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Targeting abatacept-resistant T-helper-17
cells by aldehyde dehydrogenase inhibition

Yukiko Tokifuji,1 Hodaka Hayabuchi,1 Takashi Sasaki,2 Mariko Hara-Chikuma,3 Keiji Hirota,4 Hayato Takahashi,5

Masayuki Amagai,5 Akihiko Yoshimura,1 and Shunsuke Chikuma1,6,*
SUMMARY

IL-17-producing helper T (Th17) cells are long-lived and serve as central effector cells in chronic autoim-
mune diseases. The underlying mechanisms of Th17 persistence remain unclear. We demonstrated that
abatacept, a CD28 antagonist, effectively prevented the development of skin disease in a Th17-depen-
dent experimental autoimmune dermatitis model. Abatacept selectively inhibited the emergence of
IL-7R-negative effector-phenotype T cells while allowing the survival and proliferation of IL-7R+ mem-
ory-phenotype cells. The surviving IL-7R+ Th17 cells expressed genes associated with alcohol/aldehyde
detoxification and showed potential to transdifferentiate into IL-7R-negative effector cells. Inhibiting
aldehyde dehydrogenase reduced IL-7R+ Th17 cells in vivo, independently of CD28, and exhibited addi-
tive effects when combinedwith abatacept. Our findings suggest that CD28 blockade prevents inflamma-
tion without eliminating persistent memory cells. These remaining memory cells can be targeted by other
drugs, such as aldehyde dehydrogenase inhibitors, to limit their survival, thereby facilitating the treat-
ment of chronic autoimmune diseases.

INTRODUCTION

Autoimmune diseases affect approximately 5% of the global population.1 Biological drugs targeting proinflammatory cytokines are effective;

however, disease recurrence during or after treatment is often problematic.2 One of the cellular targets of such drugs contain interleukin-17

(IL-17)-producing helper T (Th17) cells.3–5 Th17 cells regulate inflammation by producing proinflammatory effector cytokines, such as IL-17,

tumor necrosis factor alpha (TNF-a), IL-22, interferon gamma (IFNg), and granulocyte-macrophage colony-stimulating factor (GM-CSF).

Furthermore, Th17 cells survive longer than other T cells. Memory-like Th17s can replicate and produce a new effector cell population, which

resembles stem cells, and contributes to their persistence.6–8 Understanding the mechanisms underlying long-term survival of autoreactive

Th17 will be useful for deciding the optimal treatment of chronic autoimmune diseases.

CD28, the best-known costimulatory receptor,9 mediates T cell activation through IL-2 production10 and resistance to apoptosis.11 At the

molecular level, CD28 ligation activates serine/threonine kinase Akt, nuclear factor kB (NF-kB), and the mechanistic Target of Rapamycin

(mTOR) that stimulate uptake andmetabolism of glucose for full activation and differentiation into effector cells.12,13 Abatacept, a fusion pro-

tein of CTLA-4 and immunoglobulin (Ig) antagonizes CD28 by competing with costimulatory ligands (CD80 and CD86), acts as a strong in-

hibitor of T cells, and has been used for the treatment of autoimmune diseases. CD28 serves as a primary checkpoint in T cell activation

but also may be involved in the peripheral maintenance of T cell homeostasis such as Th17 cells.

Desmoglein 3 (DSG3) is an adhesion molecule that is primarily expressed on keratinocytes. It is also the target autoantigen in pemphigus

vulgaris, an autoimmune blistering disease.14 T cells extracted from mice carrying a DSG3-specific T cell receptor (Dsg3H1 TCR Tg mouse;

hereafter simply designated as Dsg3H1) are known to directly infiltrate the epidermis and induce cellular immunity in DSG3-bearing kerati-

nocytes and cause interface dermatitis after adoptive transfer into Rag2�/� mice.15,16

Using the modified chronic experimental autoimmune dermatitis (EAD) model, we demonstrated that CD28 signal plays a key role in acti-

vation and effector function of Th17. Abatacept treatment completely blocked the development of skin inflammation by inhibiting activation

and proliferation of effector T cells. In contrast, IL-7 receptor (IL-7R)-positive Th17 cells with memory-like phenotype were resistant to abata-

cept and remained in the body. To inhibit abatacept-resistant remaining Th17 cells in vivo, we extensively characterized this population and

discovered that ALDH inhibitors can prevent the formation of this memory population.
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Figure 1. Highly polarized skin-reactive Th17 cells induce chronic dermatitis upon transfer

(A) Schematic representation of the induction of pathogenic Th17 cells from desmoglein-3-specific Dsg3H1-TCR transgenic mice. Refer to the STAR methods

section for details.

(B) Development and kinetics of dermatitis in recipient mice. Cumulative results from three experiments. Kaplan–Meier method with log rank test.

(C) Macroscopic (tail and ear) and microscopic (ear skin) views of dermatitis. Scale bars: 200 mM.

(D) mRNA expression of inflammatory cytokines in epidermal tissue two weeks after transfer. Two-tailed t test (N of 4 and 7).

(E) Survival of transferred T cells two weeks after transfer. Donor T cells were detected by the CD45.1 congenic marker ex vivo. The data represent one

representative datapoint from more than 10 mice.
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RESULTS

Pathogenic Th17-dependent mouse model of chronic skin inflammation

We previously reported a Th17-dependent EADmodel in mice.16 Briefly, naive CD4+ T cells extracted from Dsg3H1mice15 were purified and

activated in vitro under Th17 polarizing condition. Subsequently, when these Th17 cells were transferred into lymphocyte-deficient Rag2

knockout mice, they induced IL-17-dependent subacute skin inflammation, both histologically and immunologically resembling psoriasis.16

Unfortunately, severeweight loss and rapid death of recipientmice following cell transfer prevented us from analyzing persistent autoimmune

disease in this model (16 and unpublished).

To investigate long-term Th17 cell survival in the persistent EADmodel, we used sublethally irradiated wild-type mice as recipients. Addi-

tionally, during T cell differentiation culture, we added IL-1b, known to promote the development of long-lived pathogenic Th17 cells (pTh17;

Figure 1A and STAR methods section). The resulting pTh17 cells exhibited stronger production of IL-17A compared with normally skewed

Th17 cells (nTh17). Furthermore, pTh17 cells produced IL-17F (Figure S1A), which is suggested to be produced by more epigenetically

committedTh17 cells.17 Genes encoding IL-23 receptor andGM-CSF (Il23r andCsf2, respectively) are higher in pTh17 than nTh17 (Figure S1B).

Consequently, we termed the induced cells ‘‘Dsg3H1-pTh17,’’ representing pathogenic Th17-skewed Dsg3H1 cells.

When Dsg3H1-pTh17 cells were transferred into irradiated syngeneic wild-type C57BL/6 mice, they induced dermatitis at a slower rate

than in Cd3e KO recipients (which lack endogenous T cells and showed EAD with kinetics similar to Rag2 KO recipients) (Figure 1B). The

skin inflammation, typically affecting the ears, back, neck, and/or tail, persisted for at least a month without the death of recipient mice

(Figure 1C and data not shown). Thickened skin with a massive infiltration of mononuclear cells in epidermal and dermal tissues was evident

(Figure 1C). In the affected skin, strong expression of cytokines, such as IL-17A, IFNg, IL-6, and TNF-a, were detected, indicating severe inflam-

mation caused by Dsg3H1-pTh17 (Figure 1D).

Using congenically labeled donor T cells (pTh17 prepared from Dsg3H1 transgenic, CD45.1 congenic mice) allowed us to discriminate

transferred cells via fluorescence-activated cell sorting (FACS) analyses in the recipients (CD45.2). In support of Th17-dependent inflamma-

tion, the transferred donor Dsg3H1-pTh17 cells (CD45.1+) were detected in epidermal and dermal tissues after 2 weeks, as well as in skin-

draining lymph nodes and spleen (Figure 1E, upper panels). In contrast, Dsg3H1 T cells skewed into Th1 (Dsg3H1 Th1; Figure 1E lower panels)

did not persist in the skin nor induce skin inflammation in vivo. Moreover, Dsg3H1-pTh17 cells neither caused any inflammation nor exhibited

survival beyond 2 weeks in vivo (data not shown) in non-irradiated wild-type mice. Taken together, we have successfully developed a chronic

EAD model induced by the injection of pathogenic Th17 cells reactive to a defined autoantigen in the skin.

CD28 blockade by abatacept prevents Th17-mediated skin inflammation

Abatacept, a human CTLA-4 Ig that inhibits CD28 signaling, was previously shown to ameliorate human psoriasis.18,19 However, its impact on

skin-reactive helper T cells remains unknown. Therefore, we conducted tests using abatacept in our model. Remarkably, mice that received

Dsg3H1-pTh17 cells and were treated with abatacept showed nearly complete prevention of skin lesions, indicating the critical role of CD28

signaling in skin inflammation (Figures 2A and 2B).

To facilitate tracking of transferred cells and assessment of proliferative responses, we utilized congenic marker (CD45.1) and a prolifer-

ation reporter dye (CTV) (Figures 2C and 2D). Abatacept-treated recipients showed fewer donor cells comparedwith controlmice (Figure 2C).

While a significant increase in the proliferation of donor CD4+ cells was observed in mice treated with control Ig, abatacept-treated mice ex-

hibited inhibition of proliferative responses in transferred pTh17 cells (Figure 2D). Glucose transporter 1 (GLUT1), a target gene of CD28 and a

hallmark indicator of glucose metabolism and extensive T cell proliferation,12,13 showed significantly lower expression in donor cells derived

from abatacept-treated recipients (Figure 2E). These findings suggest that abatacept exerts an inhibitory effect on pTh17 cells.

CD28 drives expression of proinflammatory genes in pathogenic Th17

The robust effects of abatacept prompted further investigation into the fundamental roles of CD28 signaling in pTh17 cells. Therefore, we

performed an RNA-sequencing analysis on fully differentiated Dsg3H1-pTh17 cells that were restimulated with plate-immobilized antibodies

(Figure 3A). Importantly, the ‘‘CD3-stimulated’’ and ‘‘CD3+CD28-stimulated’’ samples showed distinct clustering in principal-component

analysis of RNA-sequencing data, as early as 2 h after restimulation (Figure 3B).

Analysis of differentially expressed genes (DEGs) revealed that the rapid induction (at 2 h) of effector cytokines and transcriptional factors

critically depend on CD28 signaling (Figure 3C). Specifically, we found that most CD28-dependent genes were cytokines (including those en-

coding IL-21, IL-2, TNF-a, GM-CSF, CCL4, XCL1, CCL20, IL-2, IL-31, and Tnfrsf4) and transcriptional regulators (Nfkbid, Fos, Nfkbia, Maff, and

Atf3) that play pivotal roles in inflammation. These genes coexisted with an antiapoptotic protein, Bcl-XL (encoded by Bcl2l1) (Figure 3C).
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Figure 2. Prevention of dermatitis by abatacept, a CD28 antagonist

(A and B) Development and kinetics of dermatitis. A group of mice received human CTLA-4 Ig (abatacept; 200 mg/body, every 3 days) after the transfer of

CellTrace Violet (CTV)-labeled pTh17 cells prepared from Dsg3H1-TCR Tg CD45.1 congenic mice. Control mice received the same dose of human Ig. Data

from three independent experiments.

(C and D) In vivo detection of donor cell proliferation one week after transfer. Gated CD4+ CD45.1+ donor cells (C) were evaluated for CTV dilution (D, left

histogram), and the proportion of CTV-diluted cells is shown in (D). (N = 6 each) (E). Gated donor cells (C) were stained with Glut1 antibody (N = 3 each).

Two-tailed t test.
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A gene set enrichment analysis (GSEA) demonstrated that ‘‘CD3+CD28-stimulated cells’’ exhibited a strong bias toward the

‘‘INFLAMMATORY RESPONSE’’ signature compared with cells stimulated by CD3 alone (Figure 3D). We confirmed these findings by reac-

tivating Dsg3H1-pTh17 cells using the physiologic cognate peptide recognized by Dsg3H1 T cells15 (Figure S2A). We observed that second-

ary proliferation (Figure S2B) and the production of effector cytokines (Figure S2C) were significantly augmented by CD28 signaling. These

findings indicate that signals mediated by CD28 are critically involved in the secondary response of pTh17 cells.
4 iScience 27, 108646, January 19, 2024
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Abatacept inhibits IL-7Rneg inflammatory T cells but not IL-7Rpos memory T cells

Ourmodel allowed us to examine the phenotypes of transferred pTh17 cells following CD28 blockade by abatacept. One week after transfer,

we conducted an extensive analysis of donor Dsg3H1-pTh17 cells isolated from lymph nodes using a combination of congenic markers

(CD45.1), a proliferation reporter dye (CTV), and other markers associated with effector/memory responses. We observed that the majority

of proliferated CTV-diluted (CTVdil) cells exhibited a low/negative (neg) phenotype for the IL-7 receptor a (hereafter referred to as IL-7R), and

those from abatacept-treated mice were much fewer in number compared with control mice (Figures 4A and 44B left panels). In contrast,

donor-derived cells that survived in abatacept-treated mice were mostly IL-7R positive (pos). Moreover, the number of CTVdil IL-7Rpos cells

was not affected by abatacept, indicating that these cells proliferated independently of CD28 signaling (Figure 4B right).

We compared transcriptome data between the CTVdil IL-7Rpos and CTVdil IL-7Rneg populations in donor cells isolated from control mice

(Figure 4C). Genes highly expressed by CTVdil IL-7Rneg cells included effector molecules (such as Gzmb and Fasl), cytokines (Il21, Ifng, Spp1;

osteopontin), chemokine receptors (Cxcr5 and Cx3cr1), transcription factors (TF) (Nr4a1 and Nr4a2), and cell surface molecules (Havcr2 and

Tigit), all of which suggested strong T cell activation (Figure 4D). In contrast, IL-7Rpos cells expressed genes related to Th17 cells (Satb1,Mafb,

Ccr4,Ccr6, and Rara; Figure 4D). These findings suggested that inflammatory cells in the IL-7Rneg population were inhibited by abatacept. To

directly examine cytokine expression, we sorted CTVdil IL-7Rpos and CTVdil IL-7Rneg cells from recipients treated with control Ig or abatacept.

An equal number of sorted cells were then restimulated with the cognate antigenic Dsg3H1 peptide. Regardless of the treatment, CTVdil
iScience 27, 108646, January 19, 2024 5
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Figure 4. CD28 blockade inhibits IL-7Rneg inflammatory T cells but not IL-7Rpos memory-phenotype Th17 cells

(A and B) Transferred donor T cells were examined for the expression of IL-7R. Abatacept significantly prevented the emergence of CTV-diluted (dil) IL-7R-

negative (neg) population (B, left) but showed no effects on the IL-7R-positive (pos) counterpart. (Two-tailed t test, N of 6 and 7, three experiments). (C) Cell

sorting for RNA sequence.

(D) A heatmap showing cytokines, chemokines, receptors, and transcriptional factors differentially expressed between CTVdil IL-7Rneg and CTVdil IL-7Rpos donor

cell populations. (N = 3 each, one experiment). (E and F) Cytokine production and proliferation of donor T cells recovered from treated recipient mice.

(G and H) A scheme (G) and the result (H) for a serial transfer experiment. Two experiments.
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IL-7Rneg cells produced higher levels of IFNg, whereas CTVdil IL-7Rpos cells expressed IL-2 (Figures 4E and 4F). Both populations produced a

comparable amount of IL-17A, indicating that they are subpopulations of Th17 cells (Figure 4E). Importantly, the sorted cells proliferated simi-

larly (Figure 4F), indicating that unlike naive T cells, Th17 cells did not become anergic following CD28 blockade.

We conducted experiments to investigate whether IL-7R-positive and -negative pTh17 cells can transdifferentiate into each other and set

up a transfer experiment into secondary recipients (Figure 4G). We observed that most CTVdil IL-7Rpos cells, when transferred into secondary

recipients, became IL-7Rneg, whereas most CTVdil IL-7Rneg cells remained IL-7Rneg (Figure 4H). Taken together, these results suggested that

pTh17 cells comprise two distinct populations. Abatacept appeared to block the IL-7Rneg effector-like Th17 cells but allowed the survival of

IL-7Rpos memory-like cells that have the potential to transdifferentiate into IL-7Rneg effector cells.

Abatacept inhibits effector signature but allows survival of persistent memory cells

We conducted RNA sequencing, to directly compare the entire donor T cell population isolated from recipients treated with either control Ig or

abatacept (Figures 5A and 5B). As anticipated from the in vitro data, cells from abatacept-treated mice showed decreased expression of cyto-

kines and transcription factors (TFs) associatedwith effector function (Figures 5C and 5D). The cytokines downregulated by abatacept treatment

included those typically expressed by activated helper T cells, such as Ifng (Th1), Il4 (Th2), Il21 (T follicular helper; Tfh), and Spp1. The TFs down-

regulated by abatacept also encompassed lineage-specific TFs such as Tbx21 (T-bet; Th1), Foxp3 (Treg), Bcl6 (Tfh), and those involved in acti-

vation and function (Eomes, Tox, Tox2, Nfatc1, Nr4a2, Ezh2, and Batf), indicating a clear inhibition of effector function.

Conversely, T cells recovered from abatacept-treated recipients did not show significant upregulation of cytokines or chemokines, except

for Ccl1. However, they exhibited upregulation of unique transcriptional factors (Nr1d1, Satb1, Bhlhe41, Myb, and Foxq1). SATB120 and

NR1D1 (REV-ERBa)21–23 have been reported to be involved in the development and function of Th17 cells. Myb is known to be essential in

CD62Lpos stem cell memory development.24,25 These findings collectively support the notion that CD28 blockade by abatacept inhibited

the effector function of Th17 cells while preserving a unique IL-7Rpos memory population.

Abatacept-resistant memory Th17 cells exhibit genes for aldehyde dehydrogenases

We further investigated the genes that may function on T cells extracted from abatacept-treatedmice. Cells from control mice showed genes

associated with ‘‘glycoprotein metabolic process,’’ ‘‘response to virus,’’ and ‘‘carbohydrate derivative catabolic process’’ signatures, suggest-

ing the reliance of the cells depends on glycolysis for proliferation and effector function (Figure 6A). In contrast, cells from abatacept-treated

mice showed genes linked to ‘‘cholesterol metabolism pathways,’’ ‘‘carbohydrate biosynthesis process,’’ and ‘‘amino acid metabolism pro-

cess,’’ includingDhcr24,Acsl3, Them4, andAcss2 (Figures 6A and 6B). These findings alignwith previous reports that highlight the importance

of cholesterol and lipid metabolism in the survival and pathogenicity of Th17 cells.26,27

In addition to genes involved in energy acquisition, we observed a significant upregulation of genes related to alcohol metabolism in

donor cells treated with abatacept (categorized in ‘‘ethanol oxidation’’; Aldh2, Acss2, Aldh1b1, Acat1, Fpgs, Uros, Mthfd1, Acsl3, Aldoc,

Aldh6a1, etc.; Figure 6C). We were particularly intrigued by the upregulation of aldehyde dehydrogenase (ALDH) genes (Aldh2, Aldh1b1,

and Aldh6a1) for several reasons. First, ALDH plays a role in regulating stemness in hematopoiesis28 and malignancy.29 Second, ALDH is

involved in mitochondrial function.30 Third, ALDHmay contribute to T cell survival.31 Fourth, ALDH expression has been reported in support-

ing Treg survival in humans.32 Importantly, we also found thatAldh2was upregulated in IL-7Rpos donor T cells extracted fromboth control and

abatacept-treated mice (compared with IL-7Rneg donor T cells.) (Figure 6D) Consequently, Aldh2 was upregulated in both IL-7Rpos cells and

T cells isolated from abatacept-treated mice (that are enriched in IL-7Rpos memory cells in independent cohorts (Figure 6E). Therefore, our

model reveals that memory-phenotype pTh17 cells exhibit a uniquemetabolic pathway that may involve ALDH for both survival and function.

Abatacept together with ALDH inhibitor targets memory Th17 cells

Weaimed to explore the role of ALDH in Th17 activity both in vitro and in vivo. We used cyanamide anddisulfiram, which are traditionally used

as anti-alcoholic drugs. TreatingDsgH1-Th17 cells with cyanamide or disulfiram inhibited cytokine production at lower doses and induced cell

death at higher doses (Figure 7A). Subsequently, we treated EAD mice with cyanamide, either alone or in combination with abatacept (Fig-

ure 7A). We observed that mice treated with cyanamide showed a marked reduction in both IL-7Rpos CTVdil and IL-7Rneg CTVdil donor cells

(Figure 7B). In contrast, abatacept alone selectively reduced the IL-7Rneg CTVdil population (but not IL-7Rpos CTVdil) (Figure 7C). Notably,

recipient mice treated with a combination of abatacept and cyanamide showed fewer CTVdil cells than those receiving single treatments,

suggesting an additive effect.

Finally, we confirmed the effects of the two drugs by examining actual cytokine expression in CTVdil cells. As presented in Figure 7D, mice

treated with abatacept or cyanamide alone showed a significant reduction in IL-17-producing cells, and those treated with the combination
iScience 27, 108646, January 19, 2024 7



PC analysis

abatacept

control

1

2

3

5

4

2

1

3

4
5

PC1: 39.44% variance

PC
2:

29
.1

5%
va

ria
nc

e abatacept treated

control

12.6

control abatacept

3.7

Cytokines
Transcriptional regulators

CytokinesTranscriptional regulators

3.712.6

Day9
MACS enriched
Lymph node CD4+

CD4

CD45.1 (donor)
60.3 42.7

A H1-pTh17 transfer

B

C

control

abatacept

D

Ccl5

Il10
Ifng

Spp1

Il4
Il21

Figure 5. CD28 blockade inhibits effector function but leaves unique memory-phenotype T cells

(A) Sorting strategy for RNA-sequencing analysis. CD4+ T cells from recipients were first enriched magnetically, and CD4+ CD45.1+ donor T cells were purified by

FACS.

(B) Principal-component analysis of RNA-sequencing data. (N = 5 each). (C) A volcano plot of RNA-sequencing data representing genes expressed in CD4+ donor

T cells. Cytokine genes ( ) and transcriptional regulators ( ) are highlighted. represents significant DEGs (log2Fc > 2, Padj < 0.05). (D) Heatmaps demonstrating

the expression of cytokine genes and transcriptional regulators. The experiment was performed once.

ll
OPEN ACCESS

iScience
Article
showed an additive effect. In contrast to IL-17, IFNg production was almost completely inhibited by abatacept alone, whereas cyanamide

alone or in combination with abatacept had minimal effects on IFNg (Figure 7E).

These findings suggested that the inhibition of ALDH and CD28 affects self-reactive pathogenic Th17 cells through distinct mechanisms.

ALDH inhibition had inhibitory effects on the survival and IL-17 expression of IL-7Rpos memory Th17 cells, whereas CD28 inhibition primarily

affected the differentiation into effector Th17 cells. Importantly, the combination of both treatments had the most pronounced effect in

reducing both memory and effector Th17 cell populations.

ALDH2 correlates with IL-17 production in human cancer

Lastly, we investigated whether ALDH2 expression is functionally correlated with Th17 activity in humans, particularly in a cancer context. Upon

re-examining of The Cancer Genome Atlas data, we observed a weak but significant correlation betweenALDH2 and the IL-17A gene in certain

types of cancers (Figure 8). Notably, IL-17A expression was evident in a limited fraction of patients, and it showed a significant correlation with

high ALDH2 expression. Although these findings are preliminary, they suggest that ALDH2 may play a role in Th17 activity in humans.

DISCUSSION

We demonstrated that CD28 blockade selectively inhibits effector Th17 cells that are highly differentiated, leading to the complete inhibition

of dermatitis. Traditionally, it has been thought that naive T cells that receive TCR signals without CD28 activation become anergic or
8 iScience 27, 108646, January 19, 2024
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Figure 6. Continued

(B) Heatmap showing DEGs categorized as ‘‘cytosolic enzymes.’’ (C) Heatmap showing DEGs categorized as ‘‘ethanol oxidation’’.

(D) Quantitative reverse transcription PCR ofAldh2 gene from control and abatacept-treated mice (N = 6.) One-way ANOVA (p values are indicated in the graph.

ns: not significant).

(E) Venn diagram comparing DEGs upregulated in ‘‘abatacept’’ and ‘‘IL-7R pos’’ group.
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unresponsive, thereby contributing to tolerance.9 Given that the CD28/PI-3K/AKT axis is a hallmark of glycolysis,12 it is plausible that abata-

cept inhibits aerobic glycolysis, which is essential for extensive proliferation and the expression of effector cytokines. However, we observed

that abatacept did not inhibit the proliferation of memory-like T cells. This abatacept-resistant memory-phenotype Th17 population may

explain the persistence of the disease, leading to recurrence during or after treatment. Recently, certain immunosuppressants, such as rapa-

mycin,33 MEK inhibitors,34 and tyrosine kinase inhibitors,35 have been found to induce long-term memory populations and sustain chronic

immune responses. Therefore, in the context of autoimmunity, a potential drawback of CTLA-4 Ig is that although it may ameliorate inflam-

mation by blocking CD28, it could also generate persistent, long-termmemory Th17 cells by preventing exhaustion. Indeed, our data, along

with previous research, indicate that memory-like Th17 cells can give rise to pathogenic effector cells (as shown in our data and by others6).

Regarding the mechanisms underlying the persistence of Th17 cells, Muranski et al.8 have suggested the possibility of stemness, whereas

Karmaus et al.7 have proposed the existence of two metabolically distinct populations. Our data support the existence of two distinct Th17

populations that show different responses to CD28 blockade.

Interestingly, in our study, the remaining memory-like Th17 cells expressed ALDH genes and can be targeted through systemic inhibition

of ALDH. Therefore, ALDH not only controls stem cells but is also involved in the detoxification of endogenously produced aldehydes.

Notably, the failure to detoxify endogenously produced aldehydes in patients with a combination of the ADH5 allele and ALDH2 causes Fan-

coni anemia, underscoring the critical role of ALDH in the hematopoietic system.36–38 Aldehydes are known to inhibit T cells, as exemplified by

excessive alcohol consumption negatively impacting follicular helper T cells and attenuating immune responses.39,40 Aldh2-deficient mice

show impaired T cell responses, which are associated with altered metabolism.31 Our data suggested that the inhibition of ALDH may

lead to increased intracellular aldehyde concentrations in memory T cells, potentially affecting immune function.

An important question arises: does the genetic diversity of ALDH genes influence T cell immune responses in humans? The most well-

known single-nucleotide polymorphism (SNP) in the ALDH2 gene causes loss of function and is predominantly found in the East Asian pop-

ulation.41 Despite the population with this SNP having low ethanol consumption, it is associated with cancer susceptibility and progression.

This suggests that the detoxification of endogenous aldehydes by ALDH is not negligible in tumorigenesis and progression. Furthermore, our

preliminary data demonstrated a positive correlation between ALDH2 and IL-17A expression in certain cancers, such as head and neck car-

cinoma, colon adenocarcinoma, and esophageal cancer. This finding suggested a potential contribution of ALDH activity to memory or

effector Th17 responses, which may be beneficial in the context of cancer.

In conclusion, we demonstrated a unique role of ALDH regulating Th17 cell responses. This systemic control of ALDHmay hold promise for

designing future treatment strategies for diseases involving T cell responses.

Limitations of the study

Firstly, we used irradiated wild-type mice as recipients rather than Rag2 knockout mice. Consequently, we did not address the potential con-

tributions of recipient-derived lymphocytes in the establishment of EAD, including epitope spreading, autoantibody production, and T reg-

ulatory cell activity.

Secondly, althoughwedemonstrated the persistence of CTVdil IL-7Rpos cells after abatacept treatment and their ability to produce IL-7Rneg

effector cells, the limited cell numbers prevented us from directly confirming whether this phenomenon contributed to disease recurrence

after discontinuing treatment.

Thirdly, the effects of abatacept and ALDH inhibitors on tissue resident memory T cells remain unclear and warrants further investigation.

Fourthly, in terms of clinical relevance, comprehensive analyses examining whether ALDH expression is functionally correlated with Th17 cells

in human autoimmune dermatitis or other autoimmune diseases are currently lacking. Future studies should address these points to provide a

more comprehensive understanding of the topic.
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(A) Effects of an ALDH inhibitor on pTh17 cells in vitro. Dsg3-H1 pTh17 cells were restimulated in vitro with or without inhibitors. Three days later, cytokine

production and cell viability were evaluated. Multiple comparisons by one-way ANOVA using no inhibitor as control (****; p < 0.0001).

(B) Treatment of EAD mice with an ALDH inhibitor in vivo. Groups of mice were treated with daily cyanamide (cya) with or without abatacept (aba).

(C and D) FACS analysis. For (D), lymph node cells from the treated mice were isolated and stimulated ex vivo to induce cytokines (see STAR methods). IL-17Apos
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Functional grade anti-mouse CD3e Thermo Fisher Cat#16-0031-82; RRID:AB_468847

Functional grade anti-mouse CD28 Thermo Fisher Cat#16-0281-82; RRID:AB_468921

Functional grade anti-mouse IL-4 Thermo Fisher Cat#16-7041-85; RRID:AB_469208

Functional grade anti-mouse IFNg Thermo Fisher Cat# 16-7311-81; RRID:AB_469242

FITC anti-mouse CD4 Thermo Fisher Cat#11-0042-82

; RRID:AB_464896

APC anti-mouse IL-17A Thermo Fisher Cat#17-7177-81

;RRID: AB_763580

PE anti-mouse IFNg Thermo Fisher Cat#12-7311-82

;RRID: AB_466193

PE anti-mouse IL-17F BioLegend Cat#517007

;RRID: AB_ 10661730

APC anti-mouse CD45.1 Thermo Fisher Cat#17-0453-82

;RRID: AB_469398

PerCP-Cy5.5 anti-mouse CD4 Thermo Fisher Cat#45-0042-82

;RRID: AB_1107001

PE anti-mouse CD127 Thermo Fisher Cat#12-1271-82

;RRID: AB_465844

PE anti-mouse IL17A Thermo Fisher Cat#12-7177-81

;RRID: AB_763582

Alexa Fluor 647 anti GLUT1 antibody Abcam Cat#ab195020

Chemicals, peptides, and recombinant proteins

Recombinant mouse IL-1b Peprotech Cat#211-11b

Recombinant mouse IL-6 Peprotech Cat#216-16

Recombinant mouse IL-2 Peprotech Cat#212-12

Recombinant mouse IL-23 BioLegend Cat#589002; RRID: AB_10663413

Recombinant human TGF-b1 Peprotech Cat#100-21

Recombinant mouse IL-12 Peprotech Cat#210-12

abatacept Bristol Myers Squibb N/A

Human Immunoglobulin Jackson ImmunoResearch Laboratories Cat#009-000-003

CD4(L3T4) MicroBeads mouse Miltenyi Biotec Cat#130-117-043

DSG-H1 mimotope (RNKAEFHQSVISQYR) Synpeptide(Sanghai)

cyanamide Fujifilm-Wako Pure Chemical Corp. Cat#030-15231

disulfiram Tokyo Chemical Industry Cat#B0479

CellTrace Violet Thermo Fisher Cat#C34571

Cell Count Reagent SF Nacalai Tesque Inc. Cat# 07553-15

Hyaluronidase Fujifilm-Wako Pure Chemical Corp. Cat#087-10481

Trypsin/1 mmol/L-EDTA Solution Nacalai Tesque Cat#32777-44

Collagenase D Roche Cat#11088858001

DNAse-I Roche Cat#11284932001

Brefeldin A Solution (1000X) Thermo Fisher Cat#00-4506-51

Monensin Solution (1000X) Thermo Fisher Cat#00-4506-51

Fixable Viability Dye eFluor� 780 (FVD) Thermo Fisher Cat#65-0865-14

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

RNeasy plus micro Kit Qiagen Cat#74034

BD� Cytometric Bead Array (CBA) Mouse Th1/Th2/Th17 CBA Kit BD Bioscience Cat#560485; RRID: AB_2869354

High-Capacity cDNA Reverse Transcription Kit Thermo Fisher Cat#4368814

SsoFast EveGreen Supermix Bio-Rad Cat#1725201

Deposited data

RNA sequence DDBJ #DRA016062 (run number

DRR457517-DRR457541)

Experimental models: Organisms/strains

B6 CD3e knockout Sommers et al.42 N/A

DsgH1 TCR-Tg Takahashi et al.15 N/A

B6 CD45.1 congenic RIKEN Bioresource Center, JAPAN Strain #:RBRC00126

C57BL/6NCrSlc Sankyo Laboratories N/A

Oligonucleotides

Primer for quantitative reverse transcription (RT)-PCR:

Il23r forward: caggaggaaaccagcatcgt

This paper N/A

Primer for RT-PCR: Il23r reverse: tcccaattgccaaacaggaga This paper N/A

Primer for RT-PCR: Csf2 forward: cagggtctacggggcaattt This paper N/A

Primer for RT-PCR: Csf2 reverse: gtgtttcacagtccgtttccg This paper N/A

Primer for RT-PCR: Aldh2 forward: agaccatcgaggaggttgtg This paper N/A

Primer for RT-PCR: Aldh2 reverse: ctgccactccctgacatctt This paper N/A

Primer for RT-PCR: Gapdh forward: atgaatacggctacagcaacagg This paper N/A

Primer: Gapdh reverse: ctcttgctcagtgtccttgctg This paper N/A

Software and algorithms

GraphPad PRISM software (ver. 8.4.3) GraphPad software N/A

Other

LS columns Miltenyi Biotec Cat#130-042-401
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Shunsuke Chi-

kuma (schikuma@keio.jp).

Materials availability

All unique reagents used in this study are available from the lead contact upon reasonable request.

Data and code availability

(1) RNA-seq data have been deposited at DDBJ and are publicly available as of the date of publication.

(2) Accession numbers are listed in the key resources table. This paper does not report original code.

(3) Any other information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

Dsg3H1 TCR Tg,15 B6 CD45.1 congenic mice (Jackson Laboratory), and CD3 epsilon knockout mice were used in this study. Female mice,

7 weeks old, of the wild-type C57BL/6NCrSlc strain were obtained from Sankyo Laboratory (Tokyo, Japan). All mice were housed in SPF fa-

cilities at Keio University under standard conditions, which included a12-h light–dark cycle (lights-on at 7:30 a.m.) at a temperature of 24�CG
16 iScience 27, 108646, January 19, 2024
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1�C, with food and water provided ad libitum. All animal experiments were conducted according to the approved protocol (#80006) of the

Animal Ethics Committee of Keio University Medical School.

METHODS DETAILS

Th17-mediated EAD model

The in vitro activation procedure of Dsg3H1 T cells was modified from Nishimoto et al.16 Lymph node cells from 4–6-week-old Dsg3H1 mice

were subjected to magnetic sorting using naive CD4 microbeads (Miltenyi) and LS columns (Miltenyi), following the manufacturer’s protocol.

The sorted T cells were cultured in a 24-well tissue culture plate (Corning) coated with anti-CD3 and anti-CD28 mAbs (2 mg/mL each; Bio-

legend) at a density of 2 3 105/mL in 1 mL of T cell culture media (RPMI medium supplemented with 10% fetal calf serum (FCS), penicillin/

streptomycin, non-essential amino acid solution, HEPES solution, sodium pyruvate solution, and 55 mM 2-mercaptoethanol [RPMI and sup-

plements were all procured from Nacalai Tesque, Kyoto, Japan, except 2-ME: Gibco]). To induce pathogenic Th17, mouse IL-6 (20 ng/mL),

mouse IL-23 (20 ng/mL), human TGF-b (2 ng), mouse IL-1b (10 ng/mL), anti-mouse IFN-g (5 mg/mL), and anti-mouse IL-4 (5 mg/mL) were added

to the culture. Three days later, cells were harvested from the plate and further expanded in the presence of mouse IL-23 (20 ng/mL) and

mouse IL-2 (20 ng/mL) for another 3 days. To induce control Th1, IL-12 (20 ng/mL) and anti-mouse IL-4 (5 mg/mL) were added to the culture.

Three days later, cells were harvested from the plate and further expanded in the presence ofmouse IL-2 (20 ng/mL) for another 3 days. On the

day of transfer, 4–5 million expanded T cells were resuspended in phosphate-buffered saline (PBS) and intravenously injected into 5Gy-irra-

diated wild-type C57BL/6NCrSlc or non-irradiated B6 CD3e KOmice. In some experiments, donor Dsg3H1 TCR Tgmice were further bred to

B6 CD45.1 congenic mice to allow the identification of donor T cells (CD45.1+) from recipient cells (CD45.2) ex vivo. To evaluate T cell expan-

sion in vivo, T cells were labeled with CellTrace Violet dye right before the transfer according to the manufacturer’s instructions. As a humane

endpoint, mice with dermatitis were observed for up to 1.5 months and then euthanized.

Abatacept and cyanamide treatment

Mice received intraperitoneal injections of abatacept (Bristol-Myers Squibb; 100–200 mg/body) or an equivalent amount of human immuno-

globulin (Jackson ImmunoResearch Lab) at the time of transfer and then again on days 2 and 4. In some experiments, mice were administered

daily cyanamide (80 mg/kg body weight) dissolved in water via oral gavage. Control mice received water.

Preparation of skin infiltrating T cells

For the isolation of skin cells, the pinna of sacrificed mice was mechanically separated into skin and cartilage. The skin was incubated in a

2.5 mg/mL Trypsin/1mMEDTA solution (Nacalai Tesque) with the epidermal side facing up at 37�C for 1 h and then separated into epidermis

and dermis. The epidermal sheet was gently rubbed with the plunger end of a disposable plastic syringe against a 100 mM cell strainer to

obtain single cells. The dermis was further digested in RPMI 10% containing FCS, 2 mg/mL collagenase D (Roche), 1.2 mg/mL hyaluronidase

(Fujifilm-Wako Pure Chemicals), and 100 mg/mL DNase-I (Roche) at 37�C for 1 h, and single cells were prepared.

FACS

Cells from the skin or lymph nodes were stained in FACS buffer (PBS containing 1% BSA and 0.05% sodium azide) with fluorochrome-conju-

gated antibodies againstmouse T cells and a flexible viability dye (Fixable Viability Dye; FVD, ThermoFisher Scientific). All the antibodies used

in this study were obtained from Thermo Fisher Scientific (Tokyo, Japan) or BioLegend (Tokyo, Japan). The stained cells were analyzed using a

FACSCanto II analyzer (BD Bioscience) or a CytoFlex S (Beckman), and the data were analyzed using Flowjo software (BD Bioscience). All

gating strategy in this study for FACS was presented in Figures S3–S11.

For the detection of intracellular cytokines, cells were cultured at a density of 43 106/mL in 1mL of T cell culturemedia and stimulated with

PMA (50 ng/mL) and ionomycin (1 mg/mL) for 5 h. During the last 2 h of stimulation, brefeldin A (3 mg/mL) andmonensin (2 mM) were added to

the culture. After the culture, cells were first stained with cell surface antigens, fixed, and permeabilized using a fixation/permeabilization

buffer (BD), and then stained with anticytokine antibodies. For the detection of GLUT1, cells were fixed without stimulation, permeabilized

in the same way as for cytokines, and then stained with Alexa Fluor 647 anti-GLUT1 antibody.

Recovery of donor cells from recipients

For RNA sequencing (Figures 4C and 5A), the restimulation (Figures 4E and 4F) and secondary transfer assay of donor cells (Figures 4G and

4H), spleen and lymph node cells from recipient mice were sorted using CD4 microbeads (Miltenyi) and LS columns (Miltenyi). The sorted

CD4+ T cells were labeled with a donor T cell marker (CD45.1+) and other markers, and then sorted using an FACS ARIA III.

T cell restimulation assays

For restimulation by plate-bound antibodies (Figure 3A), Dsg3H1-pTh17 T cells were plated in a 24-well tissue culture plate coated with anti-

CD3 and anti-CD28mAbs (2 mg/mL each) at a density of 13 106/mL in 1mL of T cell culturemedia. After 2 h, the cells were recovered for RNA

extraction.

For restimulation by Dsg3H1 peptide (Figures 4 and S2), 2 3 104 donor T cells were cocultured with 2 3 105 splenocytes from wild-type

mice irradiated with 20 Gy in a 96-well flat plate. The co-culture was performed in the presence of 2 mg/mL DsgH1 mimotope peptide
iScience 27, 108646, January 19, 2024 17
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(RNKAEFHQSVISQYR) in 0.2 mL of T cell culture media. In Figures 2 and 2 mg/ml anti-CD28 was additionally added to the indicated wells.

After three days, cytokine production and cell proliferation were measured using Cytometric Bead Array (BD) and Cell Count Reagent SF,

respectively, following the manufacturers’ instructions.
Serial transfer model

For the experiment presented in Figures 4G and 4H, spleen and lymph node cells were pooled from 3 to 5 recipients 1 week after transfer.

Donor cells were sorted as described above, and then 33 105 cells were intravenously transferred to 5Gy-irradiatedC57BL/6Nmice. Themice

were analyzed 1 week later.
RNA sequencing

Total RNA was isolated using the RNeasy Plus Micro Kit (Qiagen). Libraries were prepared using the TruSeq stranded mRNA Library kit and

sequenced on a NovaSeq 6000 (Illumina) to obtain 150-bp paired-end reads. HISAT2 version 2.1.0 was used to map the RNA-seq data to the

mouse genomic DNA sequences (mm10). Read counts, fragments per kilobase of exon per million mapped fragments, and transcripts per

million were calculated using featureCounts version 1.6.3. The samples were clustered using theWald method based on Euclidean distances

of the normalized counts, utilizing the stats (Version 3.6.1) and ggplots (Version 3.0.1.1) R packages. Then, DEGswere identified usingDESeq2

version 1.30.1.
Quantitative reverse transcription-PCR

Total RNA was reverse-transcribed by High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher.) Resulting cDNA was amplified with

SsoFast EvaGreen Supermix (Bio-Rad) and CFX Connect Real-time PCR system by according to manufacturers’ protocols. Primers used

for PCR are listed in the key resources table.
Bioinformatics

Enrichment of GO biological processes was performed using Metascape.42 GSEA43 was conducted using the GSEA desktop application

(ver. 4.2.3). Pathway analysis and molecular characterization information were obtained using Ingenuity Pathway Analysis (IPA; Qiagen).
Analysis of human cancer database

Analysis of The Cancer GenomeAtlas (TCGA) database for gene correlation was conducted with the assistance of the Timer 2.0 resource.44,45
Data deposition

All RNA sequence data have been publicly deposited on NCBI under accession #DRA016062 (run numbers DRR457517-DRR457541).
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses, except for RNA-seq data, were performed using GraphPad PRISM software (ver. 8.4.3). Student’s T-test was used for

comparing two groups, while multiple comparisons of one-way ANOVA were used for databases involving more than three groups. Cumu-

lative incidence of dermatitis in experiments was analyzed using the Kaplan–Meier method with log rank tests. For gene correlation analysis,

partial Spearman’s correlation was determined through TIMER 2.0 analysis. Detailed statistical information for each experiment and the num-

ber of replicates can be found in the corresponding figure or figure legends.
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