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Abstract

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning 

autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA 
genes has been extensively documented, regulatory genetic variation modulating HLA expression 

levels has not been comprehensively investigated. Here we mapped expression quantitative 

trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells 

from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline 
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to accurately quantify single-cell HLA expression using personalized reference genomes. We 

identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-

cell resolution revealed that many eQTL effects are dynamic across cell states even within a 

cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and 

T cells. For example, a T cell HLA-DQA1 eQTL (rs3104371) is strongest in cytotoxic cells. 

Dynamic HLA regulation may underlie important interindividual variability in immune responses.

The human leukocyte antigen (HLA) genes, located within the major histocompatibility 

complex (MHC) region on chromosome 6, are central to the immune response. Classical 

HLA class I and II molecules trigger adaptive immunity by presenting antigens to CD8+ and 

CD4+ T cells, respectively. Positive and balancing selection has made the coding sequences 

of these genes among the most polymorphic in the genome1. The HLA locus has the greatest 

number of associations with immune-mediated diseases and typically has larger effect sizes 

than all other loci combined1-4. For example, the HLA-C*06:02 allele is the major genetic 

risk factor for psoriasis5, and HLA-DRB1 alleles modulate risk for rheumatoid arthritis 

(RA)6 and multiple sclerosis7. HLA genes also play key roles in cancer by presenting 

neoantigens and in transplantation, where mismatched HLA alleles can result in rejection.

The regulatory mechanisms governing HLA genes are not yet well understood. Previous 

studies have focused on coding variation altering HLA protein structure, which may affect 

antigen binding6,8,9 or restrict the T cell receptor repertoire10-12. However, mounting 

evidence indicates that noncoding HLA regulatory variation can influence disease13-15. 

Higher HLA-C expression was found to control HIV infection but increase Crohn’s disease 

risk13. Investigators have argued that risk alleles for systemic lupus erythematosus and 

vitiligo lie within regulatory regions that increase class II expression in myeloid cells14,15. 

Understanding the role of noncoding HLA variation in disease requires defining the 

genetic variation regulating HLA gene expression. Previous bulk RNA-sequencing (RNA-

seq) studies have identified expression quantitative trait loci (eQTLs) for HLA genes in 

homogeneous cell lines16,17. However, HLA gene regulation may be context dependent, 

varying across cell types or finer-grained cell states within a cell type. For example, we 

previously demonstrated that allele-specific expression of HLA class II changes dynamically 

in activated memory CD4+ T cells in vitro18. Single-cell RNA-seq (scRNA-seq) may offer 

a more comprehensive understanding of HLA expression and its regulation by assaying cell 

states in vivo and mapping context-dependent eQTLs19-21.

Because HLA genes are highly polymorphic, standard short-read sequencing pipelines that 

align reads to a single reference genome are biased when quantifying HLA expression22,23. 

Reads can fail to align if an individual’s allele is dissimilar from the reference allele, 

resulting in unmapped reads, or reads can ‘multi-map’ to multiple HLA genes due to 

sequence similarity between genes24. This bias confounds eQTL analysis, making it difficult 

to distinguish genuine genetic associations with HLA expression from inaccurate read 

alignment. In bulk data, personalized reference genomes accounting for individuals’ HLA 
genotypes have been used to overcome this bias16,17,25,26. In this Analysis, we developed 

a personalized pipeline (scHLApers; Fig. 1c) extending this approach to single-cell data. 

We integrated four datasets (Fig. 1a) to explore how genetic regulation of classical HLA 
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class I (HLA-A, HLA-B and HLA-C) and class II (HLA-DPA1, HLA-DPB1, HLA-DQA1, 
HLA-DQB1 and HLA-DRB1) gene expression varies dynamically across diverse immune 

cell states (Fig. 1d), offering new insights into complex diseases.

Results

Quantifying single-cell HLA expression with scHLApers

We developed scHLApers, a pipeline that accurately quantifies single-cell HLA expression 

using a personalized reference (Fig. 1c, Methods and Supplementary Note 1). First, 

scHLApers uses an individual’s unique classical HLA alleles (Fig. 1b) to add the 

personalized genomic sequences for each two-field allele from the Immuno Polymorphism 

Database-ImMunoGeneTics/HLA (IPD-IMGT/HLA) database27 to the standard reference 

genome in place of the original HLA gene sequences. scHLApers then uses STARsolo28 to 

quantify whole-transcriptome expression in single-cells with multimapping.

Four cohorts with genotype and scRNA-seq data

To study immune cell states from diverse tissues and biological conditions, including some 

from disease conditions, we used four scRNA-seq datasets with paired genotype data (Fig. 

1a, Supplementary Table 1 and Supplementary Fig. 1). After quality control (QC) (Methods 

and Supplementary Table 2), the combined dataset of 1,073 individuals comprised synovial 

joint biopsies from an RA cohort29 (synovium, n = 69 individuals), intestinal biopsies 

from an ulcerative colitis (UC) cohort30 (intestine, n = 22), peripheral blood mononuclear 

cells (PBMCs) from healthy males cultured in vitro with influenza A virus and control 

conditions31 (PBMC-cultured, n = 73), and PBMCs from a large Australian cohort32 

(PBMC-blood, n = 909).

Imputing HLA alleles and MHC variants

Using SNP2HLA with our group’s multi-ancestry HLA reference panel24,33,34 (Methods, 

Fig. 1b and Supplementary Fig. 2), we inferred a common set of 12,050 variants in the MHC 

with imputation dosage R2 > 0.8 and minor allele frequency (MAF) >1% in each cohort. 

These included 11,938 single nucleotide polymorphisms (SNPs) and 112 one- and two-field 

alleles for classical HLA genes (Fig. 2a and Supplementary Table 3). We used the two-field 

alleles to quantify expression with scHLApers (Fig. 1c), and we used both types of variation 

as input for downstream eQTL analysis (Fig. 1d).

Assessing the performance of scHLApers

We assessed the performance of scHLApers compared to a pipeline without personalization, 

that is, using the standard GRCh38 reference genome (Methods and Extended Data Fig. 1). 

We expected estimated HLA gene expression to generally increase with scHLApers since 

it rescues previously unmapped reads. For each individual, we calculated the percentage 

change in the total unique molecular identifier (UMI) count for each HLA gene across 

all cells after personalization. Personalization indeed generally led to higher estimated 

expression (Fig. 2b), with concordant trends across cohorts (Extended Data Fig. 1b). We 

reasoned that if scHLApers aligns reads more appropriately, then personalization should 

have larger effects for individuals whose alleles diverge more from reference genome alleles. 
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Encouragingly, for individuals homozygous for the reference allele for a given gene (for 

example, HLA-DRB1*15:01), the scHLApers estimate highly coincided with the standard 

pipeline’s estimate; in contrast, greater dosage of non-reference alleles led to greater 

changes in estimated expression after personalization (Fig. 2b). To further quantify this, 

we compared the percentage change in estimated expression per individual to their alleles’ 

sequence dissimilarity to the reference (based on Levenshtein distance, Methods). For all 

genes except HLA-B, individuals with alleles more different from the reference tended to 

show a greater increase in expression after personalization (Extended Data Fig. 1c). The 

genes whose expression increased the most per individual were HLA-DRB1 (mean +29% 

change, 25th to 75th percentile (+10% to 38% change) in synovium), HLA-DQA1 (+29% 

(+3% to 44%)), HLA-C (+26% (+5% to 44%)), and HLA-DQB1 (+7% (+3% to 10%)), 

consistent with prior findings in bulk RNA-seq17. Expression of HLA-DPB1, HLA-DPA1 
and HLA-A also increased but to a lesser extent (Supplementary Table 4). Unexpectedly, 

we observed an overall decrease in HLA-B counts across all cohorts (Extended Data Fig. 

1b). After detailed investigation, we determined this was not a mishandling of reads by 

scHLApers, but rather was explained by scHLApers improving the assignments of reads 

from HLA-B to HLA-C (Supplementary Note 1). For individuals with both HLA-C alleles 

similar to the reference allele (HLA-C*07:02), HLA-B was less affected by personalization 

(Extended Data Fig. 1e). In contrast, for individuals with at least one non-reference-like 

HLA-C allele (that is, different from HLA-C*07:02), more reads aligning to HLA-B in the 

standard pipeline aligned better to HLA-C in scHLApers, leading to appropriately decreased 

HLA-B counts observed after personalization.

To assess if scHLApers improved the consistency of expression quantification, we leveraged 

the fact that each PBMC-cultured library was sequenced using two read lengths (289 bp 

and 84bp). We reasoned that a standard pipeline might lead to inconsistent quantification 

between the longer and shorter read versions of the dataset due to different types of mapping 

biases for different read lengths. In contrast, personalization should result in consistent 

quantification of each HLA gene between the two versions. Indeed, personalization 

increased the correlation between the estimated expression in shorter- and longer-read data 

for all genes across samples (Fig. 2c; HLA-B Spearman r = 0.97 scHLApers versus 0.82 

standard; HLA-C r = 0.96 versus 0.86; HLA-DPB1 r = 0.97 versus 0.70). Together, our 

results demonstrate that aligning reads to a personalized reference improves precision in 

quantifying single-cell HLA expression.

While all four datasets were sequenced using 10x Genomics (10x) 3′ protocols, we also 

applied scHLApers to a separate dataset of synovium samples with matched 10x 5′ data (n = 

9 individuals, 26,638 cells)35. We found that scHLApers led to a greater increase in HLA-A 
and HLA-B counts after personalization in 5′ data compared to 3′ data, due to increased 

dissimilarity from the reference allele on the 5′ end of the genes compared to the 3′ end 

(Supplementary Note 1, Supplementary Table 5 and Supplementary Fig. 3).

HLA gene expression across major cell types

After removing low-quality cells (Supplementary Table 2, Supplementary Note 2 and 

Supplementary Fig. 4a-c), we grouped cells from the four datasets into six major cell types 
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(Methods and Supplementary Table 6) to investigate cell-type-specific HLA expression 

using scHLApers. These include four immune cell types from all cohorts: 145,090 myeloid 

cells (monocytes, macrophages and dendritic cells (DCs)), 180,935 B cells (including 

plasma cells), 805,389 T cells and 125,865 natural killer (NK) cells. It also includes stromal 

cells from the two solid tissue datasets: 82,651 fibroblasts and 26,300 endothelial cells. 

We examined HLA gene expression patterns across cell types. As expected, we found that 

all cell types highly express HLA class I genes across tissues, consistent with ubiquitous 

presentation of self-peptides, whereas class II expression varied (Fig. 2d). Specifically, 

myeloid cells and B cells expressed the highest levels of class II, consistent with their role 

as professional antigen-presenting cells. Interestingly, all other cell types, such as T cells, 

also express class II genes, albeit at lower levels. Human T cells have been previously 

observed to express HLA class II upon activation18,36-38, though its function is not well 

understood39-41.

Multi-cohort analysis identifies HLA regulatory variants

To identify eQTLs for classical HLA genes, we tested the 12,050 MHC-wide variants (Fig. 

3a and Supplementary Table 7) for association with the expression of each HLA gene in 

myeloid, B and T cells. We chose these three cell types because they are well represented 

in all datasets and have known roles in antigen presentation (myeloid and B) or prior 

evidence for state-dependent HLA regulation (T)18. For each cell type and individual, we 

aggregated single-cell expression profiles into a single ‘pseudobulk’ measurement (Methods 

and Supplementary Fig. 4d,e). We used linear regression and analyzed all four cohorts 

together, controlling for covariates and testing 289,200 pairs of variants and HLA genes 

(Methods, Supplementary Fig. 5 and Supplementary Data 1).

We detected an eQTL for every HLA gene in every cell type (P values <4 × 10−9; Fig. 3b-e, 

Supplementary Fig. 6 and Supplementary Table 8). Calculating the effect size of each lead 

eQTL in each cohort separately, we observed 91.7% (88/96) mean directional concordance 

across cohorts (Fig. 3d and Supplementary Table 9), suggesting consistent effects across 

datasets. The B cell results were highly concordant with a previous study on HLA eQTLs17, 

which used bulk RNA-seq data from lymphoblastoid cell lines and found that all eight 

variants included in both studies showed consistent directions of effect (Pearson r = 0.92, 

Extended Data Fig. 2a).

Most lead variants (19/24) were individual SNPs within the MHC. For example, rs3104413, 

the lead variant for HLA-DQA1 in myeloid cells, is located between HLA-DRB1 and HLA-
DQA1 (P = 8.04 × 10−127; Fig. 3b,c). This SNP commonly co-occurs with the classical 

HLA-DQA1*03:01 allele (87.5% of DQA1*03:01 haplotypes are in phase with the G allele 

of rs3104413; Supplementary Table 10). The HLA-DQA1*03:01 allele is part of the DQ8 

haplotype, which is associated with type 1 diabetes and celiac disease42.

Some lead eQTLs were individual one- or two-field HLA alleles. For example, HLA-B*15 
was the lead eQTL for HLA-B in all three cell types (P < 3 × 10−81) and associated with 

lower expression of HLA-B (Extended Data Fig. 2b,c). A recent study using a new capture 

RNA-seq method also found that HLA-B*15 alleles were among the lowest expressed 

in bulk PBMCs, consistent with our observations43. HLA-C*07 was the most significant 
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variant for HLA-C in B cells (P = 2.87 × 10−210; Supplementary Fig. 6b and Extended Data 

Fig. 2b), reflecting reduced expression of HLA-C*07 alleles relative to other HLA-C alleles. 

This finding could not be explained by read alignment bias (Extended Data Fig. 2c) and 

is supported by previous work showing that HLA-C*07 alleles contain a 3′ untranslated 

region microRNA binding site that reduces HLA-C expression44,45. Interestingly, the HLA-
C*06:02 and HLA-C*12:03 alleles, major risk factors for psoriasis5, were associated with 

higher HLA-C expression in all three cell types (P < 8 × 10−40 and 3 × 10−8, respectively; 

Supplementary Data 1). The increased expression of these HLA-C alleles may contribute to 

psoriasis disease risk46.

scHLApers improves eQTL estimates

We compared the eQTL effect sizes estimated using expression values from scHLApers 

versus the standard pipeline. For genes whose expression were most affected by 

personalization, eQTL estimates were meaningfully impacted (Pearson r = 0.73 for HLA-
DRB1, 0.76 for HLA-DQA1, 0.76 for HLA-B, 0.93 for HLA-C; Extended Data Fig. 3a). 

These improved eQTL estimates probably reflect the reduction of spurious eQTL signals 

caused by reference bias. For example, using the standard pipeline, the two-field allele 

HLA-DRB1*07:01 was significantly associated with HLA-DRB1 expression in B cells (β 
= −0.50, P = 3.43 × 10−26). However, with scHLApers, the effect was corrected away (β 
= 0.02, P = 0.73) (Extended Data Fig. 3b,c). In contrast, the lead HLA-DRB1 eQTL for 

scHLApers (rs9271117) was significant in both pipelines (Extended Data Fig. 3b,c).

HLA eQTLs are cell type dependent

We next explored whether HLA eQTLs are cell type dependent, as reported for other 

genes32,47. To test this, we used a mixed-effects model including an interaction term for cell 

type with genotype (Methods). Almost all (22/24) eQTLs exhibited statistically significant 

cell-type dependency (interaction P < 2.08 × 10−3 = 0.05/24 tests), and several showed 

dramatic effects (Supplementary Table 11). The strongest example was the lead eQTL for 

HLA-DRB1 in B cells (rs9271117, β = 0.7, P = 1.08 × 10−128), which was ~3-fold weaker 

in myeloid cells (β = 0.27, P = 8.44 × 10−22) and altogether absent in T cells (P = 0.90) 

(Fig. 3e). Similarly, eQTLs for HLA-DPA1 and HLA-DPB1 (rs2163472 and rs2395305) 

exhibited much stronger regulatory effects in B cells compared to myeloid and T cells 

(Supplementary Fig. 8a,b, β = 0.43 in B versus 0.04 and 0.08 in myeloid and T; β = 0.55 

versus 0.07 and 0.12, respectively). These results highlight the importance of considering 

cell type when studying the genetic basis of HLA expression.

Conditional analysis identifies multiple eQTLs per gene

We used conditional analysis to identify additional regulatory variants beyond the primary 

eQTL (Supplementary Data 2). For example, after controlling for the effect of rs3104413, 

a secondary independent variant (rs9272294, linkage disequilibrium (LD) r2 = 0.04 with 

rs3104413) located ~1.4 kb upstream of HLA-DQA1 was also associated with HLA-DQA1 
expression in myeloid cells (P = 3.06 × 10−58; Fig. 3c). We repeated this process to identify 

up to three additional independent eQTLs (P < 5 × 10−8) for each gene in each cell type 

(Supplementary Fig. 7). HLA-B, HLA-C and HLA-DQB1 exhibited the most independent 

signals (three or more eQTLs per cell type). Most associations (76% = 44/58) were unique 
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to a gene and cell type (r2 < 0.8 with all other lead variants; Supplementary Fig. 8c), but 

some were shared. For example, the primary eQTLs for HLA-DPA1 and HLA-DPB1 in B 

cells (rs2163472 and rs2395305, respectively) were tightly linked to each other (r2 = 1.0) 

and to the secondary signal for HLA-DPB1 in T cells (rs4435981, r2 = 0.99). Additionally, 

the primary eQTLs for HLA-DQA1 in myeloid and T cells (rs3104413 and rs3104371) were 

linked (r2 = 0.86), and the secondary signals shared the same lead variant (rs9272294).

HLA genes exhibit cell-state-dependent expression

We next investigated whether HLA expression varies across cell states. Here, ‘cell state’ 

refers to finer-grained transcriptional phenotypes of cells within a major cell type. While 

there are multiple ways to represent cell state, we used harmonized expression principal 

components (hPCs) as latent variables capturing the main axes of transcriptional variation 

among the cells corrected for technical covariates. We integrated the single cells from all 

four datasets into a unified, continuous, low-dimensional embedding space for each cell type 

(myeloid, B or T) (Fig. 4a-c). This integration was accomplished by applying PC analysis 

to the two tissue datasets and removing batch and dataset-specific effects using Harmony48, 

then projecting the cells from the two PBMC datasets onto the same hPC axes using 

Symphony49 (Methods and Supplementary Fig. 9). The resulting hPC space appropriately 

captured transcriptional variation as reflected by the cell state annotations from the original 

studies (Fig. 4d and Supplementary Fig. 13), but does not rely on a specific clustering 

resolution.

The shared single-cell embedding allowed us to compare HLA expression patterns across 

fine-grained transcriptional states. Both class I and II expression varied widely across cell 

states within a given cell type (Fig. 4a-c and Supplementary Figs. 10-12). By quantifying 

the variance explained by cell state for each gene (Methods), we found that cell state 

generally explained a greater proportion of variance in class II expression (mean 30%, 

25th to 75th percentile (17–37%) across all cohorts) compared to class I (mean 19% (8–

34%)) (Fig. 4e and Supplementary Table 12). The abundance of certain cell states differed 

considerably between blood and tissues. For example, tissue macrophages and infiltrating 

monocytes were absent or at low abundance in PBMCs. However, HLA expression patterns 

were generally similar in cell states shared across tissues, suggesting that cell state rather 

than tissue context was driving expression. For example, conventional DC1 and DC2 cells 

expressed the highest levels of class II among myeloid cells in both blood and tissue (Fig. 

4a). Among B cells (Fig. 4b), class II expression was lower in plasma cells than in B cells, 

reflecting the downregulation of class II in the transition to plasma cells50,51. Among T cells, 

proliferating and CD8+ cytotoxic cells expressed the highest levels of class II (Fig. 4c).

Modeling dynamic eQTLs at single-cell resolution

Single-cell-resolution eQTL models19,20,52,53, which model expression in individual cells, 

can identify dynamic eQTLs–regulatory effects that change as cells transition across 

continuous cell states. Dynamic effects can be masked in pseudobulk analysis and may 

reflect cell-state-specific transcription factors binding to specific regulatory elements.
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To investigate whether HLA eQTLs are dynamic, we used a single-cell negative binomial 

mixed-effects (NBME) model (Methods). Briefly, we modeled the UMI count of each 

gene as a function of genotype and its interaction with cell state, accounting for sample-

level covariates (age, sex and ancestry), cell-level fixed effects (library size, percentage 

mitochondrial UMIs, and expression principal components (PCs)), and random effects for 

donor and batch (Fig. 5a). The NBME model showed high concordance with the pseudobulk 

model when testing for eQTL main effect size and significance (Pearson r = 0.916 for effect, 

0.984 for significance; Extended Data Fig. 4a,b). By simulating single-cell datasets across 

a range of allele frequencies with different eQTL effect sizes (Methods), we determined 

that the NBME model has adequate power to detect eQTLs for our application (Extended 

Data Fig. 4c). We then used the top ten hPCs for each major cell type (Methods) as a 

continuous multivariate representation of cell state when modeling eQTLs and tested for 

cell-state interactions (G × hPC) within each dataset using the same cell-state definitions 

across datasets. We tested the lead eQTLs identified by our pseudobulk analysis, comprising 

58 variant-gene pairs with robust genotype main effects and excluding the Intestine dataset 

due to its small sample size (Methods). We confirmed that the model has well calibrated 

type I error when testing for cell-state interactions (Extended Data Fig. 4d,e).

We observed that most eQTLs (78% = 45/58) showed statistically significant cell-state 

dependence (interaction P < 8.6 × 10−4 = 0.05/58 tests; Supplementary Table 13). Indeed, 

every HLA gene tested was dynamic in at least one cell type, and HLA-DQA1, HLA-
DQB1, HLA-C and HLA-A were the most state dependent (Supplementary Table 14). 

Most interaction effects were modest relative to the main genotype effect (Supplementary 

Table 13). Interestingly, the PBMC-cultured dataset exhibited much less significant cell-state 

interactions overall (Fig. 5b), despite being similar in size to the synovium dataset. This is 

possibly due to cell state differences in cultured cells compared to cells collected in vivo.

Comparing dynamic effects across cell states

We next assessed the strength of dynamic regulatory effects in relation to annotated cell 

states. For each eQTL, we calculated each cell’s estimated total eQTL effect size (βtotal) from 

the genotype main effect and interaction effects weighted by the cell’s position along each 

hPC (Methods)19. This allowed us to compare the eQTL’s strength across cell states. For 

example, in PBMC-blood T cells, the effect of the HLA-A eQTL (rs7747253, interaction P 
= 4.9 × 10−68) was strongest in proliferating cells (mean βtotal = 0.23 for proliferating versus 

0.10 for other T cells; Fig. 5c), suggesting the variant plays a more substantial role in 

regulating HLA-A expression during T cell proliferation than at rest. This eQTL was also 

cell state dependent in myeloid cells (Supplementary Fig. 14a-d).

We explored whether cell-state-interacting eQTLs may contribute to interactions with 

contextual factors that have been tested in bulk-level analyses47,54-56, including age, sex 

and interferon response. Our findings indicate that if an eQTL interacts with cell states 

whose abundance changes with a sample-level factor, the factor can show an interaction 

in bulk; however, single-cell interaction testing is better powered (Supplementary Note 3, 

Supplementary Table 15 and Supplementary Fig. 15).
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We observed the most significant cell-state interaction effects for HLA-DQ genes (Fig. 5b), 

specifically HLA-DQA1 in T cells (interaction P = 2.9 × 10−200 in PBMC-blood) and HLA-
DQA1 and HLA-DQB1 in myeloid cells (interaction P < 1× 10−195 in both synovium and 

PBMC-blood). In T cells (Fig. 5d-f), the HLA-DQA1 eQTL (rs3104371) had the strongest 

effects in gamma-delta (γδ), cytotoxic CD8+ and cytotoxic CD4+ T cells, a finding that 

replicated in synovium (Fig. 5f). All three of these cell states exhibit cytotoxic activity. Our 

results indicate that HLA-DQA1 expression is under dynamic genetic regulation in T cells, 

and further studies to clarify its functional role are warranted.

In myeloid cells, PBMC-blood and synovium showed similar patterns of regulation for 

the HLA-DQA1 eQTL (rs3104413; Fig. 6a-c). The strongest effects were observed in a 

subpopulation of monocytes in PBMC-blood and infiltrating monocytes and DC4 cells 

(which are similar to CD16+ monocytes57) in synovium (Fig. 6c), suggesting that the 

underlying regulatory mechanisms governing the dynamic eQTL are active in both blood 

and synovium. The estimated βtotal values were robust to whether the embedding was 

defined using the tissue datasets or PBMC-blood dataset alone (Pearson r across cells, 

0.896; Supplementary Fig. 14e-g). In contrast to the T cell HLA-DQA1 example, the eQTL 

strength was negatively correlated with the expression of the gene. That is, the expression of 

HLA-DQA1 is highest in conventional DC1 and DC2 cells, but the eQTL is weakest in those 

states (Fig. 6c). HLA-DQB1 also showed similar patterns of eQTL strength as HLA-DQA1 
in PBMC-blood (r across cells, 0.953), suggesting that HLA-DQ genes are coordinately 

regulated.

In B cells, the HLA-DQA1 and HLA-DQB1 eQTLs (rs9271375 and rs927346) were also 

state dependent (interaction P < 2× 10−9 in synovium and PBMC-blood), with plasma cells 

and plasmablasts exhibiting the strongest effects (Fig. 6d-f). Interestingly, the overall trend 

in B cells was similar to myeloid cells (and opposite of T cells) in that cell states with higher 

HLA-DQ expression (pre-activated B cells and conventional DCs, respectively) had weaker 

eQTL effects. In contrast, states with lower expression (plasma cells and monocytes) had 

stronger effects. A potential explanation is that cells critical for antigen presentation, such as 

DCs and pre-activated B cells58,59, have mechanisms to maintain high HLA-DQ expression 

to ensure proper function, such that genetic effects contribute less to expression differences. 

Meanwhile, cell states with lower expression may have evolved greater genetic diversity 

in their antigen presentation capabilities, leading to diversity in immune responses across 

individuals.

Discussion

This study demonstrates highly variable cell-type and cell-state-specific expression and 

genetic regulation of HLA genes. By integrating four diverse datasets from multiple tissues 

capturing a broad set of cell states and contexts, we found that classical HLA gene 

expression is under cis-regulation. Class II genes show particularly variable strengths of 

genetic regulation depending on cellular context. At the cell-type level, B cells display 

much stronger regulatory effects for HLA-DRB1, HLA-DPA1 and HLA-DPB1 than myeloid 

and T cells (Fig. 3e and Supplementary Fig. 8a,b). Single-cell resolution eQTL modeling 

revealed that many eQTLs are cell state dependent, especially for HLA-DQ genes (Figs. 5 
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and 6). We previously showed that HLA-DQ exhibits state-dependent regulation in CD4+ T 

cells ex vivo18. Here, we demonstrated that HLA-DQ is dynamically regulated in multiple 

cell types across tissues in vivo.

Variation in the HLA is hypothesized to have evolved to confer selective advantages 

in immune response to pathogens60, maternal–fetal tolerance61 and susceptibility to 

autoimmune diseases62, depending on environmental contexts. Coding variation in HLA 
genes affects the quality of presented antigens by determining which peptide sequences 

are presented, and population diversity enables collective responsiveness to diverse 

pathogens. Concurrently, HLA regulatory variation may affect the quantity of antigen 

presentation, leading to different thresholds of immune responsiveness. It has been shown 

that the expression levels of HLA-C alleles can affect immunogenicity in unrelated 

donor hematopoietic cell transplantation63, and HLA downregulation in tumors may affect 

response to immune checkpoint inhibitors64,65. The presence of multiple independent 

regulatory effects at each HLA gene and cell-type and cell-state-specific effects suggests 

that regulatory variation may have been selected to ensure diverse immune responses within 

a population.

There are several limitations of this study. First, our reference-based HLA imputation 

may have missed ultra-rare alleles. Long-read sequencing or sequence-based typing 

with polymerase chain reaction could eventually improve the detection of all possible 

noncoding HLA variants66,67. Second, we were not able to fine-map the eQTLs to precise 

causal variants because of the high degree of linkage disequilibrium (LD) in the MHC 

region. Functional work evaluating candidate causal variation may ultimately define causal 

variation. Finally, we did not perform colocalization with genome-wide association study 

associations for several reasons. Standard tools (for example, coloc68) that assume a single 

causal variant are not appropriate within the HLA locus because genome-wide association 

study signal may jointly arise from both coding and regulatory variation, rather than acting 

exclusively through gene expression. Moreover, although colocalization can be paired with 

conditional analyses or fine-mapping approaches69 to test multiple independent effects in 

a region, the extensive LD poses a challenge. Colocalization analyses within the HLA 
have not been systematically evaluated for accuracy and replication and warrant future 

investigation.

Future data generation efforts that increase the size and ancestral diversity of genotyped 

single-cell cohorts will continue to improve our understanding of state-dependent and 

population-specific regulatory effects and aid in fine-mapping efforts70.

Methods

Quantifying single-cell HLA expression with scHLApers

We developed the scHLApers (single-cell HLA expression using a personalized reference) 

pipeline to accurately quantify classical HLA expression in scRNA-seq data. As input, the 

pipeline takes in scRNA-seq read-level data (FASTQ or BAM) and HLA allele calls. If 

sequence-based typing is unavailable, HLA alleles can be imputed using genotyping data 

(see ‘HLA imputation’ section). A personalized reference is created for each individual by 
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adding personalized HLA allele sequences as extra contigs to the reference and masking the 

original reference HLA gene sequences. The output is a whole-transcriptome counts matrix 

with improved HLA expression estimates. The code and tutorials to run scHLApers are 

available at ref. 71 (v1.0 used for this study).

Preparing the HLA allelic sequence database.—scHLApers requires a database 

of genomic HLA allele sequences. To prepare this, we downloaded the IPD-IMGT/HLA 

database72 (v3.47.0). The database contains sequence alignment files for full-length 

genomic sequences (that is, four-field resolution, ending in ‘gen.txt’) and nucleotide coding 

sequences (that is, two- and three-field resolution, ending in ‘nuc.txt’). We filled in any 

incomplete genomic sequences with bases from the most similar complete allele using 

the hla_compile_index function from the ‘hlaseqlib’ R package (v0.0.3)73. Coding allele 

sequences with no corresponding genomic sequence were substituted with the genomic 

sequence of the most similar allele with a genomic sequence based on the Hamming 

distance of coding sequences. For HLA-A, HLA-DQA1, HLA-DQB1, HLA-DPA1 and 

HLA-DPB1, we padded the 5′ and 3′ ends of the allelic sequences from IPD-IMGT/HLA 

with extra bases from the GRCh38 reference to ensure that they did not have any missing 

sequence content compared to the reference sequences. The reference gene boundaries were 

defined by the Gencode v38 annotation file.

Creating personalized reference genome and annotation files.—scHLApers 

creates a personalized reference genome (FASTA) and annotation file (GTF) for each 

individual. Based on the HLA allele calls, scHLApers creates a FASTA file for each 

individual with their genomic allelic sequences from the allelic sequence database. Each 

allele is included as a separate contig, with the allele name as the identifier. If multiple 

four-field versions exist for a given two-field allele, the corresponding XX:XX:01:01 allele 

sequence is chosen. The original reference classical HLA gene sequences are masked with 

‘NNN…’ to prevent reads from aligning to them. The personalized allelic sequences are 

then concatenated with the masked GRCh38 reference genome to produce the personalized 

reference.

In the personalized annotation file (GTF), all entries corresponding to the classical HLA 
genes are removed from the original Gencode v38 annotation file. New entries are added 

for each personalized allele with the ‘seqname’ column labeled as the allele name (matching 

the identifier in the personalized reference FASTA file), the ‘feature name’ as ‘exon’ to 

enable read alignments to the entire sequence, the ‘start’ and ‘end’ positions as ‘1’ and the 

length of the sequence, respectively, and the strand as ‘+’ since all sequences in the database 

are defined as the forward strand. The ‘attribute’ column is labeled with ‘transcript_id’ as 

the allele name (for example, IMGT_A*01:01:01:01) and ‘gene_id’ and ‘gene_name’ as 

the gene name (for example, IMGT_A), allowing alignments to either allele of the gene to 

contribute to its total UMI count.

Quantifying single-cell expression.—Using the personalized genome and annotations, 

scHLApers performs single-cell read alignment and expression quantification using 

STARsolo28 (v2.7.10a). STARsolo performs barcode correction, UMI collapsing and 

optimal distribution of multimapping reads (that is, reads mapping to either overlapping 
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genes or multiple paralogous genes at separate loci), which are typically discarded 

in standard pipelines. We chose STARsolo over pseudoalignment-to-transcriptome 

methods because it can identify splice junctions de novo, which is useful because 

the transcript isoform usage for each HLA allele is not readily available. The 

personalized genome index is generated using STARsolo –runMode genomeGenerate, 

and read alignment is performed with –runMode alignReads. The user specifies the 

appropriate UMI length (–soloUMIlen), cell barcode whitelist file (–soloCBwhitelist), 

and assay type (–soloType CB_UMI_Simple for droplet-based data). Additionally, 

scHLApers counts all reads overlapping gene’s introns and exons (–soloFeatures 

GeneFull_Ex50pAS) and optimally distributes multimapping reads using an expectation-

maximization algorithm (–soloMultiMappers EM). The parameters –soloCBmatchWLtype 

1MM_Nbase_pseudocounts, –soloUMIfiltering MultiGeneUMI_CR and –soloUMIdedup 

1MM_CR are used to match CellRanger results. Users can output a coordinate-sorted 

BAM file to view individual read alignments (–outSAMtype BAM SortedByCoordinate and 

–outSAMunmapped Within).

Cohorts with paired single-cell transcriptomics and genotype data

We obtained data from four existing studies with scRNA-seq and genotype data from the 

same individuals (Supplementary Table 1). These include (1) synovial biopsies from patients 

with RA and from osteoarthritis controls (synovium, n = 69 individuals after sample QC)29, 

(2) intestinal biopsies from patients with UC and from healthy controls (intestine, n = 

22)30, (3) PBMCs from healthy males that were treated in vitro with both influenza A virus 

and mock conditions (PBMC-cultured, n = 73)31, and (4) PBMCs collected from a large 

population cohort (PBMC-blood, n = 909)32. For details regarding the collection of these 

cohorts and determination of the number of samples per cohort included in this study, see 

Supplementary Note 4.

QC of genotyping data

All cohorts were genotyped using genotyping arrays, except for PBMC-cultured, which 

used low-pass whole-genome sequencing (WGS) (Supplementary Table 1). We processed 

the genotyping data and performed QC using PLINK v1.90, as described in Supplementary 

Note 4 following the tutorial at ref. 74 (ref. 24). Genome-wide variants were used to 

calculate PCs to control for genetic ancestry in eQTL analysis, and variants in the extended 

MHC (defined here as chr 6: 28000000–34000000) were used for HLA imputation.

HLA imputation

HLA imputation with SNP2HLA.—We used SNP2HLA75 to perform HLA imputation 

using version 2 of our group’s multi-ethnic reference panel described in Sakaue et al.24,33,34. 

We performed imputation on the full genotyping datasets (that is, not limited to samples 

with paired scRNA-seq), then subset the imputed VCF file to the samples with scRNA-seq. 

Two types of genetic variation were imputed: SNPs within the MHC (n = 14,691) and 

classical HLA alleles at one- and two-field resolution for HLA-A, HLA-B, HLA-C, HLA-
DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 (n = 570). In SNP2HLA 
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output, reference (REF) and alternative (ALT) values for classical alleles are set to ‘A’ and 

‘T’ denoting absence and presence of the allele, respectively.

The two-field HLA alleles were used in scHLApers to make personalized references. 

SNP2HLA outputs an individual’s imputed dosage (0–2) and inferred genotype (GT: 0∣0, 

0∣1, 1∣0 or 1∣1) for every HLA allele in the reference panel. Note that, for a subset of 

individuals, we could not confidently call two-field alleles for one or more HLA genes, and 

the dosage was split across multiple alleles (<0.5 for any given allele). We excluded these 

individuals (9 synovium, 3 intestine, 15 PBMC-cultured and 60 PBMC-blood individuals, 

representing <8% of total samples) to avoid introducing a technical batch effect. All 

downstream analyses included 1,073 individuals for whom we could confidently impute 

phased alleles for every HLA gene (GT: 0∣1 and 1∣0 for two alleles or GT: 1∣1 for one 

allele).

QC of imputed MHC variants.—We performed QC on the imputed MHC-wide variants 

using custom R scripts and the ’vcfR’ (v1.12.0) package. Because the HLA reference uses 

hg19 coordinates, we first lifted over the imputed variants to GRCh38 using CrossMap 

(v0.6.1) and chain file76. Then, we subset to the relevant samples and calculated the MAF 

within the subset. We retained variants with imputation dosage R2 (DR2, the estimated 

squared correlation between the estimated allele dose and the true allele dose) >0.8 and 

MAF >0.01 in each cohort. For the intestine cohort, which was genotyped on two different 

arrays, we first filtered by DR2 within each array then merged them by the intersecting 

variants before filtering by MAF >0.01 across the merged cohort. We took the intersection 

of variants across all four cohorts passing our QC thresholds to arrive at a final set of 12,050 

variants for eQTL testing (Supplementary Fig. 2): 112 one- and two-field HLA alleles and 

11,938 intergenic variants.

Assessing the performance of scHLApers

Applying scHLApers to all four cohorts.—We applied scHLApers to quantify single-

cell expression for all four datasets. As a comparison, we also ran a standard pipeline that 

used STARsolo with the same parameters as scHLApers but with the original GRCh38 

reference (with no personalization) and discarding multimapping reads. For both versions, 

we generated BAM files containing unmapped reads (samtools view -b -f 4) and reads 

aligning to the MHC and personalized contigs using samtools (v1.4.1). We removed 

empty droplets and low-quality cells by filtering the count matrices by cell barcodes (see 

‘Processing single-cell expression data’ section).

For the read length concordance analysis, the PBMC-cultured dataset contained reads of 

two different lengths (84 and 289 bp). We generated long- and short-read versions of the 

dataset by creating separate BAM files by sequence length and running scHLApers on 

longer and shorter reads separately. To visually inspect read alignments and coverage across 

the personalized allelic contigs in scHLApers, we used Integrative Genomics Viewer (IGV 

v2.11.2).
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Comparing percent change to dissimilarity from the reference alleles.

We assessed how expression estimates (summed UMI counts across all cells for a sample) 

changed from a standard pipeline (sp_exp) to the scHLApers pipeline (pers_exp) (equation 

(1)) with respect to the dissimilarity between the reference allele and personalized alleles.

% change = pers_exp − sp_exp
sp_exp

(1)

Dissimilarity was defined as the Levenshtein distance between the genomic GRCh38 

allele and personalized allele sequences, calculated using the stringdist function in the 

‘stringdist’ (v0.9.8) R package. Since all datasets used 10x 3′ assays, the read coverage 

was predominantly at the 3′ end of the gene (Supplementary Fig. 3). Hence, distances were 

calculated at the 3′ end using sequence segments of 500 bp (HLA-A, HLA-B, HLA-C 
and HLA-DRB1), 1,000 bp (HLA-DQA1 and HLA-DPA1), 1,500 bp (HLA-DQB1) or 

2,500 bp (HLA-DPB1), encompassing the region where reads accumulated. For individuals 

heterozygous for a gene, we took the mean of the two distances. The GRCh38 reference 

allele sequences are listed in Darby et al.77 (A*03:01, B*07:02, C*07:02, DQA1*01:02, 
DQB1*06:02, DRB1*15:01, DPA1*01:03 and DPB1*04:01). We confirmed these by 

performing a multiple sequence alignment between the IPD-IMGT/HLA allelic sequences 

and the reference sequence using the msaClustalW function from the ‘msa’ (v1.22.0) R 

package.

Application of scHLApers to 5′-based data.—We applied scHLApers to a separate 

dataset from a subset of synovium individuals with matching 10x 5′ data (n = 9 individuals, 

26,638 cells)35. To compare the dissimilarity of HLA class I alleles to the reference alleles at 

the 5′ end (500-bp region), we calculated Levenshtein distance at the 5′ end of the multiple 

sequence alignment, as described for 3′ data above.

Investigating read mapping between HLA-B and HLA-C.—To quantify the rescuing 

of unmapped reads and identify reads ‘jumping’ between different genes, we tracked where 

reads aligned in scHLApers versus the standard pipeline. We analyzed the BAM files output 

from both pipelines using a custom R script and the scanbam function in ‘Rsamtools’ 

(v2.6.0). A given read can align to the classical HLA genes (that is, personalized contigs for 

scHLApers or gene regions defined by Gencode v38 for the standard pipeline), another 

location in the MHC outside of classical HLA genes, another location outside of the 

MHC, or be unmapped. We used the multiple sequence alignment for HLA-C to generate a 

phylogenetic tree of HLA-C allele sequences using the ‘Neighbor Joining’ option in Jalview 

(v2.11.0). By grouping the HLA-C alleles by similarity to the reference allele (C*07:02) 

based on the tree, we could observe the relationship between the dosage of ‘reference-like’ 

HLA-C alleles and the change in HLA-B counts.
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Processing single-cell expression data

QC of single-cell data.—For synovium, intestine and PBMC-cultured datasets, we subset 

the count matrix output from scHLApers to the cells passing QC in the original studies 

(that is, barcodes present in published cell metadata). For the PBMC-blood dataset, we 

started from the original cells but performed additional filtering steps to remove suspected 

doublets (Supplementary Note 2). Then, we performed uniform cell-level QC procedures on 

all cohorts, removing cells with <500 genes and >20% mitochondrial counts.

Defining major cell types and merged cell annotations.—We defined a common 

set of six major cell types across the four datasets–myeloid (monocytes, macrophages 

and DCs), B (including plasma), T, NK, fibroblast and endothelial–by aggregating fine-

grained cell annotations. For synovium, intestine and PBMC-cultured, these fine-grained 

annotations came from the originally published cell annotations. For PBMC-blood, we used 

the Seurat Azimuth PBMC CITE-seq reference78 to transfer labels to the cells following 

the more stringent doublet removal (Supplementary Note 2). We removed cells from the 

following annotations that did not fall under our major cell type categories of interest: 

‘Mu-0: Mural’ and ‘T-21: Innate-like’ cells in synovium; ‘Glia’, ‘CD69− Mast’, ‘CD69+ 

Mast’ and ‘Pericytes’ for intestine; ‘NKT’ and ‘neutrophils’ for intestine; and ‘HSPC’, 

‘Platelet’, ‘Doublet’, ‘Eryth’ and ‘MAIT’ for PBMC-blood. The final cell numbers can 

be found in Supplementary Table 2. We generated cell-type-specific count matrices for 

downstream analyses, removing cells from individuals with fewer than five cells of the 

cell type. To obtain a version of finer-grained cell annotations to aid in the interpretation 

of cell embeddings, we manually merged the fine-grained cell annotations for myeloid, B 

and T cells in synovium and PBMC-blood datasets to a shared set of common cell state 

annotations (for example, PBMC-blood ‘CD4 CTL’ and ‘CD4 TEM’ and synovium ‘T-12: 

CD4+ GNLY+’ were merged into ‘CD4+ Cytotoxic’; Supplementary Table 6).

Pseudobulk eQTL analysis

Generation of pseudobulk profiles.—For each cell type (myeloid, B and T), 

we generated ‘pseudobulk’ versions for each dataset. First, we performed library size 

normalization using log(CP10k + 1) within each cell, then aggregated all cells per sample 

by taking the mean normalized expression of each gene to obtain a samples-by-genes 

matrix79. We excluded individuals with fewer than five cells of the cell type. We performed 

rank-based inverse normal transformation for each gene, including genes with nonzero 

expression in greater than half of the samples.

Multi-cohort eQTL model.—To control for genetic ancestry, we used PLINK (v1.90) to 

calculate genotype PCs (gPCs) using 66,827 shared genome-wide variants across all four 

datasets. For PC analysis, we included all individuals from the full array cohorts passing QC 

(including those without paired scRNA-seq data, Supplementary Fig. 1f). To infer hidden 

determinants of gene expression variation, we ran probabilistic estimation of expression 

residuals (PEER)80 on each pseudobulk expression matrix for each dataset and cell type 

separately, using the ‘peer’ R package (v1.0). We used different numbers of PEER factors 

(K) for each dataset to account for the varying number of individuals in each cohort (K = 7
for synovium, 2 for intestine, 7 for PBMC-cultured and 20 for PBMC-blood; Supplementary 
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Fig. 5a). We generated covariate-corrected expression residuals, accounting for sex, age, 

ancestry (five gPCs), 10x chemistry (for intestine) and PEER factors.

To identify eQTLs for each classical HLA gene, we incorporated all four datasets into a 

single model (‘multi-cohort model’) to boost power. We combined the expression residuals 

from all datasets together for each cell type (Supplementary Fig. 5b). For PBMC-cultured, 

which included both influenza-stimulated and noninfected cells for each sample, we 

included only the noninfected cells in the analysis. We tested each of the 12,050 MHC-wide 

variants for association with residualized expression (Eresid) using linear regression (equation 

(2)), controlling for the dataset to account for systematic differences across cohorts. This 

provided a pooled estimate for each eQTL effect across datasets. For lead eQTLs in the 

multi-cohort model, we also ran the model in each dataset separately (without the dataset 

term) to compare the concordance across datasets. We also ran the same model using the 

HLA expression estimates from the standard pipeline to compare to the scElLApers results.

Eresid = βGXG + βdatasetXdataset + ε

(2)

Comparison to Aguiar et al. bulk eQTL study.—We compared the lead eQTL effects 

identified in this study to a bulk RNA-seq study by Aguiar et al.17 on HLA eQTLs in 

lymphoblastoid cell lines (LCLs). We obtained eQTL summary statistics from the original 

authors and limited the comparison to B cells in this study as they are most biologically 

similar to LCLs. Because some variants tested in this study were not tested in Aguiar et al., 

we restricted the comparison to the lead variants among those tested in both.

Grouping classical HLA alleles by lead eQTL variants.—To determine how 

classical one- and two-field HLA alleles track with lead eQTL variants, we compared the 

co-occurrence between eQTL variants and HLA alleles for the associated gene. To calculate 

co-occurrence (Occallele,eQTL, ranging from 0 to 1), we used the multi-ethnic HLA reference 

panel dataset from HLA imputation24. Because the reference dataset is phased, we could 

calculate the proportion of reference haplotypes (n = 20,349 samples × 2 chromosomes = 

40,698 haplotypes) containing the ALT allele of each lead eQTL using a custom R script 

(equation (3)).

Occallele,eQTL = #haplotypes with HLA allele and ALT version of eQTL
Total # haplotypes with HLA allele

(3)

Cell-type interaction analysis.—To determine whether lead eQTLs are cell type 

dependent, we modeled the residualized expression from all three cell types together using 

a linear mixed-effects model, adding a fixed effect for cell type (myeloid, B or T), an 

interaction term between variant and cell type (G × cell_type), and a random effect for donor 

to account for the non-independent sampling of cell types from the same donor (equation 
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(4)). To ascertain the significance of the cell type dependency, we compared the full model 

to a null model without the interaction term using a likelihood ratio test (LRT) (lrtest 

function from ‘lmtest’ v0.9-39R package).

Eresid = βGXG + βdatasetXdataset + βcell_typeXcell_type
+ βG × cell_typeXG × cell_type + (ϕdonor ∣ donor) + ε

(4)

Conditional analysis.—To identify additional eQTLs independent from the lead eQTL, 

we performed up to three additional rounds of conditional analysis for each gene and cell 

type using the multi-cohort model, conditioning on the lead eQTL(s) from the previous 

round(s). We terminated early if the lead eQTL did not reach a significance of P < 5 × 10−8. 

We used PLINK (v1.90) (−ld) to calculate LD r2 values between every pair of lead eQTLs 

across cell types and rounds of conditional analysis using the multi-ethnic HLA reference 

panel.

Visualizations.—To generate boxplots of pseudobulk eQTL effects, we used the 

expression residuals and regressed out the effect of dataset (not already corrected during 

PEER). For the Manhattan plots, because each gene has multiple potential transcription 

start sites (TSS) depending on the transcript, we selected the transcript with the midpoint 

chromosomal start position across transcripts. LD r2 values for the locus zoom plot were 

calculated using PLINK (v.1.90) and the multi-ethnic HLA reference panel. For generating 

figures, we used R packages ‘ggrastr’ (v1.0.1), ‘ggrepel’ (v0.9.1), ‘patchwork’ (v1.1.1) and 

ggplot2’ (v3.3.5).

Creating a single-cell atlas of HLA expression

Mapping cells into a shared embedding.—To create low-dimensional cell state 

embeddings of single cells across datasets, we first integrated the two tissue datasets 

(synovium and intestine). For each cell type (myeloid, B and T), we concatenated the 

counts matrices from both datasets and filtered to the union of the top 1,500 variable 

genes per dataset calculated using the variance stabilizing transform (vst) method, excluding 

cell cycle genes (Seurat v4.1.0s.genes and g2m.genes), mitochondrial (MT-) and ribosomal 

(RPL-, RPS-) genes. We scaled the variable genes across all cells using R package 

‘singlecellmethods’ (v0.1.0), calculated the top ten PCs (using the ‘irlba’ v2.3.5 R package), 

then removed sample and dataset-specific effects using Harmony48 (v0.1.0) (parameters: 

θsample = 0.5, θdataset = 1, nclust 50 and sigma 0.2), resulting in a ten-dimensional ‘Harmonized 

PC’ (hPC) embedding. We visualized the embedding in 2D using uniform manifold 

approximation and projection (UMAP), calculated with the umap function in the ‘uwot’ 

(v0.1.11) R package, with n_neighbors = 30 and min_dist = 0.2. We then projected the 

two PBMC datasets into the same tissue-defined embedding using Symphony49 (v0.1.0) 

to align analogous cell states across tissues. For PBMC-cultured, we included cells from 

both influenza-stimulated and noninfected samples. Symphony mapping was performed one 

query dataset at a time, correcting for ‘sample’ effects in the query.
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As an alternative approach, we also explored de novo integration of all four datasets 

together. We used the top 1,500 variable genes per dataset (top 1,000 for T cells) and 

Harmony integration with θdataset = 0.5, θbatch = 0.5 and θsample = 0.5 (batch defined as the sample 

for Synovium, 10x chemistry for intestine, and experimental batch for PBMC datasets). 

However, the tissue-defined embeddings produced a cleaner visual separation of cell 

states, particularly for myeloid cells (Supplementary Fig. 9) and were therefore used for 

downstream analysis.

Quantifying proportion of expression variance explained by cell state.—To 

estimate the percent of variance in HLA expression explained by cell state, we fit an 

NBME model of the UMI count of each HLA gene across cells in each cell type. We 

included donor-level fixed effects for age, sex and ancestry (five gPCs), cell-level fixed 

effects for scaled log(total UMI count), scaled percent mitochondrial UMIs, and cell state 

(ten hPCs), and random effects for donor (and experimental batch for PBMC datasets). 

The NBME models (including all other versions described in subsequent sections) were 

fit using the glmer.nb function from the ‘lme4’ (v1.1-28) R package with options nAGQ 

= 0 and ‘nloptwrap’ optimizer. We used the r.squaredGLMM function from the ‘MuMIn’ 

(v.1.43.17) R package81 to estimate the marginal R2 using the ‘delta’ method for the full 

model (equation (5)) as well as a model without cell state terms. The difference between the 

R2 values between the two models was used to estimate the proportion of variance explained 

by cell state.

log(E) = β0 + βageXage + βsexXsex + ∑
k = 1

5
βgPCkXgPCk

+ βnUMI log(XnUMI) + βMTXMT + ∑
k = 1

10
βhPCkXhPCk

+ (ϕdonor ∣ d) + (δbatch ∣ b)

(5)

Defining a cell embedding using PBMC-blood alone.—We also defined an 

alternative cell state embedding for each cell type using cells from PBMC-blood alone. 

To do this, we used the same dimensionality reduction pipeline described above for the 

tissue-defined embedding, except we used the top 2,000 variable genes across PBMC-blood 

for each cell type and corrected for experimental batch with Harmony (θbatch = 2).

Single-cell eQTL analysis

We used a single-cell NBME eQTL model to test HLA eQTLs for cell-state dependency. 

The model is adapted from the Poisson mixed-effects (PME) model recently described by 

our group19. We used NBME in this study because we found that the LRT P values from the 

PME model exhibited inflation when testing for cell-state interactions (Extended Data Fig. 

4d; see ‘Evaluating model calibration for testing cell-state interaction’ section), probably 

because HLA genes exhibit greater overdispersion than other genes, whereas NBME was 

well calibrated. We first used an NBME model without cell state to define the set of 

variant-gene pairs with robust genotype main effects within each dataset. We then used an 
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NBME model with cell state to test for dynamic effects. We excluded the Intestine dataset 

due to small sample size (n = 22).

Testing for genotype effect using NBME model without cell state.—Using the 

lead eQTL variants identified in the pseudobulk multi-cohort model above (8 genes × 3 cell 

types = 24 variants), we tested each eQTL using a single-cell NBME model (equation (6)) 

to assess the genotype effect. We modeled the per-cell UMI count of each HLA gene in each 

major cell type and dataset separately (24 variants × 3 datasets = 72 variant-gene pairs to 

test). We included the same donor and cell-level fixed and random effects as in equation (5), 

except without cell state terms (hPCs) and adding additional terms for donor genotype (G) 

and five expression PCs (ePCs), which are calculated on each dataset separately to account 

for technical effects (akin to PEER factors in pseudobulk). We determined the significance 

of the genotype effect by comparing to a null model without genotype using an LRT with 1 

degree of freedom.

log(E) = β0 + βGXG + βageXage + βsexXsex + ∑
k = 1

5
βgPCkXgPCk

+ βnUMI log(XnUMI) + βMTXMT + ∑
j = 1

5
βePCjXePCj

+ (ϕdonor ∣ d) + (δbatch ∣ b)

(6)

We compared the genotype main effect size and significance from the NBME model 

(equation (6)) to the pseudobulk eQTL model using the PBMC-blood dataset. Significance 

was represented by LRT P values in the NBME model and Wald P values in the pseudobulk 

linear model (run on PBMC-blood separately).

To define variants with robust main effects to test for cell-state interaction, we included only 

variant-gene pairs within a cell type and dataset with a significant genotype main effect 

(LRT P value <0.05), resulting in a total of 58 variant-gene pairs.

Power analysis for NBME model.—We estimated the power to detect a spectrum of 

effect sizes across a range of allele frequencies using our NBME model (methods detailed in 

Supplementary Note 4).

Testing for cell-state interaction using NBME model.—To test the 58 variant-gene 

pairs for dynamic regulatory effects, we modeled the eQTLs at single-cell resolution using 

an NBME model (equation (7)). While the model can use any cell state variable (for 

example, clusters and pseudotime trajectory), we reasoned that hPCs would provide a 

principled and unbiased way to define continuous cell states. We include the same donor 

and cell-level fixed and random effects as in equation (6), with the addition of cell state 

(hPC1-10 from the tissue-defined Symphony embeddings) and genotype interaction with 

cell state (G × hPC1 + … + G × hPC10). To assess whether the eQTL is cell state dependent, 

we compared the full model (equation (7)) to a null model without interaction terms using an 

LRT with 10 degrees of freedom.
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log(E) = β0 + βGXG + βageXage + βsexXsex + ∑
k = 1

5
βgPCkXgPCk

+ βnUMI log(XnUMI) + βMTXMT + ∑
j = 1

5
βePCjXePCj

+ ∑
k = 1

10
βhPCkXhPCk + ∑

k = 1

10
βG × hPCkXG × XhPCk

+ (ϕdonor ∣ d) + (δbatch ∣ b)

(7)

Evaluating model calibration for testing cell-state interaction.—We analyzed the 

calibration of the NBME model when testing for interaction between genotype and cell 

state. Using the PBMC-blood cells and embedding defined in PBMC-blood alone, we 

permuted cell state (ten hPCs as a block) across all cells, then ran the NBME model for 

each variant-gene pair (equation (7)) and assessed its significance using LRT, which should 

yield uniform P values if the model is well calibrated. We repeated this process for 1,000 

permutations and compared the results to the equivalent analysis performed with a PME 

model (glmer function from ‘lme4’ R package with family = ‘poisson’).

Comparing eQTL strength across cell states.—For a given eQTL, we combined the 

genotype main effect (βG) with the interaction effects of each hPC (estimated in equation 

(7)), weighted by each cell’s position along each hPC (for example, βG × hPC1 × hPC1) to score 

each cell on the basis of its estimated total eQTL effect size (equation (8)). This allowed us 

to compare the strength of the eQTL across cell states by plotting the estimated βtotal of each 

cell in UMAP coordinates and comparing the mean βtotal across cell state annotations.

βtotal = βG + ∑
k = 1

10
βG × hPCkhPCk

(8)

By binning cells by five quantiles of estimated βtotal, we calculated the main genotype effect 

in each quantile separately (βNBME) using equation (6), determining significance by LRT 

comparing to a null model without the genotype term. For the T cell HLA-A dynamic eQTL, 

the dynamic effect was very specific to proliferating cells. Hence, for visualization, we did 

not bin the cells by five quantiles based on hPCs because proliferating cells were rare (n = 

739 cells) and instead calculated the main genotype effect in proliferating cells and CD8+ 

Cytotoxic cells (n = 96,516) for comparison.

To compare the βtotal, estimates derived from the tissue-defined embedding to those from 

the embedding defined using PBMC-blood alone for the myeloid HLA-DQA1 eQTL 

(rs3104413), we ran the same NBME cell-state interaction model (equation (7)) except 

using ten hPCs defined in PBMC-blood (see ‘Defining a cell embedding using PBMC-blood 

alone’ section). We calculated the Pearson correlation between the βtotal estimates produced 
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by the two embeddings. We also tested for eQTL interactions with contextual factors (age, 

sex and interferon response) as described in Supplementary Note 4.

Extended Data

Extended Data Fig. 1 ∣. Correcting HLA expression estimation bias with scHLApers.
a, Schematic showing how high HLA gene polymorphism leads to bias in read alignment 

to a single reference genome. Consider two hypothetical individuals who are either 

homozygous for HLA-DRB1 allele X (orange) or allele Y (blue), where the reference 

allele is X. Reads from X will align perfectly to the reference, leading to accurate HLA-
DRB1 quantification. However, for Y, reads will fail to align to the reference due to 

discordant sequence content, leading to unmapped reads and underestimation of expression. 
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b, Percentage change in expression (total UMIs for HLA gene per individual, y-axis) across 

cohorts (synovium, n = 69 individuals; intestine, n = 22; PBMC-cultured, n = 73; PBMC-

blood, n = 909). c, Percentage change in estimated expression (total UMIs for HLA gene per 

individual, y-axis) in synovium (n = 69) as a function of the mean (between the individual’s 

two alleles) Levenshtein distance relative to the GRCh38 reference allele at the 3’ end 

of each gene (x-axis). For b and c, dashed horizontal red lines denote no change. Fitted 

linear regression line (blue) shown with 95% confidence region. d, Heatmap showing the 

alignment of reads to each gene in scHLApers (rows) versus where the same read aligned 

(‘came from’) in the standard pipeline (columns) for synovium (top) and PBMC-cultured 

(bottom). Columns include HLA genes, other regions in the extended MHC, or unmapped 

reads. Rows sum to 100%, and a darker color indicates that more of the reads aligning to 

a given gene in scHLApers came from the corresponding location in the standard pipeline. 

e, Phylogenetic tree derived from a multiple sequence alignment of HLA-C allelic genomic 

sequences. The reference allele is C*07:02. Yellow box shows alleles similar to the reference 

(‘reference-like’). Boxplot on right shows the change in HLA-B estimated UMI counts 

summed across cells from each sample (y-axis) compared to the genotype for HLA-C in 

terms of dosage of ‘reference-like’ alleles (x-axis), across n = 1,073 individuals from all 

cohorts. For b and e, boxplot center line represents median, lower/upper box limits represent 

25/75% quantiles, whiskers extend to box limit ±1.5 × IQR, and outlying points are plotted 

individually.
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Extended Data Fig. 2 ∣. Concordance of eQTLs with bulk RNA-seq, differential allelic 
expression, and read alignment visualization.
a, Concordance between the effect sizes of lead HLA eQTLs identified in the multi-cohort 

pseudobulk model for B cells (this study, y-axis) and the same variant’s effect in LCLs 

identified through bulk RNA-seq eQTL analysis (Aguiar et al., x-axis). Because not all lead 

variants in this study were directly comparable due to different sets of tested variants, we 

tested the concordance of the most significant variant present in both datasets (triangles 

indicate that the exact lead variant in this study was also tested in Aguiar et al., whereas 

circles indicate ‘substitute’ lead variants was used for comparison). b, HLA-B expression 

in myeloid cells (top, n = 861 individuals) and HLA-C expression in B cells (bottom, n = 

909), showing mean log(CP10k + 1)-normalized expression (y-axis) across cells for each 

individual in PBMC-blood by allele (x-axis). Each individual’s expression value is plotted 
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once if they are homozygous (red) and twice if heterozygous (tan) for each allele (imputed 

dosage is rounded to the nearest integer). The black diamonds show the mean value for 

each allele (used to order the x-axis). c, Integrative Genomics Viewer (IGV) screenshots 

showing read alignments for alleles HLA-B*15:01 and HLA-C*07:01, associated with lower 

expression of the respective genes, for a representative individual in synovium.

Extended Data Fig. 3 ∣. Personalization improves eQTL effect size estimates.
a, Comparison of eQTL effect size estimates calculated using expression quantified by 

scHLApers (x-axis) vs. standard pipeline (y-axis). Each dot represents one of 12,045 MHC-

wide genetic variants tested using the pseudobulk eQTL model per cell type (color). Pearson 

correlation is labeled for each gene. b, Example of eQTL effect correction through the 
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use of corrected expression estimates, shown for HLA-DRB1 in B cells. eQTL effect sizes 

(y-axis) estimated for MHC variants along Chr. 6 (x-axis), shown for standard pipeline 

(top), scHLApers pipeline (middle), and the magnitude of difference between the betas 

from the two pipelines (bottom). The variant with the largest correction in estimated eQTL 

effect (HLA-DRB1*07:01) is labeled in orange, and the lead variant in the scHLApers 

pipeline (rs9271117) is labeled in blue. c, Boxplots visualizing the eQTL effects across 

individuals for HLA-DRB1*07:01 (left) and rs9271117 (right) using HLA-DRB1 expression 

estimates from the standard (top) vs. scHLApers (bottom) pipelines. Increased dosage of 

the ALT allele (x-axis) vs. HLA-DRB1 expression in B cells (y-axis: units are residual of 

inverse normal transformed mean log(CP10k + 1)-normalized expression across cells after 

regressing out covariates), across n = 1,069 individuals total (synovium, n = 65; intestine, 

n = 22; PBMC-cultured, n = 73; PBMC-blood, n = 909), plotted by dataset (color). For 

HLA-DRB1*07:01, ‘A’ denotes absence of the allele, and ‘T’ denotes presence (rather 

than REF/ALT nucleotides). Nominal Wald P-values are derived from linear regression 

(two-sided test).
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Extended Data Fig. 4 ∣. Testing single-cell NBME model for concordance with pseudobulk and 
for calibration for genotype-cell-state interactions.
a-e, The models in a-c test genotype main effects, whereas d and e test genotype-cell-state 

interaction. a,b, Concordance of genotype main effect estimates (a) and significance of 

genotype main effect (b) between the NBME model (y-axis) and the pseudobulk model for 

the PBMC-blood dataset (x-axis) across all cell types and classical HLA genes. c, Power 

of the NBME single-cell eQTL model to detect regulatory effects across allele frequencies. 

The proportion of simulations where the null hypothesis was appropriately rejected at α 
= 5 × 10−8 (y-axis) in the presence of a simulated eQTL effect across 1000 simulations. 

Simulations were run across a range of eQTL allele frequencies (x-axis) and effect sizes 

(colors) using the PBMC-blood myeloid data and HLA-DQA1 expression. d,e, We permuted 

cell state (10 hPCs as a block) for 1,000 tests and obtained interaction P-values from a one-
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sided likelihood ratio test (LRT) comparing to the null model without G×hPC interaction 

terms. Q-Q plots showing statistical calibration (compared to uniform P-values) for PME 

model (d) versus NBME model (e) when testing for cell state interactions for representative 

class I (HLA-A) and class II (HLA-DPA1) genes in myeloid cells in PBMC-blood. The 

red line is the identity line. The histograms below show distributions of LRT P-values for 

HLA-DPA1.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Overview of study and scHLApers pipeline.
a, We used four datasets with genotype and scRNA-seq data: synovium (n = 69 individuals, 

m = 275,323 cells), intestine (n = 22, m = 137,321), PBMC-cultured (n = 73, m = 188,507), 

and PBMC-blood (n = 909, m = 765,079). b, Using the genotype data, we imputed SNPs 

within the MHC and one- and two-field classical HLA alleles. c, Schematic of scHLApers 

pipeline, where scRNA-seq reads are aligned to a personalized reference for each individual 

based on classical HLA alleles. In the example, an individual is heterozygous for all eight 

HLA genes, so 16 additional contigs are added to the reference. Original reference gene 

sequences are masked with Ns. scHLApers outputs a whole-transcriptome counts matrix 

with improved HLA gene estimates. Both alleles contribute to count estimation for each 

gene. d, We generated an atlas of HLA expression across all cell types (left) and mapped 

eQTLs for HLA genes in myeloid, B and T cells. Schematic of example dynamic eQTL 

(right), where eQTL strength (slope, βtotal) changes across T cell states.
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Fig. 2 ∣. Quantifying single-cell HLA expression using scHLApers.
a, Frequency of each imputed two-field HLA allele across all cohorts. Most common alleles 

(up to ten) labeled for each gene, with other alleles grouped into ‘other’. Alleles with 

frequency of less than five are not labeled. b, Boxplot (each observation is one sample) 

showing percentage change (y axis) in the estimated UMIs for each HLA gene (x axis) 

summed across all cells after quantification with scHLApers (compared to a pipeline using 

the standard reference genome) in the combined dataset (n = 1,073 individuals), colored 

by number of copies of the reference allele (labeled in red below for each gene). Gray 

horizontal line denotes no change. Boxplot center line represents median, lower/upper box 

limits represent 25/75% quantiles, whiskers extend to box limit ± 1.5× interquartile range, 

and outlying points are plotted individually. c, Comparing the estimated HLA expression 

Kang et al. Page 35

Nat Genet. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as measured using shorter reads (84 bp, y axis) versus longer reads (289 bp, x axis) in the 

standard pipeline (top row) compared to scHLApers (bottom row). Each dot shows the mean 

log(CP10k + 1)-normalized expression across cells for one sample in PBMC-cultured (n = 

146 samples from 73 individuals). r is Pearson correlation; dashed gray line is identity line. 

d, HLA expression in different cell types across cohorts: myeloid (m = 145,090 cells), B (m 
= 180,935), T (m = 805,389), NK (m = 125,865), fibroblasts (m = 82,651) and endothelial 

(m = 26,300). Dot size indicates proportion of cells with nonzero expression; color indicates 

log(CP10k + 1)-normalized expression (mean across cells).
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Fig. 3 ∣. eQTLs for classical HLA genes from pseudobulk analysis.
a, Manhattan plot showing the significance (y axis) of association between tested MHC 

variants (x axis) and expression of each HLA gene (color) in myeloid cells from the 

multi-cohort model. Most significant (lead) eQTLs are labeled. Diamonds indicate TSS of 

each gene. b, Boxplot showing an example lead eQTL (rs3104413). Increased dosage of 

the G allele (x axis) associates with higher HLA-DQA1 expression in myeloid cells (y 
axis: units are the residual of inverse normal transformed mean log(CP10k + 1)-normalized 

expression across cells after regressing out covariates), n = 1,025 individuals total (synovium 

n = 69, intestine n = 22, PBMC-cultured n = 73, PBMC-blood n = 861), plotted by 

dataset (color). All lead eQTLs shown in Supplementary Fig. 6c, Locus zoom plot for 

the primary (rs3104413) and secondary (rs9272294) eQTLs for HLA-DQA1 in myeloid 
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cells. Significance of association (y axis) is shown for nearby variants on chromosome 6 

(x axis); color denotes LD (r2 with lead eQTL in multi-ancestry HLA reference). Triangles 

point upwards for a positive (downwards for negative) effect on expression. Gene bodies 

and direction of transcription (arrows) for HLA-DRB1, HLA-DQA1 and HLA-DQB1 are 

underneath. d, Grid showing lead eQTLs for each HLA gene (columns) in each cell type 

(rows: myeloid cells n = 1,025, B cells n = 1,069, and T cells n = 1,072 individuals total; 

for dataset breakdown, see Supplementary Table 2). Each element of the grid includes a 

forest plot with the estimated lead effect size (x axis) and 95% confidence interval (mean ± 

1.96 standard error) of the estimate from the multi-cohort analysis (diamond) and the same 

variant-gene pair tested for an association within each cohort separately (dots above). Size 

of the dots/diamond indicates cohort size; color indicates sign of the ALT allele’s effect on 

expression (blue for positive, red for negative). The eQTLs boxed in blue and magenta are 

highlighted in b and c and in e, respectively. e, Example of a cell-type-dependent eQTL 

(rs9271117) that was the lead eQTL for HLA-DRB1 and strongest in B cells. Boxplots are 

formatted analogously to b and show the eQTL’s effect for all three cell types separately. In 

a–c and e, nominal Wald P values are derived from linear regression (two-sided test).
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Fig. 4 ∣. Integrating single cells into a unified cell state embedding across datasets.
a–c, UMAP of cells generated using tissue-defined embedding (top ten hPCs from synovium 

and intestine), with PBMC datasets projected into the same space. The plot is divided into 

three sections: myeloid cells (a), B cells (b) and T cells (c). Left: class I and II HLA 
expression across cells across datasets. Cells are binned into hexagons to avoid overplotting 

(50 bins per horizontal and vertical UMAP directions) and colored by mean log(CP10k 

+ 1)-normalized expression of class I/II genes per bin (for example, for class I, mean 

of HLA-A, HLA-B and HLA-C). Right: cell state annotations (color) for a representative 

PBMC (PBMC-blood) and solid tissue (synovium) dataset from merging annotations from 

each dataset to a shared set of labels. d, Heatmap showing mean value for each hPC (color) 

across cells for each discrete cell annotation within T cells in PBMC-blood. Values are 
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scaled relative to the most extreme value across cell states. Black boxes and inset figures 

above show examples of how hPCs are linked to original cell state labels: proliferating cells 

(high in hPC4 and hPC5) and CD8+ cytotoxic and γδ (gdT) cells (high in hPC7, low in 

hPC8). e, Estimated proportion of variance in UMIs explained by cell state hPCs (color) 

across HLA genes and cell types.
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Fig. 5 ∣. Identifying dynamic eQTLs by modeling single cells.
a, NBME model of single cells used to identify cell-state-dependent regulatory effects. 

Pink box highlights terms for cell state (ten hPCs per cell type) and their interaction with 

genotype. b, Testing lead eQTLs identified in multi-cohort pseudobulk analysis for cell-state 

dependence using the NBME model in each dataset (color) in myeloid (‘M’), B and T cells. 

Magnitude of genotype main effect (x axis) versus the significance of cell-state interaction 

(y axis), measured using chi-square (χ2) statistic from LRT comparing full model (a) to 

null model without G × hPC interactions. c, Dynamic HLA-A eQTL (rs7747253) in T 

cells (n = 909 individuals, m = 538,579 cells in PBMC-blood). UMAP shows T cells 

colored by estimated eQTL strength (βtotal). Boxplots for the eQTL effect are shown for two 

annotated cell states (CD8+ cytotoxic and proliferating, outlined in red circles), showing 
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mean log2(UMI + 1) of HLA-A across all cells in the cell state per individual by genotype. 

βNBME and P values are derived from fitting the NBME model without cell-state interaction 

terms on the discrete cell populations and comparing to a null model without genotype using 

an LRT (n = 908 individuals, m = 96,516 cells for CD8+ cytotoxic; n = 409, m = 739 

for proliferating). Boxplot center line represents median, lower/upper box limits represent 

25/75% quantiles, whiskers extend to box limit ± 1.5× interquartile range, and outlying 

points are plotted individually. d–f, Dynamic HLA-DQA1 eQTL (rs3104371) in T cells (n 
= 68 individuals, m = 82,423 cells in synovium; n = 909, m = 538,579 in PBMC-blood). 

UMAP (d) colored by eQTL strength (βtotal), from blue (weakest) to orange (strongest). 

Boxplots (e) showing the eQTL effects in cells from the top and bottom quintile of βtotal, 

showing mean log2(UMI + 1) per individual (y axis) by genotype. Labeled βNBME and P value 

are derived from fitting the NBME model without cell-state interaction terms on the cells 

from the discrete quintile and comparing to a null model without genotype using an LRT. 

Boxplot elements defined as in c. Scatterplot (f) showing the mean βtotal (y axis) compared to 

the mean log(CP10k + 1)-normalized expression of HLA-DQA1 (x axis) across annotated 

cell states (color). LRT, likelihood ratio test (one-sided).
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Fig. 6 ∣. Dynamic HLA-DQ eQTLs in myeloid and B cells.
a–c, Dynamic HLA-DQA1 eQTL (rs3104413) in myeloid cells (n = 69 individuals, m 
= 66,789 cells in synovium; n = 861, m = 40,568 in PBMC-blood). UMAP (a) of cells 

for tissue-defined embedding, colored by βtotal, from blue (weakest) to orange (strongest). 

Boxplot (b) showing the eQTL effect across individuals in the bottom and top quintiles of 

estimated βtotal. Labeled βNBME and P value are from fitting the NBME model without cell-state 

interaction terms on the cells from the discrete quintile and comparing to a null model 

without genotype using an LRT. Mean log2(UMI + 1) across cells per individual (y axis) 

by each genotype. Boxplot center line represents median, lower/upper box limits represent 

25/75% quantiles, whiskers extend to box limit ± 1.5× interquartile range, and outlying 

points are plotted individually. Scatterplot (c) showing the mean estimated βtotal (y axis) 
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compared to the mean log(CP10k + 1)-normalized expression of HLA-DQA1 (x axis) across 

annotated cell states (color). d–f, Dynamic HLA-DQA1 eQTL in B cells (n = 65 individuals, 

m = 25,917 cells in synovium; n = 909 individuals, m = 80,784 in PBMC-blood). d–f are 

analogous to a–c, respectively. LRT, likelihood ratio test (one-sided).
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