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Abstract

Cellular membranes self-assemble from and interact with various molecular species. Each 

molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic 

architecture of intracellular membrane systems is based on elastic transformations and lateral 

redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The 

minimization of the total elastic stress by such redistribution composes the most basic, primordial 

mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally 

considered in the context of dynamic compositional heterogeneity of cellular membrane systems, 

in this article we discuss a broader involvement of CCC in controlling membrane deformations. 

We focus specifically on the mesoscale membrane transformations in open, reservoir-governed 

systems, such as membrane budding, tubulation, and the emergence of highly curved sites of 

membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an 

independent deformation mode with complex rheological properties. This mode controls effective 

elasticity of local deformations as well as stationary elastic stress, thus emerging as a major 

regulator of intracellular membrane remodeling.
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1. INTRODUCTION

The pace of life of eukaryotic cells can be seen through intracellular membrane dynamics, 

continuous and rapid remodeling of the endomembrane system. One of the major 

remodeling cascades is dedicated to functional membrane recycling, the basis of cellular 

homeostasis. The recycling, carried by small vesicular carriers, enables prompt delivery and 

removal of protein and lipid species to and from larger endomembrane subsystems. Synaptic 

membrane recycling takes less than 1 s during nerve impulse transmission (30, 144, 145), 

and the recycling of the whole surface membrane of a motile cell takes only 4 min (1, 

51, 135). Membrane shuttling between intracellular organelles also can be extremely fast 

(59). Variations of membrane composition during the formation of a vesicular carrier can be 

quite dramatic, as these vesicles are tightly packed with accessory proteins and cargo (97, 

110, 118, 146). Likewise, demixing of membrane species is characteristic for budding of 

enveloped viruses tightly packed with viral membrane proteins and thus excluding most of 

the host proteins (27, 115). Finally, a vesicle carrier is severed from the parent membrane 

by dedicated protein machinery, which organizes a membrane fission site with distinct 

protein and lipid compositions (118). In this article, we discuss how the compositional 

changes couple to local membrane deformations, rather than creating an additional energy 

barrier, enabling minimization of energy barriers and ensuring speed and reversibility of the 

deformations, imperative for fast membrane recycling.

Formation of vesicular compartments is generally associated with the self-assembly of a 

curved protein layer, an external coat, or an internal lining on the parent membrane (38, 

47). Although such proteins encode vesicular geometry in their self-assembly patterns, 

they also sense membrane curvature, as the onset and development of the polymerization 

process depend on the curvature (94, 150). This curvature effect is due to elastic resistance 

of the lipid bilayer to bending: Coat self-assembly is easiest when membrane geometry 

coincides with that of the coat. To enforce membrane bending, coats rely on local curvature 

creators, such as auxiliary proteins and/or evolutionarily conserved protein domains coupled 

to membrane curvature (54, 72, 153). These domains both generate the curvature and sense 

it, as the curvature affects their membrane partitioning (54, 86). As coats, they have a 

preferred membrane curvature that matches their molecular geometry and optimizes their 

interaction with lipids (3). They migrate, or sort, toward similar curvatures in membrane 

curvature gradients, facilitating the formation of curved membrane domains (12, 83). 

Similar curvature-driven sorting has long been associated with the curvature-generating 

capacity of lipids (9, 23). The curvature-composition coupling (CCC) then is immanent in 

various components of the protein machinery driving the formation of vesicle carriers. CCC 

introduces elements of self-organization and mechanosensing into the formation of vesicular 

carriers, making it a stochastic process driven by various mechanical and environmental 

cues, with membrane curvature playing a key role in organization (43, 86, 105, 149).

The essence of CCC can be found in the dynamic adjustment of membrane composition 

during deformation, generally via molecular exchange with a reservoir or between 

membrane parts of different curvatures. Such an exchange is engrained in most of 

the membrane deformations in the cell. Cellular membranes rarely deform as a whole. 

Generally, a small membrane patch is transformed, remaining in connection with a relatively 
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static parent membrane. The multicomponent parent membranes, along with cytoplasmic 

pools of proteins and lipids, provide reservoirs of molecular species for the deforming 

patch. CCC not only facilitates membrane deformation by a coat but also constitutes an 

entirely new mechanism of membrane morphogenesis. In the extreme forms of CCC, protein 

curvature creators could spontaneously demix, leading to coatfree membrane morphologies 

(109, 117, 129). Although such a strong CCC might constitute a stand-alone mechanism 

of membrane morphogenesis in minimal biomimetic systems or primordial membrane 

compartments, it was also implicated in ultrafast endocytosis triggered by changes in 

plasma membrane tension (117). Weak CCC, in turn, affects the elastic parameters of the 

membrane, reducing its compliance to bending due to the additional degree of freedom 

enabled by CCC during bending deformations (10, 128). This effect has long been known 

for cosurfactants exchanging between the monolayer and the bulk phases (65, 73) and 

is generally associated with dynamic membrane inhomogeneity (40, 88). The coupling 

of membrane deformation to both rotational and translational mobilities of anisotropic 

molecules leads to further membrane softening (39, 40). Whereas CCC for proteins might be 

impeded in crowded membrane systems, lipid migration is less restricted, especially during 

local, nanoscale membrane deformations. Hence, lipid CCC might emerge as a universal 

organizer and mechanical regulator of such deformation, with the local tuning of lipid 

composition playing a specific role in membrane fusion and fission (41, 118).

In this article, we discuss these emergent roles of CCC in local mesoscopic membrane 

deformations. We review the thermodynamics of local deformations of multicomponent lipid 

membranes and discuss the role of the membrane reservoir inherent to such systems, the 

reference states for the deformation, and the renormalization of the apparent mean curvature 

bending rigidity modulus and lateral tension of the membrane by CCC. Furthermore, 

using a simple model of a cylindrical lipid membrane nanotube (NT) connected to a 

planar membrane reservoir, we show that weak CCC can be considered an independent 

deformation mode controlled by the manifold of lipid shapes presented in the membrane. 

We support the theoretical analyses with experimental results obtained by multiple groups 

analyzing CCC from different perspectives, including membrane curvature and topology 

sensing by individual protein and lipid molecules, molecular sorting in membrane curvature 

gradients, and membrane softening by proteins and lipids. We conclude by discussing the 

rheology of CCC and its effect on membrane viscoelasticity.

2. CCC IN RETROSPECT: FROM EARLY IDEAS TO SINGLE-MOLECULE 

ANALYSES

The coupling between membrane shape and composition was first invoked to explain 

the peculiar geometry of erythrocytes (26, 33, 83, 133, 134). Membrane morphogenesis 

was linked to the ability, then hypothetical, of individual protein molecules to generate 

molecular-scale membrane curvature. Collective protein action transpires as a mesoscale 

curvature function of the local protein concentration. Nonuniform protein distribution 

over a membrane creates complex membrane shapes, such as that of erythrocytes (83). 

Stationary shapes were found at the membrane energy minima, considering the elastic 

energy of membrane bending and the entropic losses due to protein demixing from the 
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reference uniform planar state (26, 83). In the energy minimization, membrane curvature and 

composition change self-consistently, resulting in local coupling between them (83).

The coupling originates from the dependence of the interaction energy between the protein 

molecule and the membrane on the membrane shape, defined by the principal curvatures of a 

reference membrane surface, c1 and c2. The energy difference drives the protein redistribution 

in the membrane curvature gradients. Without knowing molecular details, Leibler (79) 

first modeled the linear elastic coupling to the mean curvature J = c1 + c2 /2. The energy 

density ΛφJ was proposed, where Λ is the coupling constant and φ is the membrane (its 

reference surface) area fraction occupied by the protein (79). Λ is explicitly linked to 

the curvature generation activity of the protein. It can be shown that Λ = − kJp, where k
is the mean curvature bending rigidity modulus and Jp is an approximation of the local 

membrane curvature intrinsic for the protein (9, 28, 79), for example, reflecting the shape 

of its membrane-interacting surface (86, 123). The CCC energy density becomes −kφJpJ, 

illustrating that protein curvature generators migrate toward their intrinsic membrane 

curvatures. As Jp is an elusive parameter, its mean-field analog, the spontaneous curvature 

Js = φJp, was introduced (83). At a given protein coverage Js defines the reference state 

for the mean curvature bending, the state characterized by the vanishing mean curvature 

bending moment in a free-standing membrane patch uniformly covered by the protein (71, 

74).

Following the early theoretical analyses, CCC, often termed protein sorting, has been 

demonstrated experimentally for protein and lipid species. Strong CCC was associated 

primarily with proteins implicated in membrane remodeling (16, 54, 89, 119). Their 

sorting was detected in minimal membrane systems containing well-defined synthetic lipid 

membrane templates and purified proteins, such as annexin B12, amphiphysin, endophilin, 

reticulon, and IRSp53 (37, 77, 101, 117, 128, 150). In vitro reconstruction of CCC has 

been instrumental for the mechanistic analyses of this phenomenon. CCC was further 

associated with conserved protein domains coupled to membrane curvature via their shapes 

and membrane insertion motifs (86, 153). Sorting of crescentshaped Bin/Amphiphysin/Rvs 

(BAR) domains, omnipresent in membrane-remodeling proteins (119), toward positive or 

negative membrane curvature was correlated with their curvature generation activity (11, 

21, 50, 119, 154). Amphipathic helices (AHs), creators of extremely high positive Js (25), 

drove protein sorting toward positive membrane curvature (28, 35, 68). The preferential 

partitioning of AHs into highly bent lipid monolayers was associated with the packing 

defects produced by extreme bending (5). As similar packing defects are generated by 

cone-shaped lipid species packed in a planar lipid monolayer (5), we argue below that CCC 

might account for the defect action as well.

Although strong coupling to membrane curvature might require specialized protein 

domains, any individual molecule in a heterogeneous lipid bilayer generally produces 

local deformations. The associated stress could be strong enough to support CCC. Such 

CCC, virtually unrelated to membrane remodeling processes in the cell, was detected for 

transmembrane proteins (2, 130), membrane-bound nanoparticles (112), and colloids (80). 
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The general ability of peripheral membrane proteins to discriminate membrane curvature 

might be relevant for regulating spatial protein distribution in bacteria (102).

The CCC for lipids is important for our analysis in this article. Though generally weaker 

than that of proteins (69, 137), CCC was demonstrated experimentally for several lipid 

species of physiological importance, including dioleoylphosphatidylethanolamine (DOPE), 

cardiolipin, and lysolipids (9, 14, 17, 69). Coarse-grained modeling of lipid CCC confirmed 

the existence of the coupling (7, 32, 36). Lipid sorting is substantially enhanced in large 

gradients of membrane curvatures typical for structural intermediates of membrane fusion 

and fission (9, 70, 90). Accordingly, the lipid CCC was implicated in the regulation of 

membrane fission in the cell (96, 116). Demixing lipid species in weaker curvature gradients 

generally requires auxiliary driving forces coming from, for example, lipid phase separation 

(55, 107, 127, 148) or protein cosorting (109). Experimental detection of these driving 

forces suggested that CCC for lipids, as well as for proteins, can go beyond the linear 

coupling to mean membrane curvature outlined above.

Different CCC mechanisms were already considered in the early models of coupling. If 

the lipid and the protein species have the same Js, for example, in a planar lipid bilayer 

containing protein species with Jp = 0, demixing can still be produced by a mismatch 

between the protein and lipid rigidity Δk (83). The corresponding energy density is 

proportional to Δk J 2, such that protein molecules are driven into or out of curved 

membrane parts depending on the sign of Δk. The rigidity difference underlies lipid 

sorting associated with fluid phase separation (107, 138). Beyond the mean membrane 

curvature, linear coupling to deviatropic curvature c1 − c2 /2 was proposed for anisotropic 

molecules oriented in the membrane plane (19, 39, 40, 76). Sensing of deviatropic curvature 

by anisotropic membrane inclusions and peptides was documented in experiments (77) 

and simulations (49, 143). These results imply that protein molecules can discriminate 

membrane shape (e.g., distinguish a sphere from a cylinder of the same J) (77).

Membrane shape sensing implies strong local interactions, as not only translational but 

also rotational entropy of a molecule is diminished if the molecule is confined in a 

membrane part with certain mean and deviatropic curvatures. Accordingly, recent analyses 

demonstrated the CCC power at the single-molecule level (31, 49, 147). Single-molecule 

CCC is expectedly small for lipids, yet it could be detected as the difference in the residence 

time of lipid molecules in curved and flat membrane parts (31) (Figure 1a). The coupling 

is predictably stronger for proteins (e.g., for small oligomers of Dynamin1), creating 

substantial local membrane curvature (10). Although sensing of membrane curvature by 

Dynamin1 was associated with its helical oligomerization (108), small subhelical Dynamin1 

oligomers show pronounced CCC, seen as preferential partitioning into highly curved 

membrane NTs (Figure 1b). Importantly, membrane curvature sensing by protein molecules 

might show cooperativity (63), due either to lateral interactions between the proteins or to 

membrane-mediated feedback.

Although CCC can occur on nondeformable supported membrane templates in the form of 

pure curvature sensing (17, 63, 136) on soft, deformable membranes, CCC is intrinsically 

coupled to the generation of membrane curvature (12). Intuitively, CCC-driven accumulation 
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of protein curvature generators on an appropriately curved membrane patch would increase 

the patch curvature. In fact, at high protein concentrations this positive feedback can trigger 

instability and phase-transition-like processes, where protein demixing leads to membrane 

shape transformations (66, 101, 117, 120, 122, 140, 152). Although these results are in 

line with earlier predictions about the morphological power of CCC (83), they also reveal 

that membrane transformations are generally described by a nonlinear CCC (12, 152). Yet 

the instabilities leading to the shape transformations could appear in linear CCC owing to 

related membrane softening.

It was noted in the original treatment of the linear CCC that coupling between the 

mean membrane curvature and composition leads to the decrease of the apparent bending 

rigidity of the membrane Δk = Λ2/γ, where γ characterizes osmotic compressibility of the 

(diluted) protein solution in the lipid film (79). Coupling to deviatropic curvature causes 

a similar softening effect (40). As k approaches zero, soft deformation modes emerge, 

leading to membrane shape instability (40, 79). Far from such instabilities, the reduction 

of k associated with the coupling of the membrane composition to the mean curvature of 

the membrane, also termed mean-curvature-composition coupling (mCCC), was detected 

experimentally for proteins (37, 114, 128) and lipids (9, 58). Softening due to dynamic 

reorientation of a peptide in membrane undulations, evoking the deviatropic coupling, was 

also observed (93). The decrease of k ranges from moderate (~30%) for lipid species to 

high (~85%) for membrane-inserting proteins. Such changes in k substantially alter the 

energetics of membrane deformations. Near instability points even small changes in k can 

trigger membrane remodeling, indicating that weak mCCC might critically affect membrane 

transformations during membrane fusion and fission (116).

The examples above highlight the complexity of the effects of CCC on membrane elasticity, 

mechanical stability, and membrane behavior under curvature stress in general. This 

mechanical side of CCC is somewhat overlooked compared with its role in molecular sorting 

and lateral self-organization of cellular membranes. In the next sections, we discuss in detail 

how CCC, particularly mCCC, affects bending elasticity, lateral tension, and the overall 

mechanics of the bending deformations of lipid and proteolipid membranes. We use linear 

mCCC as a prototype to describe the thermodynamics and basic molecular mechanisms of 

the softening effect in a multicomponent open membrane system.

3. THERMODYNAMICS OF MEMBRANE DEFORMATION IN 

MULTICOMPONENT OPEN MEMBRANE SYSTEMS

The thermodynamics of CCC has been extensively analyzed (12, 128, 138, 141). Here we 

follow conventional treatments to obtain simple analytical expressions for the changes to 

lateral tension and mean curvature bending rigidity of the membrane caused by mCCC. We 

first consider a homogeneous multicomponent lipid monolayer in contact with a reservoir, 

the most basic setup for the mCCC analysis (73). For an isothermal deformation, the 

differential of the Helmholtz free energy for the monolayer containing N lipid species (74, 

84) is
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dFm =
i = 1

N
μidni + σdA + Aτdj + Ak‾dkG .

1.

The right-hand side of Equation 1 includes the energy changes due to the changes in 

membrane composition dni  and area dA  via exchange with a reservoir, as well as the 

energy of membrane bending parameterized by the mean j = c1 + c1 /2  and Gaussian 

kG = c1c2  curvatures. The corresponding intensive variables are the chemical potentials μi , 

lateral tension σ , mean curvature τ = 1
A

∂Fm
∂j , and Gaussian curvature k‾ = 1

A
∂Fm
∂kG

 bending 

moments (24, 74). The energy depends on the extensive variables as

Fm = ∑ μini + σA .

2.

To find how each chemical potential changes with deformation, we must uncouple 

the contributions of different lipid species to the deformation energy. In general, such 

uncoupling is complex, as it involves different reference states for different deformation 

modes (74, 84). To proceed, we make several common simplifications. We assume j−1 is 

much larger than the lipid monolayer thickness and consider deformation of the pivotal 

plane, where all lipid species have a fixed area a, with the monolayer area A = a∑ni. The 

fraction of the monolayer (pivotal plane) area occupied by the ith component is φi = ni
∑ni

, 

with ∑φi = 1. We also omit the Gaussian curvature term in the general analysis and discuss 

the role of Gaussian and deviatropic curvatures separately. With these assumptions, Equation 

2 could be solved straightforwardly for a two-component system, yielding the chemical 

potentials as the function of j (73).

For the multicomponent monolayer, a renormalized chemical potential,

μi = μi + σa − a∫ τdj − A∫ ∂τ
∂ni

dj,

3.

is introduced. The corresponding function F m = Fm − A∫ τdj has the total differential

dF m = ∑ μidni,

4.

with the integrals in Equations 3 and 4 taken from the same lower limit, which is generally 

associated with the reference membrane geometry, as μi depends only on ni and can be 

calculated for arbitrary σ and j. Hence, Equation 3 is used to link the reference and arbitrary 

states.
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3.1. The Reference State for Lipid Monolayer Bending

The reference state is defined as a minimum of the bending deformation energy, with 

infinitesimal bending of the membrane requiring no work. It follows from Equation 1 that 

at the absolute reference state τ, k‾ and σ have to equal zero. The existence of the absolute 

reference state, where all deformation moments vanish, depends on the coupling between the 

deformation modes (e.g., bending and stretching/compression modes) (74). The reference 

state for the mean curvature bending (splay deformation) considered here is defined by 

τ = 0. The corresponding geometry can be found in the linear elastic approximation (57):

τ = k φ1, …, φN j − js φ1, …, φN .

5.

This approximation remains valid until extremely high curvatures, as seen in experiments 

and simulations (45, 52, 125). However, as discussed in the literature (22, 52, 62), a 

higher-order expansion of τ j  might still be needed if the monolayer curvature differs 

significantly from js. In Equation 5 js is a single parameter characterizing the reference 

(spontaneous) monolayer state (71). We assume the additivity of js, i so that js = ∑ js, iφi, 

where js, i is the spontaneous curvature of a lipid monolayer made of the ith component (25, 

71, 83). With known exceptions (20, 34, 126), including cholesterol and lipid mixtures with 

a large mismatch of the lipid tail length, js, i behaves as a robust molecular characteristic 

independent of the monolayer composition. The additivity of js, i further indicates that js does 

not depend on the rigidities of the membrane components as in a series of elastic springs. 

Accordingly, k can be found using a simple Hookean law 1
k = ∑ φi

ki
, where ki is the bending 

rigidity modulus of a lipid monolayer made of the ith component (83). Defined as such, k is 

dominated by the softest membrane component. Stiffer constituents (e.g., proteins) transpire 

only at high membrane coverage. Equation 5 assumes that individual components affect the 

reference state only via their js, i. This degeneracy vanishes if additional interactions between 

membrane components or between components and the curvature field, effectively linking 

k and js, are introduced. We discuss such interactions, as well as the coupling between two 

monolayers in the bilayer, in Sections 3.6 and 3.4, respectively.

We now find how the chemical potentials of membrane components change with the 

deformation from the reference state to an arbitrary state of curvature j and tension σ. 

In the reference state μi js, σ = 0 = μi
* + kBTln φi, where μi

* corresponds to a single-component 

monolayer. From μi js, σ = 0 = μi j, σ  (Equation 3) we obtain

μi j, σ = μi
* + kBTln φi − aσ + a

js

j

τdj + A
js

j ∂τ
∂ni

dj .

6.

Of note, Equation 6 does not rely on linear elastic approximation, so js and τ j  can be 

redefined to include nonlinear elastic contributions and extra coupling terms. Additional 

integrands can also be included to account for independent (e.g., saddle-splay) and mixed 
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deformation modes (as discussed in Section 3.7). Finally, Equation 6 indicates that the 

lateral tension can be linked to the reference geometry, for example, via connecting the 

reference monolayer to a reservoir containing the lipid mixture of interest.

3.2. Reservoir Tension

Introduction of a reservoir(s) is appropriate for mimicking cellular membrane deformations. 

Pulling long membrane cylinders (tethers) from cellular membranes revealed that they are 

connected to relatively large sources of membrane material that maintain the membrane 

tension constant during tether elongation (60, 103, 132). Membrane folds, buds, budded 

microdomains, and membrane parts adhered to cytoskeleton all can contribute to buffering 

the tension during deformation (6, 78). Apart from membrane subsystems, the cytoplasm 

makes a large reservoir of peripheral membrane proteins. In the endoplasmic reticulum, 

lipid droplets can function as reservoirs linked to membrane tension changes (15, 91, 

111). Similar bulk lipid reservoirs containing lipid solution in nonpolar organic solvents 

have been widely used to create biomimetic lipid bilayers in vitro, such as black lipid 

membranes (BLMs) (29, 139) and droplet interface bilayers (DIBs) (13). In these systems 

the membrane lipid composition is generally assumed to be similar to that of the reservoir 

mixture, due to empirical tests (e.g., phase separation) (61) or to independent partitioning of 

lipids into oil–water interface in diluted regimes (98, 131). The exchange with bulk micellar 

lipid reservoirs provides another means for controlling monolayer composition and creating 

asymmetric DIBs (13).

Though for local membrane deformations the most readily available reservoir is the parent 

membrane, its composition is also dynamically adjusted via molecular exchange with 

available reservoirs. Hence, unlike in preassembled closed membrane systems, such as giant 

unilamellar vesicles (GUVs), mCCC is applied to every membrane geometry in the system. 

Accordingly, we assume that the composition of the reference monolayer is defined by a 

set of reservoirs, with the chemical potentials of the membrane component in the reservoir 

μi
r remaining fixed during manipulations (extension and bending) of the monolayer. The 

associated lateral (reservoir) tension σ0 of the reference monolayer can be defined from 

Equation 6: μi js, σ0 = μi
* + kBTln φi

0 − aσ0. As at equilibrium, μi js, σ0 = μi
r, it follows that

σ0 = 1
a μi

* + kBTln φi
0 − μi

r ,

7.

where the superscript in φi
0 indicates that the reference monolayer is in equilibrium with 

the reservoir. The lateral tension here is defined at the pivotal plane of the monolayer and, 

as such, does not depend on external forces or moments. We also neglect the effect of the 

external forces on membrane undulations. We assume that σ0 is moderate to large [in the 

range of 0.01 to 1 mN/m, with the higher values typical for BLM and DIB systems and the 

lower values reported for the tubular endoplasmic reticulum (142)]. At such lateral tensions 

the effects of thermal-driven membrane undulation are minimal.
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3.3. Lipid Monolayer Softening by CCC

We can now calculate the free energy density for the uniformly curved monolayer connected 

to the reservoir. Substituting Equations 6 and 7 into Equation 2 and subtracting the reservoir 

contribution, we recover a familiar form for the free energy density w  (12,23):

w = Fm − ∑ μi
rni /A = σ0 + kBT

a ∑ φiln
φi

φi
0 +

js

j

τdj .

8.

The three parts of the right-hand side of Equation 8 illustrate the sequence of the monolayer 

formation: (a) pulling the reference monolayer of the necessary area from the reservoir, 

(b) changing its composition at a fixed curvature via exchange with the reservoir, and (c) 

bending the monolayer at a fixed area and composition. For a linear elastic monolayer 

(Equation 5) the last integral in Equation 8 becomes

wbend = ∑ φi
ki

−1
j − ∑ js, iφi

2/2 .

9.

With the deviation of the concentrations from their reference values δi = φi − φi
0 assumed to 

be small, we obtain from Equations 8 and 9

w = 1
2km j − js, 0 − ∑ js, iδi

2 + kBT
2a ∑ δi

2 + σ0,

10.

where km
−1 = ∑φi

0km, i
−1 is the bending modulus of the reference composition. Minimizing 

Equation 10 over δi and expanding to the second order in δj, we obtain (128)

w = 1
2keff j − js, 0

2 + σ0,

11.

where

keff
−1 = ∑ φi, 0km, i

−1 + ∑ φi, 0
a

kBT js, i − js, 0
2 = km

−1 + ke
−1

12.

is the effective bending modulus of the bilayer. Equation 12 is the key to understanding 

membrane softening via mCCC. Its right-hand side might be associated with two Hookean 

springs in series, with the spring constants km and ke. The first constant is the mean curvature 

bending modulus km, the material parameter defining elastic resistance for deformation 

with a fixed membrane composition (e.g., uniform bending of the whole membrane) (see 

Equation 10). The second constant, ke, defines the mCCC contribution, which diminishes km
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to keff during local and nonuniform deformations. During such deformations, the total stress 

is distributed between the two springs as km/ke. We come back to this analogy in Section 

4.1. Here we emphasize that, for stationary deformations, keff  is the mean curvature bending 

modulus keff = 1
A

∂2F
∂j2  (74).

For a two-component monolayer with j1 = 0, j2 ≠ 0, Equation 12 reduces to the mCCC for the 

second component (12, 28, 128, 141):

keff = k

1 + kj2
2aφ2 1 − φ2

kBT

.

13.

For small φ2 Equation 13 yields Δk ≈ − k2j2
2

χ , with χ = kBT
aφ2

, an expression well known for 

the softening effect in two-component membrane systems (e.g., 55) and also identical to an 

expression from the earliest linear mCCC model (79) (see Section 2). We next construct the 

lipid bilayer membrane from two monolayers governed by different reservoir systems [e.g., 

by different bulk reservoirs as in asymmetric DIB setups (13)].

3.4. CCC Effects on the Effective Bending Rigidity and Lateral Tension of 
Multicomponent Membranes

Making a bilayer from two different monolayers transforms Equation 11 into

W b = 1
2Keff j − Js, 0

2 + Σ0,

14.

where the monolayer bending rigidities (Equation 12) amount to

Keff = keff m1 + keff m2,

15a.

the spontaneous state is defined from the bending moment balance as

Js, 0 =
keff m1 js, 0 m1 − keff m2 js, 0 m2

keff m1 + keff m2
,

15b.

and the bilayer lateral tension becomes

Σ0 = σ0 m1 + σ0 m2 + 1
2

keff m1 keff m2
keff m1 + keff m2

js, 0 m1 + js, 0 m2
2 .

15c.
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As both monolayers are free to exchange material with reservoirs, their area and 

composition are not fixed, so no area coupling between the monolayers exists (113). The 

spontaneous curvature of the bilayer (Equation 15b) is not zero unless the monolayers 

are connected to the same reservoir, as in the BLM systems. As Js, 0 is different from the 

spontaneous curvature of each monolayer, the tension (Equation 15c) is higher than the sum 

of the monolayer tensions, indicating hidden stress. For a symmetric bilayer, the stress (the 

last part on the right-hand side of Equation 15c) takes a familiar form, 1
2Keff Js, 0

2, associated 

with packing of lipid species with nonzero Js into planar membrane monolayers (74, 81, 82). 

However, in closed preassembled systems (such as GUVs or supported lipid bilayers), the 

stress is 1
2Km Js, m

2, defined by Km, the material parameters of the bilayer. The stress can be 

completely alleviated by bending to J = Js, m. In contrast, with the reservoir the stress at Js, 0 is 

minimal and cannot be diminished by deformation. This stress is intrinsic to monolayers and 

is ignored when the membrane is considered a single-layer system.

Next, we analyze how mCCC affects membrane systems containing differently curved parts, 

that is, systems with internal curvature gradients. We resort to the widely used membrane 

NT system (8, 42, 100). The NTs are highly curved membrane cylinders pulled by an 

external force from a large, low-curved parent membrane, such as a GUV or BLM (42, 46) 

(Figure 2). The NT energy is generally expressed through the tension of the planar part 

Σp  and the bending modulus of the NT membrane. With the reservoir-controlled parent 

membrane (the BLM system), the energy becomes

W NT = 2πL
J

1
2KeffJ2 − KeffJJs, 0 + Σp − fL,

16.

where L is the NT length, f is the pulling force, and Σp is further augmented with respect to 

Σ0, reflecting the monolayers’ bending from the reference state to the (quasi)planar state:

Σp = Σ0 + 1
2KeffJs, 0

2 = σ0 m1 + σ0 m2 +
keff m1 js, 0 m1

2
2 +

keff m2 js, 0 m2
2

2 .

17.

Minimizing Equation 16 over J and L, we obtain

rNT = 1
J = Keff

2Σp
f = 2π 2Keffσb, p − KeffJs, 0 .

18.

The ratio of Keff to σp defines the radius and the pulling force of a multicomponent 

NT. Substitution of Keff 2km and Σp 2σo produces the well-known equations for single-

component NTs (106).
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Equation 18 summarized the effects of mCCC on the effective bending rigidity and lateral 

membrane tension in the NT system. The NT system was instrumental in confirming 

these effects experimentally. For pure lipid NTs made of cone-shaped DOPE (js, DOPE is 

high, approximately 0.4 nm−1) (44) and in cylinder-shaped dioleoylphosphatidylcholine 

(DOPC) js, DOPC is low, approximately 0.01 nm−1) (44) lipids, the measurements of keff  via 

quantitative NT expansion by electric field revealed that keff  decreased with the increase 

of DOPE concentration in the reservoir (9, 10) (Figure 3a, subpanel i). In agreement with 

Equation 13, keff  is minimal at φDOPE 0.5 (P.V. Bashkirov & V.A. Frolov, unpublished data) 

when the mixing entropy peaks, enabling maximal softening. Curiously, tension also grows 

as predicted by Equation 17, indicating that the hidden stress is controlled by Keff  (Figure 

3a, subpanel ii). Similar membrane softening with the epsin N-terminal homology (ENTH) 

domain js, ENTH 1 nm−1  (28) on one of the reference molecules was observed in mCCC 

research (129) (Figure 3b). For the NTs containing protein species, the decrease of the 

bending rigidity modulus due to mCCC could be detected via pulling force measurements by 

optical tweezers, with Keff  calculated using Equation 18, from linear regression of f on σb, p

(128) or frNT on rNT (37, 114).

The softening effect was also detected with membrane models other than NTs, for example, 

by analyzing alternations of the thermal undulations of GUVs by pore-forming peptides 

(18, 95) (Figure 3c) or lysolipids with high positive js (58, 87). Nevertheless, mechanistic 

interpretation of the softening effect might be ambiguous, as the addition of a new 

membrane component also affects the material parameter Km. Though at low φi the effect 

is small, at higher φiKm can be layered, as observed with detergents, small solutes such as 

short alcohols, and pore-forming peptides (65, 92, 95). The reduction of Km was associated 

with a hydrophobic and geometric mismatch between the membrane components, causing 

membrane thinning (95, 151) and bulk structural alterations that led to changes to the 

transbilayer pressure profile (43). In general, CCC-related membrane softening can be 

distinguished from Km reduction by its rheological properties or via correlative analysis of 

the softening and redistribution of proteins in membrane curvature gradients.

3.5. Sorting and Softening

The relation of sorting and softening in the mCCC context is set by Equation 10. Its 

minimization over δi yields the absolute sorting coefficients, which measure deviation of the 

membrane composition from the reference composition:

Sa, i = δi
φ0, i

= j − js, 0 js, i − js, 0 a
kBT keff .

19.

Equation 19 identifies major parameters controlling curvature-driven sorting in the linear 

mCCC approximation: the average curvature frustration j − js, 0 , the packing stress for 

individual components in the spontaneous state js, i − js, 0 , and keff . It shows that addition 

of a soft component (or a component with high spontaneous curvature) diminishes the 

absolute sorting coefficients for the rest of the components in planar geometry j = 0  but 
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augments those at high membrane curvatures. This bidirectional action might account for 

the large stimulation of sorting (cosorting effect) of lipids by curvature-active proteins (109, 

127). Equation 19 also shows that two components with opposite js partition cooperatively, 

providing a plausible explanation for the stimulating effect of DOPE, but also the curvature-

induced packing defect, on the membrane binding of AHs (5).

Equation 19 further yields the relative sorting coefficients Sr, i = Δφi
φi

= φi j
φi 0 − 1, which 

quantify the component distribution between planar and curved monolayers. For the two-

component system (Equation 13),

Sr, 2 = a 1 − φ2 keff
kBT j2j .

20.

Equation 20 closely resembles equations derived for the protein sorting between the NT 

and the planar parent membrane (12, 37, 128). For two-component mixtures, Equation 20 

can be straightforwardly modified to account for a larger area ap  occupied by the protein 

component by substituting a with ap. In the NT system, Sr can be measured directly with 

fluorescently labeled proteins (28, 37) (Figure 2). Equations 13 and 20 are combined to 

find ap and j2 for a given protein species from two independent sets of measurements (e.g., 

Sr and pulling force f). For example, for ENTH, apj2
2 ≈ 1.2 was obtained from the Keff

measurements (10) (Figure 3b). With ap defined by the size of the hydrophobic insertion 

of ENTH (~2 nm2) (124), js, ENTH = 0.8 nm−1, similar to the value obtained from the Sr

measurements (28). This similarity indicates that the ENTH-driven reduction of membrane 

rigidity is due primarily to mCCC. A similar comparison can be performed for DOPE. The 

intrinsic curvature of DOPE obtained from the keff  measurements (Figure 3a), 0.4 nm−1, 

closely resembles that directly measured for stress-free DOPE monolayers in the hexagonal 

(HII) mesophase (44). Again, the correspondence between the intrinsic value and the value 

obtained from Keff measurements confirms that Keff reduction is driven by CCC.

We highlight one important feature of CCC-related softening: In the leading order, the 

effect does not depend on the sorting direction. That is, the addition of a molecule with 

positive spontaneous curvature, such as an AH, to either the internal, negatively curved 

NT monolayer or the external, positively curved NT monolayer should universally cause 

Keff reduction and NT constriction (Equation 18). In particular, this softening effect might 

contribute to AH-driven membrane constriction and fission observed experimentally (85).

In summary, despite its simplicity, the linear mCCC model has generated several 

experimentally testable predictions about the effects of CCC on membrane deformations. 

However, the model has obvious limitations. Some of these have been mentioned in the text. 

In the following sections, we discuss these limitations in more detail in relation to common 

extensions of the linear mCCC model.
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3.6. The Reference State for Bending Deformations of Proteolipid Membranes

Whereas linear mCCC developed for lipid membranes can be mapped to the protein-

containing systems (as discussed above), the definition of Js becomes more involved. 

As discussed in Section 2, local interactions between proteins (membrane inclusion) and 

the lipid monolayer can affect the balance of bending moments in the reference bilayer 

state (Equation 15b). For example, peripheral membrane proteins forming an elastic 

scaffolding on the membrane surface can be considered as an additional elastic layer 

coupled to the lipid bilayer (64). To find the reference state in this system, akin to the 

asymmetric bilayer (Equation 15b), the local bending moments arising during coupling of 

the protein and lipid layers are to be balanced: js, 0 = js, p
km, p

km, l + km, p
, where km, p and km, l are the 

bending rigidities of the protein and lipid layers, respectively, and js, p is the spontaneous 

curvature of the protein scaffold. The elastic part of the free energy (Equation 9) becomes 

wbend = 1
2

1 − φp
km, l

+ φp
km, l + km, p

−1
j − js, 0φp

2. For a rigid protein mm, p ≫ km, l , the protein behaves 

as a rigid membrane inclusion, with keff ≈ km, l 1 − φp − km, ljs, p
2

χ ) (see Equation 13 for a 

comparison). In the other limit km, p ≪ km, l , the bending energy becomes

w = 1
2km, lj2 + 1

2km, pφp j − js, p
2 − 1

2φpkm, pjs, p
2 ,

21.

which resembles the curvature mismatch model (76, 141).

Equation 21 effectively assumes that the protein-covered fraction of the membrane area 

φp has a different bending rigidity and is deformed independently from the lipid part (in 

contrast to the Hookean coupling assumed by Equation 12 for km, i). Explicit descriptions 

of local proteolipid interactions via a set of phenomenological interaction constants related 

to protein structure, particularly to anisotropy, constitute a plausible alternative to mCCC 

(53). Finding a reference state(s) for bending deformations, however, becomes a complex 

minimization problem for a nonhomogeneous membrane. For anisotropic molecules whose 

orientation in the membrane plane can be coupled to deviatropic curvature, the coupling 

renormalizes Js (39). Strong coupling that effectively freezes out the rotational degree of 

freedom might lead to geometries with periodically varying principal curvatures (40).

Although the reference state might be geometrically complex, js, i can still be defined 

parametrically from the sorting coefficient Sr obtained from the single molecule partitioning 

into membrane parts of different geometry. The linear mCCC model is applicable in this 

situation, as the first quantitative comparison with the curvature mismatch model showed 

(141). However, mapping to condensed regimes is not straightforward, as the additivity of js, i

might not hold. Overall, at high protein coverage, expansion of the mCCC model beyond the 

linear elastic approximation is likely to become necessary.
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3.7. Gaussian Curvature, Entropic, and Differential Rigidity Contributions

Among the high-order contributions emerging upon such an expansion, the Gaussian 

curvature contributions kG; Equation 1) are the most discussed. Although it can be 

considered a topological invariant for a special class of deformations of closed smooth 

surfaces, the Gaussian contribution is considered in the heterogeneous membrane systems 

(e.g., when the Gaussian modulus k‾ depends on the local membrane composition) or in the 

systems with boundaries, such as reservoir and domain boundaries as well as membrane 

inclusion boundaries. Equation 3 can be modified to include the energies of the saddle-splay 

and mixed deformations (24, 74). The corresponding contribution to the membrane bending 

energy can be estimated as

ΔW b A
kG

k‾ φ dkG + 2∬ ∂τ
∂kG

djdkG ,

22.

where the integrals are taken from the reference js  to the current state. The contribution 

of the saddle-splay deformation is on the order of kGδ and that of the mixed deformation 

can be estimated as AE‾ JKd jkG  (where E‾ JK is the mixed deformation modulus) (24, 74). For 

the heterogeneous systems (e.g., those containing protein inclusions), the local coupling to 

the deviatropic part of kG kG = c1c2 = j2 − c1 − c2
2

2  has been considered (19, 39, 40, 76). For 

anisotropic inclusions, quadrupolar coupling ε c1 − c2 cos 2α  is generally considered, where α
is an angle between the inclusion director and the preferred principal curvature axis and ε is 

the corresponding interaction constant. For weak coupling, its contribution to the membrane 

deformation energy is proportional to φiε2 c1 − c2
2, that is, kGδ (40). Although it follows that 

the above contributions could be neglected in the second-order analysis of mCCC, they must 

be taken into account beyond the linear expansion of τ j  (Equation 5).

Local membrane softening due to diminishing of the rotational degree of freedom of 

the inclusions is Δk − φiε2/kBT  (40), analogous to Equation 13. This similarity suggests 

that membrane softening by weakly anisotropic membrane inclusions might have, in the 

leading order, two independent modes related to rotational and translational entropies. Their 

combined effect might be of importance for saddle-splay membrane deformations during 

membrane fusion and fission (41). Stronger molecular anisotropy complicates the interaction 

between the modes.

Besides modification of the bending energy contribution, beyond-quadratic (in δj) treatment 

of the mixing entropy term becomes necessary. Different lattice and thermodynamic 

models have been proposed to account for instabilities and phase transitions observed 

in condensed protein solutions (127, 128, 140, 152). In general, the inclusion of protein–

protein interactions (e.g., protein repulsion energy) was also necessary (55, 120, 128, 140). 

However, for a proteolipid mixture involving species with different ap, defining the mixing 

entropy becomes perplexing. Molecular level modeling seems to be a correct way to analyze 

CCC in such systems.
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Finally, the third-order expansion of the free energy is to be used to recover the difference 

in the sorting coefficients of the molecules that have the same shape but different 

intrinsic rigidities (138). In a binary system, the coupling leads to membrane softening, 

as keff = km − k2 − k1
2Ωj2, where k2 − k1  is the rigidity difference (138). These effects 

are especially important near phase transition points where chemical interaction between 

membrane species facilitates demixing (152). It follows that in the nonlinear regimes, 

extreme softening keff 0  (79) can be achieved via a variety of pathways related to 

different softening mechanisms. However, further experimental assessments of critical 

membrane softening and associated curvature instabilities are needed to advance our 

understanding of the subject.

In summary, in open multicomponent membrane systems containing molecular species of 

different elastic properties, mCCC, in its various forms, universally increases membrane 

compliance to deformation. Furthermore, mCCC enables dynamic trading of the elastic 

stress of molecular deformation for the entropic stress of molecular demixing, thus 

facilitating both direct and reverse deformations. In the next section, we discuss this 

dynamic interplay between molecular demixing and membrane deformation.

4. MEMBRANE DEFORMATION VIA GRADUAL DEMIXING OF 

MOLECULAR SHAPES

4.1. Membrane Deformation via Compositional Adjustment

We come back to Equation 12 and analyze the Hookean relation in more detail. For that, we 

rewrite Equation 12 as

keff
−1 = ∑ φi, 0km, i

−1 + ∑ φi, 0ke, i
−1,

23.

where ke, i = kBT
a js, i − js, 0

2 . As with Equation 12, the right-hand side of Equation 23 can be 

interpreted as a Hookean relation for a sequence of springs in which each lipid species 

contributes two springs with the constants km, i and ke, i. The first constant measures the 

bending stiffness of the lipid monolayer made of the ith lipid component. The second 

constant measures the entropic resistance to changing the concentration of the ith lipid 

component in the deforming membrane. This pure entropic constant is completely defined 

by the molecular geometry of the available lipid species and is reversely proportional to 

js, i, such that lipid species with large js, i diminish keff  the most. For lipids, js is commonly 

associated with an effective shape of the lipid molecule in the monolayer, with cylindrical 

and conical shapes corresponding to planar and curved monolayers, respectively (43). 

Following Equation 23, weak demixing or reshuffling of such lipid shapes constitutes 

an independent deformation mode, alternative to conventional bending with a fixed lipid 

composition (Figure 4a,b). To illustrate how membrane deformation can be conducted 

purely via reshuffling of molecular shapes, assume that keff  is dominated by the entropic 
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contribution of a single kth   membrane component. With js, k much larger than the rest of 

js, i yet balanced by their sum so that js, 0 = ∑ js, iφi = 0, the effective bending rigidity becomes 

keff ≈ ke, k. In this hypothetical case using Equation 19, we obtain Δj ≈ js, kδk. That is, an 

arbitrary (small) deformation of the planar monolayer constructed as described can proceed 

exclusively via exchanging of the kth  membrane component with the reservoir. For the 

planar bilayer made of two such monolayers, the deformation would effectively consist of 

the redistribution of the component of dominating js between the monolayers.

The contribution of the ke (demixing) deformation mode depends on the ratio of km to 

ke (Figure 4c). The addition of only 30 mol% of DOPE leads to a reduction of keff  of 

approximately 30% (Figure 3a), showing that for lipids with oleoyl tails km and ke are 

comparable. Reduction of km by the addition of an established softener, a lipid species with a 

polyunsaturated tail, is similar in magnitude (99), corroborating the physiological relevance 

of the DOPE effect. The reduction of keff  in protein-containing membranes is much higher 

(10) (Figure 3b), indicating that the protein redistribution might dominate the deformation 

energetics. The effect of protein demixing might be further amplified if linked to a source 

of energy, such as nucleotide hydrolysis. Measurements on GUVs revealed pronounced 

softening of active membrane by NTPases (4, 48). The km/ke ratio also determines the 

amount of elastic stress stored in the membrane, for example, in a vesicle carrier. The 

demixing ke  part of the deformation energy does not contribute to the stress in the carriers 

detached from the parent membranes, whereas the demixing facilitates vesicle membrane 

deformations both before fission and after fusion. Similar regulation of the stored stress 

happens while lipids are recruited from a reservoir (Equations 15c and 17). Hence, the 

km/ke ratio might be considered as a measure of the regulatory action of weak mCCC on 

membrane deformations in the cell, particularly during vesicular transport and membrane 

recycling. Importantly, the km/ke ratio depends on the kinetics of the deformation, as 

reshuffling of molecular shapes takes time. The speed and extent of the reshuffling depend 

on those of the very deformation. In the next section, we discuss the basic rheological 

properties of mCCC seen in the NT system.

4.2. Rheology of Molecular Shape Reshuffling

CCC, and mCCC in particular, is based on migration of molecular species in membrane 

curvature gradients. Its rheology in a random geometry is fairly complex, not least because 

the curvature field is constantly changing in space and time due to CCC. Yet, in an important 

class of deformations, the curvature/concentration gradients are localized to a narrow 

boundary zone between the uniformly deforming membrane part and the reservoir. A narrow 

neck between a parent membrane and a budding vesicle, spherical or tubular, represents such 

a zone (37). In this situation, the migration is fast and the kinetics of CCC is limited by 

the diffusion within such a compartment (e.g., a vesicle or an NT). For an NT of the length 

L, the characteristic time of the material exchange with the planar reservoir (Figure 2) is 

tc ≈ L2

π2D
, where D is the lateral diffusion coefficient. For a micron-long NT tube tc 1c, such 

that faster NT deformations involve no compositional adjustment via CCC. In particular, the 

very NT formation upon the fast (~1 ms) narrowing of the catenoid membrane bridge driven 
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by membrane tension (42, 66) (Figure 5a) shall proceed at virtually constant membrane 

composition. Hence, the NT system enables decoupling of the membrane deformation by 

a constant external force (tension) into two parts: the instant deformation and the slower 

adjustment of the NT shape and composition via mCCC. Indeed, if the NT membrane 

contains only a single lipid component or components of similar js, i and km, i (not demixable 

by curvature), its radius remains constant after the collapse (Figure 5b). When DOPE or 

ENTH, either of which reduces keff  (Figure 3a,b), is added, the collapse is followed by slow 

NT constriction due to the diffusional adjustment of the NT membrane composition (Figure 

5a,b). The extent of this additional constriction is proportional to ke of the corresponding 

molecular softener. Similar diffusional relaxation of the curvature stress was seen in the 

pulling force measurements upon an acute increase in the NT length (37, 56) (Figure 5c).

This two-stage deformation process can be described by a simple rheological model 

containing km and ke springs (Equations 12 and 23), the latter in parallel with a dashpot 

reflecting the slow adjustment of the NT composition to its curvature (Figure 5a). The model 

shows that with mCCC, fast deformations require a bigger force to progress to a certain 

curvature. In turn, the final elastic stress depends on the deformation speed: An instant 

deformation creates the largest molecular strain. These smart material properties are of 

importance for the mechanisms generating local membrane stresses that trigger membrane 

fusion and fission (41, 75). Specifically, fast and slow actions of the protein machinery 

mediating fusion and fission might trigger different deformational modes leading to different 

reaction pathways, with and without leakage (11). The model also points out possible CCC-

related discrepancies in the bending modulus measurements by stationary and relaxation 

techniques.

Besides changing the effective bending rigidity, mCCC is also dynamically linked to the 

forces causing membrane bending. One force is the lateral membrane tension, which, 

in the reference or planar geometries, depends on the amount of hidden packing stress 

governed by mCCC (Equations 15c and 17). Hidden stress values become a function of 

the speed of the material exchange with bulk reservoirs: As with the NT, fast membrane 

extension (e.g., by osmotic stress) can be followed by slower correction of the membrane 

composition. The composition adjustment might also contribute to tension propagation or 

equilibration of tension gradients between different membrane compartments. Another force 

is membrane viscosity, a steep function of the protein concentrations (37). CCC might 

cause protein accumulation, or depletion, in the boundary of a deforming membrane part, 

thus dynamically regulating the friction drag for membrane material fluxes through the 

boundary (37). The corresponding shear thinning/thickening effects might be substantial, 

leading to membrane instability and fission, as was demonstrated for proteins implicated 

in the curvature creation in the tubular endoplasmic reticulum (37) and during endocytosis 

(121).

Overall, dynamic reshuffling of molecular shapes seems to provide a self-sufficient means 

of controlling the extent and dynamics of membrane deformation. In simple cylindrical 

geometry, the reshuffling constitutes an independent deformation mode dependent 

exclusively on the variety of molecular shapes present in the membrane. The mode 

displays interesting rheological properties, suggesting a new dynamic link between cellular 
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membrane remodeling and motility. However, further experimental interrogation is needed 

to establish the role of this mode in cellular membrane morphogenesis.

5. CONCLUDING REMARKS

The endomembrane of a eukaryotic cell is a complex and dynamic self-assembly platform 

deeply implicated in the spatiotemporal coordination of multiple cellular processes. It is also 

a dynamic barrier that separates cellular compartments and protects a complex hierarchy of 

biochemical processes. The barrier function, fundamental for all membrane systems, is to be 

absolutely preserved during constant remodeling of the endomembrane subsystems required 

for their individual functions and for their functional integration. It has been long recognized 

that local membrane deformations, the foundation of intracellular membrane remodeling, 

are conducted in concert with demixing and segregation of membrane components, leading 

to the formation of distinct membrane domains and new membrane compartments. Quite 

importantly, the coupling between membrane shape and composition, CCC, also helps 

preserve the barrier function, minimizing local elastic stresses that threaten the structural 

stability of the lipid bilayer, the core of the membrane barrier. As we revealed in this 

article through an analysis of the vast literature on CCC, its elementary thermodynamics, 

and a few relevant experimental datasets, CCC provides a means of dynamically regulating 

fundamental parameters of the membrane deformations, apparent bending rigidity and local 

lateral tension. The regulation is based on weak demixing of membrane constituents of 

different intrinsic curvature—in other words, reshuffling of molecular shapes. As cellular 

membranes generally show a large variety of shapes, their reshuffling constitutes a versatile 

deformation mode that enables membrane remodeling with less force and less elastic stress, 

thus facilitating intracellular membrane recycling. The mode contributes to both regulating 

the energy barriers for membrane transformations and controlling local instabilities that lead 

to membrane fusion and fission. Although it has long been appreciated that the abundance 

of molecular shapes, specifically those of lipids, increases the morphological and topological 

flexibility of cellular membranes (43), we reiterate here that the shapes control various 

aspects of membrane remodeling by different, at times complex, means, in which not only 

the magnitude but also the variety of the intrinsic curvature of membrane components 

contributes to the regulation of membrane deformations.
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Figure 1. 
Experimental measurements of membrane curvature sensing by single molecules. (a) The 

schematic (top) shows the formation of a supported lipid bilayer (blue) containing flat 

and highly curved parts due to incorporated nanoparticles (brown). Two fluorescence 

microscopy images (bottom) show the trajectories of single fluorescently labeled lipid 

(1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine) moving over the flat part of the 

SLB (flat) and over or near the curved part (curved; black dot). The bar chart shows 

that the trajectory’s steps are smaller at or near the curved parts of the SLB, indicating 

preferred lipid partitioning to positively curved lipid monolayers. Panel a adapted from 

Reference 31. (b) Quantification of binding of small Dyn1-mEGFP oligomers (4–12mers) in 

an NT–SLB system. Lipid NTs were formed directly over flat SLB by the rolling technique 

(46). The protein oligomers (green) were seen bound to the NTs (blue arrow) and to SLB 

nearby (light blue arrow). The oligomer fluorescence intensity was used to determine the 

number of Dyn1-mEGFP monomers in the oligomers. The boxplot shows that the oligomer 

concentration was higher on the NT than on the SLB, in agreement with the positive 

membrane curvature sensing that is encoded in the arc-like architecture of small Dyn1 

oligomers (104). Abbreviations: Dyn1, Dynamin1; mEGFP, monomeric enhanced GFP; NT, 

nanotube; SLB, supported lipid bilayer.
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Figure 2. 
Membrane NTs connected to a reservoir GUV are widely used for quantitative analysis 

of CCC. (Top) The schematic shows an NT pulled from a GUV reservoir containing 

transmembrane protein (voltage-dependent K+ channel KvAP) (2). The GUV is held by 

a micropipette with negative hydrostatic pressure ΔP  inside. The NT is pulled from 

the GUV by a microbead controlled by optical tweezers. (Bottom) The fluorescence 

microscopy image shows the membrane fluorescence coming from a lipid probe (red) and 

fluorescently labeled KvAP (green). Note that the green fluorescence prevails in the NT, 

indicating curvature-driven accumulation (sorting) of KvAP in the NT. Figure adapted with 

permission from Reference 2. Abbreviations: CCC, curvature-composition coupling; GUV, 

giant unilamellar vesicle; NT, nanotube.
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Figure 3. 
Changes in membrane elastic parameters by proteins and lipids with nonzero spontaneous 

curvature. a, i  Decrease of the effective bending rigidity keff  and (ii) the increase of lateral 

tension σp  of lipid membranes containing DOPE (9, 10). The solid and dashed lines show 

the tension increase calculated using Equation 17 Δσ = 1
2KeffJs, 0

2 ; solidline  or its modified 

version Δσ = 1
2KmJs, 0

2 ; dasℎedline . (b) Decrease of effective bending rigidity as a function 

of the membrane coverage by ENTH; keff  was measured as described in Reference 10. 

(c) Effective membrane rigidity keff  decreases with the bulk concentration of the Sar1p 

GTPase implicated in membrane remodeling in COPII vesicle transport. Panel c adapted 

with permission from Reference 114. Abbreviations: COPII, coat protein complex II; DOPE, 

dioleoylphosphatidylethanolamine; ENTH, epsin N-terminal homology domain.
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Figure 4. 
Different deformation modes of a multicomponent lipid monolayer. (a,b) Local deformation 

with a fixed composition of the deforming part (a) is compared with the similar-scale 

deformation achieved via curvature-composition coupling, by reshuffling of molecular 

shapes (b). The area a occupied by the cylindrical (a) and cone-shaped (b) lipid species 

in the membrane reference surface remains constant during the deformation. (c) Dependence 

of the effective bending rigidity keff on material rigidity km calculated with Equation 14 for 

a monolayer composed of conical lipids with similar km, i and opposite Js, i Js, 1 + Js, 2 = Js = 0 . 

Note that with the increase of the absolute value of Js, i (from black to green lines), keff

becomes independent of the material elasticity modulus, such that deformations proceed via 

molecular reshuffling.
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Figure 5. 
Rheology of CCC during the NT deformation. (a) The upper schematic shows the fast 

transformation of a catenoid membrane neck into a cylindrical NT (fast) followed by 

slow NT constriction due to moving of molecules into and out of the NT driven by 

CCC (slow). The lower schematic shows the corresponding rheological model consisting 

of two springs: The elastic spring is responsible for instant deformation and the entropic 

spring is responsible for slow NT deformation via CCC. The viscous-like (dashpot) 

element reflects the characteristic time of the membrane composition changes via CCC. 

(b) Experimental observation of the slow stage of the NT constriction shown in panel a. 

The constriction is absent when the NT contains lipids with the same cylindrical geometry 

(no mCCC, black circles). The constriction is seen when the NT contains molecular species 

of nonzero spontaneous curvature, DOPE (red circles) or ENTH (blue circles), enabling 

mCCC. (c) Similar diffusional adjustment of the NT composition upon fast deformation 

(the length increase) is seen as the gradual decrease of the pulling force. Panel c adapted 

with permission from Reference 56 (see also Equation 13). Abbreviations: CCC, curvature-

composition coupling; DOPE, dioleoylphosphatidylethanolamine; ENTH, epsin N-terminal 

homology domain; mCCC, mean-curvature composition coupling; NT, nanotube.
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