact on TF-target gene correlation; either the correlation was 

enhanced, attenuated, or inverted (Fig. 4A–B). LncRNA modulators have context specific 

function such that for different TF-target gene pairs they could exert different types of 

regulation (Supplementary Fig. S5B). The majority of lncRNA modulators appeared to be 

active in only one cancer, with only 15% (138 of 923 lncRNAs) having pan-cancer activity 

(n>3) (Fig. 4C).

To determine the biological impact of lncRNA modulators, we identified lncRNAs whose 

target genes were enriched in MSigDB’s Hallmark Gene Sets (HMS)[52] (Fisher’s exact 

test, FDR < 0.1). Across most cancers, lncRNA modulator target genes had significant 

enrichment in the proliferation, metabolism, and DNA damage hallmark categories (FDR 

range: 0.1 to 2.24×10−36; Fig. 4D). Overall, the top-enriched hallmark pathways closely 

mirrored those found for lncRNA modulators in adult cancers[16]. Consistent with its role 

in development and as an oncogene in certain cancers [17], the top-enriched hallmarks for 

the H19 lncRNA, dysregulated in NBL, were the EMT (development) and G2M-checkpoint 

(proliferation) hallmarks (Supplementary Fig. S5C). The blood cancers exhibited strong 

enrichment of lncRNA modulators regulating MYC targets, which has a well-established 

role in leukemias[53]. Furthermore, in AML, we observed that gene targets of the 

myeloid-specific lncRNA, HOTAIRM1, were most enriched for proliferation hallmarks 

(Supplementary Fig. S5D), consistent with this lncRNA’s known role in proliferation as an 

oncogene in adult AML[54].
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Finally, we sought to determine potential lncRNA mechanism by identifying recurring 

patterns of regulation amongst lncMod triplets. To this end, we nominated candidate 

lncRNA-TF associations by ranking TFs based on the number of target genes regulated 

by each given TF (Supplementary Table S12). As proof-of-concept, we were able to detect 

known lncRNA-TF associations such as GAS5 with E2F4[55] (RNA-protein), and SNHG1 
with TP53[56] (RNA-RNA) amongst lncMod triplets in our study (Supplementary Fig. 

S5E–F). A notable example from the hundreds of novel associations identified is between 

the B-ALL specific lncRNA, BLACE (B-cell acute lymphoblastic leukemia expressed, 

tau score: 0.999) and its top associated TF, XBP1, which has known roles in pre-B-

ALL cell proliferation and tumorigenesis[57] (Fig. 4E–F). These predictions of lncRNA 

transcriptional networks provide focused avenues to elucidate the mechanisms through 

which lncRNAs can drive pediatric cancers.

lncRNA expression distinguishes cancer cell lineages in neuroblastoma

Pediatric cancers arise in the context of normal human development where cells do not 

differentiate as they should, resulting in malignant cell transformation[58]. Some tumors are 

comprised of heterogenous cells that resemble distinct differentiation lineages with distinct 

transcriptomic states due to specialized super enhancer transcription factor networks, [59]. 

We sought to discover lncRNAs associated with these varying cell lineages as they may 

contribute to pediatric cancer etiology. We used NBL as a model given its heterogeneity 

and two confirmed tumor cell states: the undifferentiated mesenchymal (MES) cells and 

the committed adrenergic (ADRN) cells, which can interconvert[60]. Given that NBL 

precursor cells, the neural crest cells, have been shown to have a more MES gene expression 

signature[59, 60], we hypothesized that lncRNAs correlated with an MES signature may 

play a role in NBL development. Using the gene set variation analysis (GSVA) method[61] 

we assigned for each NBL Stage 4 sample (n=130), both a MES and ADRN score. Using 

hierarchical clustering (Supplementary Fig. S6A) we categorized samples based on their 

primary gene expression phenotype as ADRN, MES, or mixed (Fig. 5A). We next correlated 

the MES and ADRN score with lncRNA expression across NBL samples. We observed 29 

lncRNAs associated with MES samples and 21 lncRNAs associated with ADRN samples 

(Fig. 5B) (Spearman’s |rho| >0.6, adj. p-value < 0.01). A guilt-by-association analysis[62] 

analysis was performed to determine the potential functional pathway for these lncRNAs 

based on the pathway of their correlated protein coding genes. Gene set enrichment was 

performed using the gene ontology (GO) biological processes gene set. Intriguingly, the 

ADRN group of lncRNAs showed enrichment for DNA replication and cell cycle associated 

gene sets, whereas the MES lncRNAs were associated with organ development and immune 

response (Fig. 5B). The ADRN cell state is known to be dependent on MYCN [63], which 

may drive enrichment for cell-cycle associated lncRNAs. Indeed, we observed that ADRN 

samples had greater expression of MYCN compared to MES samples, despite including a 

lower proportion with MYCN amplification (Supplementary Fig. S6B). Additionally, the 

enriched immune response gene sets in the MES tumors are consistent with two recent, 

complementary findings demonstrating the immunogenicity of MES subtype [64, 65]. These 

pathway results were validated in an independent analysis of the GMKF NBL cohort 

restricted to Stage 4 samples (n=67) (Supplementary Fig. S6C). Across both TARGET 

and GMKF cohorts we observed 13 lncRNAs strongly associated with MES samples 
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(Supplementary Fig. S6D), which warrant further study for their potential role in NBL 

development.

Identification of potential cancer driver lncRNAs via integration of epigenetic data

While majority of our NBL cohort has an ADRN phenotype we observed heterogeneity in 

lncRNA expression across ADRN samples. To better define ADRN associated lncRNAs, 

we integrated information about transcription factors within the ADRN core transcriptional 

circuitry (CRC). This set of co-bound and auto-regulated TF’s (MYCN, PHOX2B, HAND2, 

GATA3, ISL1, and TBX2[59, 63]) has been found to regulate many key neuroblastoma 

driver genes such as ALK and altogether drives cell identity. To distinguish potential 

lncRNA driver genes in NBL, we used epigenetic data to identify lncRNAs regulated by 

the CRC TFs. CRC-driven gene regulation can occur both by direct binding of TFs to the 

promoter of the gene of interest (Fig. 5C) or via long-range chromatin interactions and 

distal binding to other promoters (Fig. 5D) and enhancer regions (Fig. 5E) [59, 63, 66, 67]. 

CRC-bound regulatory loci were identified from publicly available ChIP-seq data for all 

ADRN TFs across two MYCN-amplified NBL cell lines: SKNBE(2)C and KELLY[63]. To 

comprehensively identify both short- and long- range CRC gene regulation, we generated 

high-resolution (i.e. using 4-cutter restriction enzyme DpnII) genome-wide promoter-

focused Capture C[32] in the NBL cell line NB1643. After pinpointing gene promoters 

interacting with CRC TF bound regulatory loci (promoters or enhancers) (Fig. 5C–E), 

we identified 547 lncRNA genes associated with the NBL CRC (Fig. 5F, Supplementary 

Table S13), with only 249 (45%) of these lncRNA genes being bound by CRC TFs within 

their promoter regions. We further distinguished 300 ADRN lncRNAs based on differential 

expression (DE) between ADRN and MES samples (Fig. 5F, Supplementary Table S14), but 

note that 28% of these genes are also in NBL-associated copy number altered regions. For 

example, in the 17q amplified region, the TBX2-AS1 lncRNA is highly correlated to the 

CRC TF: TBX2 (Pearson’s r=0.77) and both are up-regulated in ADRN samples (Fig. 5G). 

CRC binding is observed at both the shared promoter region of TBX2 and TBX2-AS1 and 

at an interacting distal enhancer (Fig. 5H). TBX2 was recently shown to be involved in NBL 

cell proliferation[68] but the role of TBX2-AS1 in NBL is unknown.

Integrative multi-omic analysis prioritizes TBX2-AS1 as a candidate functional lncRNA in 
NBL

To obtain a comprehensive prioritization of candidate functional lncRNAs for each cancer 

histotype, we integrated information for (1) tissue elevated expression, (2) dysregulation 

due to DNA copy number aberration, (3) regulation by CRC TFs, and (4) significance in 

regulatory modulation (Supplementary Table S15). We further investigated NBL lncRNAs 

that had concurrent annotation as tissue elevated, lncRNA modulator, and as CRC regulated 

(Supplementary Table S16). The top ranked lncRNA in NBL was MEG3, which has a 

known role in both NBL and other cancers[41]. Given that 36% of tissue-elevated lncRNAs 

and 36% of NBL lncRNA modulators are CRC regulated, the next notable prioritized 

lncRNA was TBX2-AS1 which is co-regulated by a CRC TF, TBX2 (tau score: TBX2- 

0.807, TBX2-AS1- 0.86; Supplementary Fig. S7A). We first confirmed that TBX2 and 

antisense lncRNA TBX2-AS1 had comparable expression in the stranded GMKF NBL 

cohort (Supplementary Fig. S7B). We next looked at copy number association and observed 
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that TBX2-AS1 is up-regulated due to chromosome 17q gain (Fig. 6A) as has previously 

been shown for TBX2 [68]. TBX2 has been shown to drive NBL proliferation via the 

FOXM1/E2F1 gene regulatory network and we hypothesized that TBX2-AS1 may play 

a similar role given the predictions from our lncMod analysis indicating that TBX2-AS1 
impacts E2F targets and G2M checkpoint genes (Fig. 6B). Furthermore, the TFs primarily 

impacted by TBX2 knockdown, MYBL2 and E2F1, were found to have the most target 

genes predicted to be regulated by TBX2-AS1 (Fig 6C). Evidence for this association 

was further supported by the correlation (Spearman’s rho > 0.4) between TBX2-AS1 
and TBX2’s target TFs, including: FOXM1, E2F1, and MYBL2 (Supplementary Fig. 

S7C). We observed that samples with lower TBX2-AS1 expression had significantly 

greater correlation between E2F1 and its lncMod predicted target genes (Wilcoxon p-

value=1.4×10−8, than samples with high TBX2-AS1 expression, suggesting a role in 

regulation of E2F1 targeting (Fig. 6D–E). While the strong correlation between TBX2-AS1 
and TBX2 may confound our predictions, a previous study showed positionally conserved 

lncRNAs[54], including TBX2-AS1, often regulate their neighboring developmental TFs 

(TBX2) and can play roles in genome organization and cancer[54]. Based on the promising 

in silico evidence, we prioritized TBX2-AS1 for experimental study.

Silencing of TBX2-AS1 inhibits neuroblastoma cell growth and validates lncMod pathway 
prediction

We assessed the role of TBX2-AS1 using human-derived NBL cell line models. First, we 

evaluated TBX2-AS1 expression across 38 NBL cell lines using RNA-seq[69] followed by 

validation of eight cell lines using RT-qPCR (Supplementary Figs. S7D–E). We selected 

NLF and SKNSH models for further study based on their high TBX2-AS1 expression and 

varying expression levels of TBX2. To ensure lncRNA specific silencing in the context 

of co-regulation at the genomic locus of TBX2 and TBX2-AS1, we chose to use small 

interfering RNA (siRNA) to knockdown TBX2-AS1 and TBX2. There was a 91% and 

27% reduction of TBX2-AS1 expression in NLF treated with siTBX2-AS1 and siTBX2, 

respectively (Fig. 6F). Though TBX2 was slightly down-regulated in the siTBX2-AS1 

treated cells, this change was not significant at the RNA or protein level (Fig. 6F–H), while 

siTBX2 treated cells had 63% reduced TBX2 expression. Given the known role of TBX2 

in NBL cell proliferation[68], we measured cell growth of siTBX2-AS1 treated NLF cells 

to determine if TBX2-AS1 functions similarly. When the non-targeting control (siNTC) 

treated cells reached confluence, NLF cell growth index was reduced 42%.6 and 64.4% 

in the siTBX2-AS1 and siTBX2 treated cells, respectively (n=3, p-value < 0.01) (Fig. 6I). 

Knockdown of TBX2-AS1 with three additional unique siRNAs each reduced NLF cell 

growth (p <0.05) and did not impact TBX2 expression (Supplementary Fig. S7F–H). Live 

cell imaging using the IncuCyte revealed changes in cell morphology for siTBX2-AS1 

and siTBX2 treated NLF cells, featuring an appearance of disrupted cell to cell adhesion 

and elongated cell body (Fig. 6J), suggestive of a neuronal differentiation phenotype. We 

repeated this knockdown study in the SKNSH cell line and observed similar trends in 

expression changes and growth reduction (Supplementary Fig. S7I–N).
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RNA-sequencing following TBX2-AS1 silencing validates E2F1-target gene correlation

To identify pathways impacted by TBX2-AS1 and TBX2 knockdown, we performed total 

RNA sequencing in triplicate of NLF cells following siRNA treatment. We observed that 

the expression of TBX2 was slightly, but not-significantly, decreased upon TBX2-AS1 
knockdown, confirming our qPCR and Western blot results (Supplementary Fig. S8A–B). 

TBX2-AS1 expression did not significantly change in the siTBX2 condition, confirming 

previous studies [68]. From the expression profiling we identified differentially expressed 

(DE) genes between control (siNTC) and siTBX2-AS1 (n=908) and control versus siTBX2 

treated cells (n=569) (Supplementary Fig. S8C–D). In the siTBX2-AS1 condition, we 

observed that TBX2-AS1 was in the 99th percentile of all DE genes (log-fold change 

> 1.5, adj p-value < 0.1), ranking 11 out of 908 based on fold change, while TBX2 
ranked in the 77th percentile of DE genes in the siTBX2 condition (Supplementary Fig. 

S8E–F). While most of the DE genes were unique to each condition, the log fold change 

between the 130 DE genes common to both knockdown conditions were highly correlated 

(r=0.877, Supplementary Fig. S8G). Gene set enrichment analysis (GSEA) of the 364 

significantly up-regulated genes (log-fold change > 1.5, adj p-value < 0.1), associated with 

siTBX2-AS1, revealed enrichment (FDR < 0.1) for hallmarks associated with inflammation 

including: TNFA signaling and interferon gamma response (Supplementary Table S17). 

Across the 544 siTBX2-AS1 down-regulated genes, the E2F target genes hallmark was 

the only significantly enriched gene set. GSEA of the upregulated genes in the siTBX2 

condition were associated with proliferation such as MYC targets and TP53 pathway, 

while downregulated genes were enriched for inflammation associated interferon alpha and 

gamma response gene sets (Supplementary Table S17). To determine whether differentially 

expressed genes shared common regulation, we used the iRegulon program[70] to search 

upstream of genes for TF motifs and TF ChIP-seq tracks from ENCODE. Using a 

normalized enrichment score (NES) of at least 3, we observed motif enrichment for the 

neuronal differentiation repressor REST and the RFX family of transcription factors in 59% 

of siTBX2-AS1 up-regulated genes (Fig. 6K). In 42% of downregulated genes, the top 

enriched TFs were MYBL2 and E2F1, corroborating earlier GSEA results. Of the E2F1 and 

MYBL2 target genes, 46% were also TBX2/neuroblastoma CRC target genes.

While growth assays confirmed our lncMod pathway prediction that TBX2-AS1 impacts 

NBL proliferation, gene expression profiling revealed a significant increase (Wilcoxon, 

p-value=3.7×10−5) in the correlation between E2F1 and predicted target genes associated 

with TBX2-AS1 knockdown, reflective of the association we observed in-vivo between 

E2F1 and its target genes in patients with lower TBX2-AS1 expression (Fig. 6L). E2F1-

target gene correlation modestly changed upon TBX2 knockdown (Fig. 6M). These data 

thus demonstrate the utility of our integrative lncRNA characterization and prioritization 

approach for future validation experiments across all cancers considered in this study. 

Furthermore, we uncovered a functional role for TBX2-AS1 in NBL proliferation impacting 

target genes of TBX2, E2F, MYBL2, and REST.
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Discussion

LncRNAs have emerged as important regulators of gene expression and their dysregulation 

can impact key cancer pathways and drive tumorigenesis[1, 2]. Despite this, relatively few 

lncRNAs have been experimentally characterized. Tools such as LncSpA have emerged 

to query lncRNA expression in normal and cancerous tissues, including a subset of 

pediatric cancer samples from TARGET[71]. However, the functional mechanisms of these 

expressed lncRNAs remain unknown. In this study, we explored lncRNA expression, cancer 

association, and regulatory networks across 1,044 pediatric leukemias and solid tumors, 

representing six different cancer types. The careful curation, quality control, and breadth of 

samples included allowed for robust identification of tissue-elevated lncRNAs. Furthermore, 

systems modelling identified expression patterns for both up- and downstream lncRNA gene 

regulation. Altogether, we provide multi-dimensional insight into the predicted biological 

and functional relevance of lncRNAs by integrating WGS, ChIP-seq, chromatin capture, and 

predictions of transcriptional networks.

Analysis of the lncRNA landscape across pediatric cancers revealed the histotype and 

context-specific nature of lncRNAs. We report a total of 2,657 robustly expressed lncRNAs 

across the six cancer types studied. This number is notably smaller than reports from 

previous pan-cancer studies in both adult and childhood malignancies[9, 11, 71], due to the 

smaller number of cancer types studied here and conservative expression threshold applied. 

However, similar to findings in adult cancers, 43% (1,142/ 2,657) of expressed lncRNAs 

exhibited tissue-elevated (TE) expression across pediatric cancers. Indeed, lncRNAs had 

significantly greater tissue specificity than protein coding genes, making them more ideal 

candidates as biomarkers. Currently there is one lncRNA, PCA3, that is FDA-approved as 

a biomarker for prostate cancer[72], while multiple trials investigating ncRNAs in cancer 

prognostics are underway[73]. In this study, the top five most tissue-elevated lncRNAs 

per cancer were sufficient to differentiate each cancer histotype. Furthermore, we identify 

lncRNAs specific to distinct cell lineages within NBL, suggesting there is potential for 

lncRNAs to be used as highly sensitive markers to differentiate cancer subtypes more 

accurately.

Typically, investigation of lncRNA dysregulation involves comparing lncRNA expression 

between cancer and normal control samples and is an analysis that amply yields adult 

cancer associated lncRNAs[9]. However, the lack of normal expression controls for many 

pediatric cancers[42, 71] is a major complication in defining pediatric cancer-associated 

lncRNAs. To overcome this, we leveraged information about how pediatric cancers are 

epigenetically regulated. In particular, NBL is composed of two cell lineages representing 

different development stages and each with distinct super-enhancer transcription factor 

networks. Given the tie between organogenesis and tumorigenesis in pediatric cancer[58], 

we hypothesized that lncRNAs associated with these cell states may also be involved in 

NBL development. Through correlation and pathway analyses, we discovered that lncRNAs 

associated with the mesenchymal cell lineage had enrichment for organogenesis gene sets, 

while adrenergic-associated lncRNAs were predicted to be involved in proliferation based 

on enrichment for DNA replication and cell cycle gene sets. The majority of NBL samples 

have cells with an adrenergic gene expression signature, which could suggest that ADRN 
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lncRNAs are major drivers of disease and thus potential therapeutic targets. To better 

identify these ADRN lncRNAs, we integrated ChIP-sequencing of core regulatory (CRC) 

transcription factors for ADRN cells with our expression data to identify cancer driver 

lncRNAs. CRC TFs bind to cell-type-specific enhancers and regulate the expression of 

cell-type-specific genes. By delineating enhancer associated gene regulation we were able 

to prioritize lncRNAs likely to be important for cancer cell identity based on CRC TF 

regulation. CRC TFs have been well defined for NBL[63, 67]; however, the fact that they 

largely bind enhancer regions necessitated that we also use chromatin interaction data to 

accurately determine the regulated genes. Incorporation of these datasets allowed us to 

identify 2-fold more CRC regulated lncRNAs in NBL as compared to using just ChIP-seq 

data alone. Similar analyses of lncRNAs regulated by the TAL1 CRC has previously 

revealed novel T-ALL associated genes[20]. An important next step in distinguishing cancer-

specific lncRNAs will be the application of this novel analysis to a broader set of pediatric 

cancers.

While upstream regulation can help nominate cancer-associated lncRNAs, an understanding 

of lncRNA mechanism of action in a histology-specific manner is also crucial. However, 

prediction of lncRNA function is limited given that very few lncRNA mechanisms have been 

fully established for any cell type and lncRNAs lack conserved sequence and structure[74]. 

Many studies instead use correlated protein coding gene expression as a proxy to define 

lncRNA pathways, but this approach often results in many false positives and does not 

provide mechanistic insight[71, 74]. To address this, we used the lncMod method[15, 31] to 

model the functional mechanism of dysregulated lncRNAs by examining correlated changes 

in transcription factor to target gene regulation. We used motif presence and regression 

analysis to identify TF-target gene relationships, though future studies will be strengthened 

by incorporating TF ChIP-seq data, when it becomes more widely available for pediatric 

cancers. Nevertheless, we were able to successfully associate lncRNAs to TFs with known 

interactions, such as SNHG1 with TP53[56], while also providing a prioritized list of 

novel associations that serve as a starting point for targeted experimental studies such as 

RIP/MS and ChiRP-seq[75]. While our lncMod analysis was focused on transcriptional 

regulation, the addition of microRNA binding and RNA-binding protein data, as utilized 

in adult cancers[16], is an important next step in understanding how lncRNAs impact 

post-transcriptional regulation in pediatric cancers. The recent lncRNAfunc knowledgebase, 

a curated list of lncRNA functional mechanisms in TCGA samples from adults, may provide 

complementary information to our lncMod analysis by further enhancing our understanding 

of how pediatric lncRNAs regulate their target genes[76].

In this study we delineated high confidence lncRNA expression across pediatric cancers 

within the restrictions set by the sequencing depth and RNA-seq type available per cancer 

dataset. We required RNA-seq samples included in our study to have at least 10 million 

reads and read length of at least 75 bp. We used the StringTie method for expression 

quantification, which more conservatively assigns reads associated with lncRNAs, especially 

those that overlap protein coding genes, resulting in slightly lower but likely more accurate 

expression values. Given that all samples in this study were poly-A selected, with the 

exception of the T-ALL cohort, our analyses were restricted to poly-A tailed lncRNAs, 

which tend to be processed similarly to protein coding mRNAs and have more stable 
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transcripts[77]. Future studies involving total RNA-seq, greater sequencing depth, and 

longer read sizes could capture a larger diversity of expressed lncRNAs by accounting 

for non-polyadenylated genes and identify scarcer or temporally expressed lncRNAs. 

Nevertheless, given that our study focuses on highly expressed lncRNAs there is reduced 

potential for transcriptional noise to confound our functional predictions[78]. In addition 

to having a limited number of RNA matched WGS samples, the Complete Genomics 

short read technology limits the detection of structural variants based on size as previously 

described[29, 42]. The use of long-read sequencing and greater sequencing depth in future 

studies will enable more accurate copy number and structural variant detection in pediatric 

cancers.

Finally, multi-dimensional integration of our computational predictions resulted in the 

nomination of functionally relevant lncRNAs in each pediatric cancer. We annotated 

tissue specificity, copy number, pathway, and likely targets for these lncRNAs, providing 

a solid foundation for mechanistic studies. As proof-of-principle we demonstrate that 

the top-prioritized tissue-specific and CRC-regulated lncRNA, TBX2-AS1, impacts NBL 

cell growth, validating our in-vivo pathway predictions. Through in-vitro transcriptomic 

profiling, following TBX2-AS1 knockdown, we were able to show that the correlation 

of E2F1 and its target genes significantly increases, consistent with our predictions using 

in-vivo data. We did not observe a significant difference in cells treated with siTBX2, which 

may suggest that E2F1 regulation is driven by TBX2-AS1. This was further supported 

by GSEA of siTBX2 vs siTBX2-AS1 treated cells, which revealed differentially enriched 

pathways. siTBX2 cells were associated with changes in expression of MYC targets, 

consistent with previous findings, while siTBX2-AS1 associated with changes in E2F1 

target gene expression.

Investigating the mechanism through which TBX2-AS1 impacts gene regulation is an 

important future direction, for which we have derived several potential hypotheses from our 

studies. First, we observed that both E2F1 target genes and CRC target genes (including 

those of TBX2) are impacted by TBX2-AS1 knockdown. However, the observation 

that TBX2 expression was non-significantly down-regulated in siTBX2-AS1 treated cells 

suggests that TBX2-AS1 function is not entirely TBX2 dependent. Instead, one possibility 

is that TBX2-AS1 binds directly to TBX2 and/or E2F1 in order to guide them to gene 

targets. Another possibility is that of a regulatory cascade in which TBX2-AS1 regulates 

TBX2 which in turn regulates E2F1. Application of techniques, such as ChIRP-seq, that 

can uncover lncRNA- DNA and lncRNA- protein binding partners, could illuminate the 

functional mechanism of TBX2-AS1 in the future. TBX2-AS1 was also previously shown 

to be among a group of lncRNAs which are positionally conserved and near developmental 

associated TFs[54]. This group of lncRNAs and their neighboring TFs, typically have 

tissue specific expression, can be involved in cancer development, and affect each other’s 

expression[54], all of which we observed for TBX2 and TBX2-AS1. In combination these 

genes may contribute in tandem to the proliferative state of NBL cells and have potential as 

novel therapeutic targets.

Altogether, this study provides a comprehensive characterization of the most highly 

expressed lncRNAs across six high-risk pediatric cancers and serves as a rich resource 
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for future mechanistic studies; these data may aid in the selection of cancer biomarkers and 

candidate therapeutic lncRNA targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification 

of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing 

histotype-specific elevated expression, and prediction of lncRNA gene regulatory 

networks.
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Figure 1: Pan-pediatric cancer transcriptome characterization
(A) Overview of pan-pediatric cancer RNA-seq dataset and schematic of data processing and 

filtering. Reads from RNA-seq fastq files were aligned using the STAR algorithm and then 

gene transcripts were mapped in a guided de novo manner and quantified via the StringTie 

algorithm. Genes were considered novel if they did not have transcript exon structures 

matching genes in the GENCODE v19 or RefSeq v74 databases. Novel genes were 

assigned as lncRNAs based on length >200bp and non-coding potential calculated using 

the PLEK algorithm. Transcripts with low expression (FPKM <1 in >80% samples) were 

not considered for further analysis. (B) Pie graph showing the quantity of robustly expressed 
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protein coding genes, GENCODE/RefSeq annotated lncRNAs, and novel lncRNAs. The 

number of genes expressed per cancer is also shown. Adjoining schematic gives overview 

of additional data types that were integrated with transcriptome data: WGS, ChIP-seq, and 

chromatin capture. Listed are the analyses used to elucidate lncRNAs with functional roles 

in pediatric cancer. (C) Cumulative expression plots comparing the number of lncRNAs 

and (D) protein coding genes, respectively, that constitute the total sum of gene expression 

(FPKM) per pediatric cancer. (E) Percentage of total lncRNA expression (FPKM) accounted 

for by the union of top five expressed lncRNAs per cancer (total 11 lncRNAs).

Modi et al. Page 25

Cancer Res. Author manuscript; available in PMC 2024 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: LncRNAs exhibit tissue specific expression that can distinguish cancers
(A) Tissue specificity index (tau score) which ranges from 0 (ubiquitously expressed) to 1 

(tissue specific) is plotted for genes across three gene types: protein coding genes, lncRNAs, 

and novel lncRNAs. Table shows the tau score range and mean per gene type. (B) Heatmap 

showing the hierarchically clustered gene expression for the top five most tissue specific 

lncRNAs per cancer, ranked by highest tau score. Samples from each cancer cluster together 

based on expression of these genes alone. (C) Number of tissue specific known and novel 

lncRNAs in each cancer as defined by tissue specific gene threshold: tau score > 0.8.
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Figure 3: A similar proportion of lncRNAs and protein coding genes are dysregulated due to 
SCNA
(A) The proportion of protein coding and lncRNA genes that have significant differential 

expression due SCNA, separated by copy number type (amplification or deletion). The 

number of genes found in SCNA loci is shown per cancer. Genes were evaluated to have 

differential expression due to copy number using the Wilcoxon rank sum test (p-value < 

0.05) and log |fold change| > 1.5), comparing samples with no SCNA to samples with 

low/high SCNA as defined by GISTIC scores. (B) The number of differentially expressed 

lncRNAs per chromosome and per cancer, distinguished by color. Chromosomes 1 and 

17 had the most dysregulated lncRNAs associating with the greater frequency of SCNA 

on these chromosomes across cancers. (C) Number of samples with structural variant 

breakpoints in or near (+/− 2.5kb) lncRNAs and that are also located in copy number 

regions, stratified by amplification or deletion status of the locus.

Modi et al. Page 27

Cancer Res. Author manuscript; available in PMC 2024 April 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: lncRNA modulators impact transcriptional networks involving proliferation
(A) Schematic that shows the three ways (attenuate, enhance, or invert) in which 

differentially expressed lncRNA modulators can impact transcription factor and target 

gene relationships. lncRNA modulators are associated with a TF-target gene pair based 

on a significant difference between TF-target gene expression correlation in samples 

with low lncRNA expression (lowest quartile) vs samples with high lncRNA expression 

(highest quartile). (B) The proportion of lncRNA modulator types associated with 

significantly dysregulated lncRNA modulator- TF-target gene (lncMod) triplets. The number 

of significantly dysregulated lncMod triplets is listed per cancer. (C) Number of lncRNA 

modulators genes that are common in lncMod triplets across cancers. Common lncRNA 

modulator genes tend to have a lower tau score compared to lncRNA modulators only 
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associated with one cancer. (D) Gene set enrichment using the MSigDB Hallmark gene set, 

of target genes associated with lncRNA modulators in each cancer (Fisher’s exact test, FDR 

< 0.1). (E) Transcription factors associated with the B-ALL expression specific lncRNA, 

BLACE, ranked based on number of regulated target genes. (F) Expression heatmap of 

BLACE and the target genes of the XBP1 transcription factor, grouped by associated 

hallmark gene set, in samples within the bottom and top quartiles of BLACE expression 

in B-ALL.
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Figure 5: Identification of lncRNAs associated with distinct neuroblastoma cell states
(A) The MES and ADRN signature score for TARGET NBL samples, with each sample 

labeled with either ADRN, Mixed, or MES phenotype based on clustering analysis. (B) 
Heatmap of the expression of lncRNAs that have significant correlation with either the MES 

or ADRN score (|r| >0.6, p-value < 0.01). lncRNAs were correlated with protein coding 

genes on the same chromosome and subsequent gene set enrichment analysis was performed 

for MES and ADRN protein coding genes separately. (C) Schematic of how ADRN 

associated CRC regulated genes are identified using ChIP-seq and chromatin interaction 

data. We identified lncRNAs based on three types of regulation. 1) CRC transcription factors 

binding directly at the promoter of the lncRNA. (D) 2) CRC TFs bind an enhancer region 

that interacts with a lncRNA promoter. (E) 3) CRC TFs bind the promoter of a different 
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gene, and this promoter interacts with a lncRNA promoter. CRC TF binding was identified 

from ChIP-seq data, while enhancer-promoter and promoter-promoter interactions were 

identified from chromatin capture data. (F) Filtering of lncRNAs expressed in NBL based 

on CRC TF regulation and differential expression based on sample phenotypes (ADRN 

or MES). (G) Expression of TBX2 and TBX2-AS1 stratified by NBL sample phenotype 

(ADRN or MES). (H) ChIP-seq tracks for histone marks and CRC transcription factors in 

the NBL cell line: BE(2)C, and promoter capture C chromatin interactions in NBL cell line: 

NB1643, at the TBX2/TBX2-AS1 locus.
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Figure 6: TBX2-AS1 influences NBL cell proliferation and E2F1-target gene expression
(A)Expression of TBX2 and TBX2-AS1 in NBL tumor samples with and without 17q gain. 

(B) The top MSigDB Hallmarks enriched across targets genes (p-value < 0.01) regulated 

by TBX2-AS1 as predicted from lncMod analysis. (C) The transcription factors with most 

target genes regulated by TBX2-AS1 as predicted from lncMod analysis. (D) Expression of 

gene targets of the E2F1 transcription factor that are enriched for proliferation hallmarks, 

in samples with low and high TBX2 and TBX2-AS1 expression. TBX2 expression is 

highly correlated with that of TBX2-AS1 (Pearson’s r=0.77). (E) Expression correlation 
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between E2F1 and its lncMod predicted target genes (n=36) in TARGET NBL Stage 4 non 

MYCN amplified samples with the lowest 25% versus highest 25% quartile of TBX2-AS1 
expression. (F) siRNA knockdown efficiency of TBX2-AS1 and TBX2 in the NBL cell 

line, NLF. (G) Western blot analysis of TBX2 in siTBX2 and siTBX2-AS1 treated NLF 

cell line (representative blot shown). (H) Quantification of TBX2 protein expression from 

three Western blots of independent knockdown experiments. (I) Representative image of 

cell growth (as measured by RT-Ces assay) of the NBL cell lines, NLF. Cell index is 

normalized to time point when siRNA reagent is added at 24 hours post cell plating. 

(J) Images of NLF cells after siTBX2-AS1 and siTBX2 show morphology changes. (K) 
Results from iRegulon analysis for genes that are up- or down-regulated upon siTBX2-AS1 

treatment in NLF. Number of genes shown in Venn diagram with evidence of motif or ChIP-

seq binding of the listed transcription factors. (L) Expression correlation between E2F1 

and its lncMod predicted target genes (n=36) identified using RNA-sequencing expression 

profiling from the NLF cell line treated with either siNTC or siTBX2-AS1. (M) Expression 

correlation between E2F1 and its lncMod predicted target genes (n=36) identified using 

RNA-sequencing expression profiling from the NLF cell line treated with either siNTC or 

siTBX2.
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