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Summary eBioMedicine

Background Multiple organ dysfunction syndrome (MODS) disproportionately drives morbidity and mortality among ~ 29249% 104938

critically ill patients. However, we lack a comprehensive understanding of its pathobiology. Identification of genes E“b"s"e‘; Online xx

associated with a persistent MODS trajectory may shed light on underlying biology and allow for accurate prediction 1;?365// ;. "Orgzlégé
. j.ebiom. .

of those at-risk. 104938

Methods Secondary analyses of publicly available gene-expression datasets. Supervised machine learning (ML) was

used to identify a parsimonious set of genes associated with a persistent MODS trajectory in a training set of

pediatric septic shock. We optimized model parameters and tested risk-prediction capabilities in independent

validation and test datasets, respectively. We compared model performance relative to an established gene-set

predictive of sepsis mortality.

Findings Patients with a persistent MODS trajectory had 568 differentially expressed genes and characterized by a
dysregulated innate immune response. Supervised ML identified 111 genes associated with the outcome of interest
on repeated cross-validation, with an AUROC of 0.87 (95% CI: 0.85-0.88) in the training set. The optimized model,
limited to 20 genes, achieved AUROCs ranging from 0.74 to 0.79 in the validation and test sets to predict those with
persistent MODS, regardless of host age and cause of organ dysfunction. Our classifier demonstrated reproducibility
in identifying those with persistent MODS in comparison with a published gene-set predictive of sepsis mortality.

Interpretation We demonstrate the utility of supervised ML driven identification of the genes associated with
persistent MODS. Pending validation in enriched cohorts with a high burden of organ dysfunction, such an approach
may inform targeted delivery of interventions among at-risk patients.
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Research in context

Evidence before this study

Numerous studies have focused on sepsis-related gene-
expression profiles to predict mortality. However, few studies
have explicitly sought to determine signatures associated with
persistent multiple organ dysfunction syndrome (MODS)—a
condition associated with high morbidity.

Added value of this study

We leveraged publicly available datasets to identify a gene-
expression signature associated with a persistent MODS
trajectory. By leveraging supervised machine learning, we
identified a parsimonious set of genes and developed a
classifier to reliably predict those with persistent MODS

Introduction

Multiple organ dysfunction syndrome (MODS) is a
major cause for mortality among critically ill patients
admitted to intensive care units (ICU).! Those who
survive the acute phase remain at high-risk of new
morbidity including technology dependence,” nosoco-
mial infections,’ and late death.** Despite the significant
burden of disease, care for patients with MODS remains
limited to organ support, with no disease modifying
therapies consistently proven to improve clinical out-
comes. Although numerous clinical phenotypes of
sepsis associated MODS have been described,”*” their
overlapping nature and the fact that a majority of pa-
tients cannot be assigned into any phenotype, makes
discovery and delivery of appropriate therapeutic in-
terventions challenging. Thus, approaches which facili-
tate a systematic understanding of MODS pathobiology
and early identification of at-risk patients are the need of
the hour.

Over the previous two decades, numerous studies
have evaluated gene-expression profiles among critically
ill patients to discover a signature associated with sepsis
mortality.*"" Several have led to identification of genes
and related protein biomarkers that have been useful to
predict those at highest risk of poor outcomes.'>"
Further, unsupervised clustering of these genes have
been used to determine subclasses or ‘endotypes’ of
sepsis,*'** of which those with a dysregulated adaptive
immune response have demonstrated differential re-
sponses to receipt of corticosteroids.”'® Pending vali-
dation, such predictive enrichment strategies may be
used to tailor therapies for patients with sepsis. It is
conceivable that similar high throughput approaches,
which shed light on MODS pathobiology, hold potential
to facilitate development of precision medicine ap-
proaches to enhance patient care.

among critically ill children and adults with different causes of
organ dysfunction. Notably, our classifier had better
reproducibility in identifying patients with the outcome of
interest in test datasets, in comparison with an established
gene set predictive of sepsis mortality.

Implications of all the available evidence

Our study highlights the utility of supervised machine
learning to identify genes linked with a persistent MODS
trajectory. Pending validation, our approach may facilitate
early identification of at-risk patients and, in the future, may
inform targeted delivery of interventions among those most
critically ill.

Few transcriptomic studies, however, have explicitly
focused on MODS as the primary outcome.” Given
the dynamic nature of critical illness and substantial
morbidity associated with persistent MODS, it is
conceivable that focusing on this subset of patients may
facilitate early identification of at-risk patients. In the
current study, we leveraged publicly available datasets to
identify the gene-signatures associated with a persistent
MODS trajectory among critically ill patients and
unravelled biological mechanisms at play. We imple-
mented supervised machine learning (ML) approaches
to identify a parsimonious set of genes predictive of the
outcome of interest, trained and validated a model to
reliably identify those at high risk of persistent MODS,
and demonstrated reproducibility of our approach
across test datasets agnostic of host developmental age”
and cause of organ dysfunctions. Finally, we tested
whether our limited set of genes identified by us
improved upon previously published gene sets demon-
strated to predict sepsis mortality, in identifying those at
risk of persistent MODS.

Methods

Ethics approval and consent to participate

Only de-identified clinical data and publicly available
datasets were used for the conduct of this study. The
characteristics of the datasets including details of RNA
samples, the various time points of collection, and plat-
forms used for gene expression across the datasets are
detailed in Supplementary Table S1.

Training dataset

Microarray dataset GSE66099 obtained from paediatric
septic shock patients* was downloaded from the NCBI
Gene Expression Omnibus (GEO) repository. In this
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dataset, data on organ dysfunction based on Proulx
Criteria®® were available between day 1 through 7 of
paediatric intensive care unit (PICU) admission.* The
primary comparison of interest was persistent MODS
(death by day 7, persistence of >2 organ dysfunctions on
day 7, or new MODS between days 1-7; n = 46), relative
to a composite of those with resolving MODS (>2 organ
dysfunctions on day 1 or 3 and with <2 dysfunctions by
day 3 and 7 respectively; n = 63) and those with no
MODS (n = 92). The latter comprised of septic patients,
non-septic patients with systemic inflammatory
response syndrome (SIRS), and healthy controls. Our
choice for this comparison was guided by the fact that
patients with persistent MODS, despite intensive organ
support, likely represent a subset of patients who may
benefit from targeted therapeutic interventions, based
on their underlying biological predisposition.

Differential expression of genes

The Affymetrix probes in the training dataset were
matched to gene symbols using the Affymetrix Human
Genome U133 Plus 2.0 (hgul33plus2.db). Data were
pre-processed including batch correction for year of
study and are detailed in Supplementary Tables S2 and
S3, and Supplementary Figure S1. Differential expres-
sion of genes (DEGs) based on a log2 fold change
> =+ 0.5, adjusted value for Benjamini Hochberg
correction for false discovery rate <0.05, was performed
using the limma package in R.*> We conducted sensi-
tivity analyses with and without inclusion of patients
who died within the first 7 days, to test the premise that
non-survivors may have a different signature relative to
survivors with persistent organ dysfunctions. We used
clusterProfiler” for functional gene enrichment, and
CIBERSORT? a computational tool to deconvolute bulk
expression data and estimate abundance of various im-
mune cells subpopulations.

Supervised machine learning

The analytic approach across the various phases of the
study is summarized in Fig. 1 and detailed in the
Supplementary methods. (1) Stratified 5-fold cross-
validation: Due to the skewed class distribution in the
training dataset, we applied a 5-fold stratified cross-
validation process, similar to those previously pub-
lished by our group,” that involved randomly parti-
tioning the training dataset into five equal subsets, with
the class distribution of the dataset being preserved in
each of the train-test splits. (2) Feature selection: In
addition to genes identified by DEG analyses, we
sought to apply novel analytic pipelines, including non-
linear approaches, to identify an optimal set of highly
discriminative genes. Due to the high dimensionality of
the training dataset (n~22,000 genes), we sought to
extract genes to distinguish patients with persistent
MODS trajectory, relative to those with resolving or no
MODS. We used three popular variable selection
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techniques including Least Absolute Shrinkage and
Selection Operator (LASSO), Minimum Redundancy
and Maximum Relevance (MRMR), and Random for-
ests (RF) based variable importance technique. The
genes selected by each of the above methods were
aggregated into a single input feature set, and the list of
DEGs obtained from the training dataset were added to
this list. Subsequently, we deployed recursive feature
elimination to reduce redundancy in genes identified
through the various feature selection methods. (3)
Model fitting: To counter the class imbalances in our
training data, we incorporated both undersampling and
oversampling techniques in the training dataset.
Briefly, three binary classifications algorithms were
used including logistic regression and two tree-based
classifiers (Random Forest and Extra Trees classifiers).
Hyper-parameter tuning was done using a cross-
validated grid search technique on a subset of the
training data over a parameter grid using the area un-
der the curve as the scoring function. The Grid-
SearchCV function with the default 3-fold cross-
validation strategy and area under the receiver oper-
ating characteristic curve (AUROC) was used to search
for the best set of hyperparameters.

To evaluate robustness of the model training and to
ensure complete cross-validation, this entire process
was repeated seven times, resulting in thirty-five
unique train- and test-splits. The performances ob-
tained during each run were averaged, and the sum-
mary AUROC along with 95% CI were reported. The
fraction of times a particular gene was chosen out of
the 35 train- and test-split runs was used to rank the
genes in descending order of strength of association.
Genes associated with the outcome of interest in
>80% of repeated cross-validation experiments, an
arbitrarily selected threshold, were selected for
downstream analyses and model optimization.

Validation dataset

We used the validation E-MTAB-10938 ArrayExpress
dataset published by Snyder et al. that consisted of 32
paediatric patients with septic shock, of some of
whom had an immunoparalysis phenotype” for
parameter tuning. Only 5 patients in this dataset met
criteria for persistent MODS based on Proulx
Criteria with the remaining 27 patients serving as
comparison group. Classification Model Parameter
tuning: We trained different feature sets (of sizes
n = 5,10,15,..) of the top genes identified through the
training dataset to tune the following parameters
using the validation dataset: (1) optimal number of
features, 2) sampling technique-classifier combina-
tion, and 3) optimal probability threshold, all of
which are detailed in the Supplementary methods.
Given the imbalanced classification problem, we
experimented with different classification thresholds
from 0 to 1 with step sizes of 0.001 and reported
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Fig. 1: Overarching approach of analyses and number of patients by outcome of interest in the training (GSE66099), validation (E-MTAB-
10938), and two independent test sets (GSE144406 and E-MTAB-5882). Supervised machine learning approaches deployed in study including
stratified 5-fold validation, feature selection, and model fitting phases are summarized. Differentially expressed genes (DEGs) identified in the
training dataset were incorporated along with the pooled output of 3 feature selection methods including Least Absolute Shrinkage and
Selection Operator (LASSO), Minimum Redundancy and Maximum Relevance (MRMR), and Random Forest (RF) based variable importance
technique. Subsequently, we used recursive feature elimination and tested model performance to predict patients with persistent MODS
trajectory. This entire process was repeated 7 times resulting in 35 train- and test-splits. The top 111 genes associated with outcome of interest
in >80% of cross-validation experiments were selected for optimization in the validation dataset. We identified that top 20 genes and a fixed
classification model had reproducible performance across 2 independent test datasets to predict persistent MODS.

model performance metrics at the threshold which
provided the maximum AUROC.*

Test datasets

We tested the performance of the final model in two
independent test datasets: (1) GSE144406 GEO dataset
published by Shankar et al. that consisted of whole blood
bulk RNA sequencing total of 23 paediatric patients with
MODS, of whom six patients required extracorporeal
membrane oxygenation (ECMO) support, and included
four healthy controls'” and (2) E-MTAB-5882 ArrayEx-
press dataset published by Cabrera et al. that consisted
of time-course-based gene-expression profiling mea-
surements collected from the whole blood of 70 critically

injured adult patients in the hyper-acute time period
within 2 hours of trauma.”

Model performance

Classification performance of models in the validation
and test sets were judged based on the sensitivity,
specificity, Matthew’s Correlation Coefficient (MCC)—a
balanced statistical measure of true positive, true nega-
tive, false positive, and false negatives,” and balanced
accuracy—the arithmetic mean of sensitivity and spec-
ificity, in addition to AUROC. Model performance was
reported at a fixed sensitivity of 85% across the valida-
tion and test datasets for ease of comparison of other
classification metrics across datasets. The 95% CI for
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each classification metric was derived by repeated
sampling with replacement with 1000 iterations. The ci
function from the gmodels package in R was used to
calculate the Cls.

Performance relative to established genes
predictive of sepsis mortality

We sought to determine whether genes identified
through our supervised ML model were comparable or
improved upon published literature on gene sets, which
have been demonstrated to predict sepsis mortality, in
identifying patients with persistent MODS. A total of 58
genes were outlined in Sweeney et al. that were predic-
tive of 30-day mortality.”> However, only 52/58 genes
were present among validation and test datasets and
were chosen for further analysis. We followed the same
optimization as detailed above in the validation dataset
but using 52 genes predictive of mortality, instead of the
genes predictive of MODS identified by us.

Statistical analysis

Demographic and clinical data in the training dataset
were summarized with counts and percentages or
medians with interquartile ranges (IQR). Differences
between groups were determined by y* test for cate-
gorical variables and by one-way analysis of variance
(ANOVA) for continuous variables. A p-value of 0.05
was used to test statistical significance, unless other-
wise specified.

Role of funders

The content of the manuscript represents those of the
authors and does not necessarily represent the official
views of the National Institutes of Health (NIH). The
funding agency did not have any role in study design,
data collection, data analyses, interpretation, or writing
of this report.

Results

A total of 201 patients with phenotyping of organ
dysfunction trajectories were included in the training
dataset. The demographic characteristics of the cohort
are shown in Table 1. Forty-six patients had persistent
MODS, including 15 patients who died within 7 days of
study enrollment. Sixty-three patients had resolving
MODS. Those with no MODS included 19 patients with
sepsis without shock or organ dysfunctions on day 1, 26
patients with SIRS, and 47 patients admitted for elective
surgical procedures who served as healthy controls.
Patients with persistent MODS were younger, had
higher illness severity at baseline, and a trend toward
higher day 1 vasoactive inotropic scores (VIS). Unsur-
prisingly, those with persistent MODS trajectory had
significantly higher 28-day mortality, fewer PICU free
days, and higher cardiovascular, respiratory, and renal
support requirements than those with resolving or no

www.thelancet.com Vol 99 January, 2024

MODS. Individual organ dysfunctions and supportive
interventions by MODS trajectory are detailed by day of
septic shock in Supplementary Tables S4 and S5
respectively.

Gene-expression signature associated with
persistent MODS trajectory and its biological
relevance

568 genes were differentially expressed among patients
with persistent MODS relative to those with resolving
or no MODS; 369 genes were overexpressed, and 199
genes were underexpressed. The heat map and volcano
plot for DEG analyses are shown in Fig. 2. In sensitivity
analyses, exclusion of patients who died within the first
7 days did not significantly alter our results (data not
shown). Pathway analyses revealed enrichment of
neutrophil and cytokine signalling and cellular com-
ponents involved in cytoplasmic and secretory granule
lumen formation, as shown in Fig. 3. CIBERSORT
analyses revealed that although neutrophils and
monocytes accounted for the most abundant cell types,
there were no significant differences among estimated
cell proportions among those with persistent MODS
trajectory relative to those without. However, an over-
representation of MO macrophages and plasma cells
and an under-representation of CD8+ T cells, y& T
cells, and memory B cells was observed among patients
with persistent MODS relative to those without, as
shown in Fig. 4.

Genes associated with persistent MODS can be used
to reliably identify those at-risk among children
and adults with different causes for organ
dysfunctions

The number of features identified by each of the feature
selecion methods is shown in Supplementary
Figure S2. There was limited overlap of genes identi-
fied by LASSO, MRMR, RF feature selection methods.
Through recursive feature elimination, we identified
111 genes consistently associated with persistent MODS
trajectory in >80% of repeated cross-validation experi-
ments, detailed in Supplementary Table S6. The sum-
mary AUROC for the risk prediction model across
repeated cross-validation experiments to distinguish
patients with persistent MODS trajectory relative to
those with resolving or no MODS in the training dataset
was 0.87 (95% CI: 0.85-0.88) with an MCC of 0.64 (95%
CI: 0.60-0.68). The model had a sensitivity of 94.0%
(87-93%) and specificity of 79% (76-83%).

In the validation dataset (E-MTAB-10938), we iden-
tified that the optimal model to predict those at risk of
persistent MODS was achieved by using only the top 20
out of 111 genes identified through the training dataset.
The genes identified were RETN, ADAMTS3, LDHA,
LCN2, IL1IR2, DDIT4, CEACAMS, MERTK, MPO,
ARL4A, CDKN3, PRTN3, MTMR11, ANLN, ILIRAP,
HLA-DMB, ZBTB16, NUSAP1, GGH, and MMP8.
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Persistent mods Resolving mods no mods p-value
N (%) 46 (22.7%) 63 (31.0%) 92 (46.3%)
Age (Years) 1.8 (0.5, 4.5) 2.4 (11, 52) 2.9 (13, 6.1) 0.03
Sex, M 28 (60.8%) 35 (55.5%) 50 (53.2%) 0.69
Race
White 29 (63.0%) 40 (63.5%) N/A 0.83
Black 11 (23.9%) 18 (28.5%)
Other 6 (13.1%) 5 (8.0%)
PRISM-III 21 (15, 29) 14 (10, 18) 1 (0, 10) 0.01
Day 1 VIS score 20 (1, 55) 10 (1, 20) 0 (0, 0) 0.07
Source
Pulmonary 9 (20.9%) 7 (11.2%) 2 (22%) 0.45
Extrapulmonary 23 (53.4%) 28 (44.4%) 7 (7.6%)
None 14 (30.4%) 28 (44.4%) 83 (90.2%)
Pathogen type 0.66
Gram positive 19 (59.4%) 15 (42.8%) 5 (55.5%)
Gram negative 10 (31.0%) 15 (42.8%) 6 (66.6%)
Viral 2 (6.6%) 4 (11.4%) 0 (0)
Fungal 1 (3.0%) 1 (2.8%) 0 (0)
Outcomes
28-Day mortality 17 (36.9%) 1 (1.5%) 0 (0) <0.01
PICU free days 12 (0, 19) 22 (17, 24) 23 (19, 25) <0.01
PICU LOS 10 (3, 19) 6 (4, 11) 5@3.8) 0.02
Hospital LOS 19 (3, 33) 10 (8, 21) 9 (7, 14) 038
Steroid use 18 (39.2%) 15 (30.6%) 4 (4.4%) 038
PRISM III: Pediatric Risk of Mortality Il score; VIS score: Vasoactive inotropic score; LOS: Length of stay; N/A: Not available.
Table 1: Demographic and outcome data by MODS trajectory in the training dataset.

Each of these genes were selected by 2 or more of the
feature selection methods employed. The best param-
eter set for classification of patients with persistent
MODS vs. those without, using these 20 genes, were
determined to be Standard Scaler, Instance Hardness
Threshold (IHT) sampling technique, and Extra Trees
(ET) classifier at a threshold of 0.488. In this dataset that
included paediatric septic shock patients with and

A il R
|

without an immunoparalysis phenotype, the AUROC of
the model to predict persistent MODS was 0.74 (95%
CI: 0.73-0.75). Finally, the AUROCs to predict MODS
using a fixed set of 20 genes and classification param-
eters were 0.79 (95% CI: 0.78-0.80) in GSE144406
dataset of paediatric patients some of whom received
ECMO support and 0.78 (95% CI: 0.77-0.78) in E-
MTAB-5882 among adult patients in the hyper-acute
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Fig. 2: a) Heat map, and b) Volcano plot of differentially expressed genes (DEGs) among patients with persistent MODS trajectory vs. those with

resolving or no MODS in the training dataset.
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Components. MF: Molecular Functions.

phase of trauma. Model performance in validation and
test sets are summarized in Table 2. The AUROCs of
models in the training, validation and test sets are
shown in Fig. 5.

Model performance compared to published gene
sets predictive of sepsis mortality to predict risk of
MODS

52 genes predictive of sepsis mortality with comparable
ML model parameters including Extra Trees classifier
model, MinMax Scaler, CC sampler, and a threshold of
0.429 were used to predict persistent MODS in the
validation and test datasets. Although this gene-set
demonstrated a comparable AUROC in the validation
set (E-MTAB-10938), model performance in the test sets
varied with AUROCs ranging from 0.57 to 0.76. These
results are shown in Table 3.

Of note, 5 genes —IL1R2, DDIT4, CEACAMS, MPO,
and MTMRI11- overlapped between our 20 gene set
predictive of persistent MODS trajectory and 52 gene set
predictive of sepsis mortality published by Sweeney
et al.”? as highlighted in Supplementary Table S7.
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Discussion

We present data demonstrating the gene-expression
signature associated with a persistent MODS trajectory
among critically ill patients, which was characterized by
a dysregulated innate immune response. Further, by
deploying supervised machine learning, we discovered a
set of 111 genes consistently associated with a persistent
MODS trajectory on repeated cross-validation experi-
ments. Subsequently, we identified a parsimonious set
of 20 genes and a fixed classifier model to reliably esti-
mate risk of persistent MODS across validation and test
datasets, including children and adults with different
inciting causes for organ dysfunctions. Lastly, we
demonstrate that our model had greater reproducibility
in identifying patients with persistent MODS, relative to
a gene-set previously established to predict sepsis
mortality.

Gene-expression studies among paediatric patients
with sepsis explicitly focused on MODS as an
outcome have thus far been limited by patient sample
size and case—control study design. Snyder et al.
profiled 32 children with paediatric sepsis of whom 19
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Fig. 4: Results of CIBERSORT analyses that show differences in proportions of major immune cell subsets among patients with persistent MODS
trajectory vs. those with resolving or no MODS. Double asterisk denotes cell types with statistically significant differences between groups of

interest.

had an immunoparalysis phenotype of MODS and
identified 2303 DEGs, a majority of which were
related to innate and adaptive immune systems."
Rama Shankar et al. used bulk RNA sequencing in a
total of 27 paediatric septic shock patients and iden-
tified 30 DEGs when comparing those receiving
ECMO support (n = 6) relative to those with MODS
not receiving ECMO; a majority of genes belonged to
the histone family.”” In comparison, we used micro-
array data from a large prospective cohort of children
with septic shock and identified 568 DEGs among
patients with persistent MODS relative to those with
resolving or no MODS.

The results of biological pathway analyses of gene-
expression profiles associated with a persistent MODS
trajectory demonstrated an overactive innate immune
response with a key role for neutrophil degranulation.
Although these results are unsurprising, there are
several important considerations to be made. The gene-
expression signature identified by us is very similar to
prolonged MODS signature associated with paediatric
patients with critical influenza, assessed by quantitative
measurement of mRNA transcripts using a Nanostring
platform.”* In addition, they bear striking similarities
with adults with a reactive or hyper-inflammatory high-
risk phenotype of acute respiratory distress syndrome

Type Dataset Distribution Sensitivity Specificity AUROC Precision McC Balanced accuracy

Validation  Pediatric Sepsis Immunoparalysis +/- #Positive: 5 0.85 0.70 (0.70-0.71) 0.75 (0.74-0.75) 0.33 (0.32-0.34) 0.36 (0.35-0.38) 0.775 (0.756-0.789)
(E-MTAB-10938) #Negative: 27

Test Pediatric Sepsis ECMO +/— #Positive: 4 0.85 0.30 (0.29-0.31) 0.79 (0.78-0.80) 0.94 (0.94-0.94) 0.13 (0.12-0.15) 0.575 (0.561-0.59)
(GSE144406) #Negative: 23

Test Adult Hyperacute phase of trauma  #Positive: 37 0.85 0.51 (0.50-0.51) 0.78 (0.77-0.79) 0.58 (0.57-0.58) 0.36 (0.36-0.36) 0.679 (0.656-0.682)

Model parameters included top 20 genes, Standard Scaler, Instance Hardness Threshold sampling technique, and Extra-trees Classifier at a threshold of 0.488.

(E-MTAB-5882) #Negative: 47

Table 2: Model performance across validation and test sets using 20 gene predictive of MODS and fixed parameters reported at a sensitivity of 85%.
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Fig. 5: Summary area under the receiver operating characteristic curve (AUROC) for the risk prediction model to estimate risk of persistent
MODS in training dataset (GSE66099) across 35- train- and test-splits of repeated cross-validation experiments are shown in the left panel. The
AUROCs of the final model which included top 20 genes identified through our study and an Extra Trees classifier model estimating risk of
MODS across validation and two independent test sets is shown in the right panel.

(ARDS).”* Among the top differentially expressed genes
in our dataset, several including RETN, LCN2, ILIR2,
CEACAMS, and MPO were all identified to contribute to
neutrophil subset-specific responses and emergency
granulopoiesis in multi-omic single cell analyses of
immune cell subsets among septic patients by Kwok
et al.”? Taken together with the reproducibility of the
predictive capabilities of our ML model to estimate risk
of MODS across varying causes of organ dysfunctions
including sepsis and trauma in the current study, we
believe that our model is biologically relevant and may
be generalizable across critical illness syndromes.
Results of CIBERSORT analyses revealed no signif-
icant differences in proportion of neutrophil or mono-
cyte abundance between groups. However, we identified
an overabundance of MO macrophages and plasma cells
and relatively fewer CD8+ T cells, y& T cells, and
memory B cells. This pattern of innate immune
expansion with suppression of the adaptive immune
arm has been consistently noted in sepsis,'* and recently
demonstrated to drive an extreme response endotype
among septic patients.”” Although our data are

extrapolations from bulk RNA microarrays, the consis-
tency with single cell datasets strengthen our findings.
Future research is necessary to determine the mecha-
nistic link between immune cell subpopulations and
organ dysfunction risk and whether targeted modula-
tion of such immune cell subsets can be used as a novel
therapeutic approach to promote organ recovery.

We demonstrate prognostic utility of our gene-
expression classifier among critically ill patients with
persistent organ dysfunctions. Our approach has several
strengths including use of supervised ML to identify a
limited set of genes consistently associated with the
outcome of interest, model optimization in a separate
validation set, and demonstration of reproducibility
across two independent test sets. Our 20 gene-classifier
more reliably predicted risk of persistent MODS in
validation and test sets compared to an established 52
gene-set predictive of sepsis mortality, optimized
through similar approaches. Our findings indicate that
gene-expression signatures predictive of sepsis mortality
may not be sufficient to consistently identify survivors
with persistent organ failures nor generalizable across

(E-MTAB-5882) #Negative: 47

Type Dataset Distribution Sensitivity Specificity AUROC Precision McC Balanced accuracy

Validation  Pediatric Sepsis Immunoparalysis +/- #Positive: 5 0.85 0.70 (0.69-0.70) 0.76 (0.75-0.76)  0.33 (0.3-0.34)  0.37 (0.37-0.38) 0.775 (0.75-0.76)
(E-MTAB-10938) #Negative: 27

Test Pediatric Sepsis ECMO +/— #Positive: 4 0.85 0.0 0.57 (0.56-0.57)  0.92 (0.91-0.92) -0.1 (-0.15- (-0.08)) 0.425 (0.43-0.43)
(GSE144406) #Negative: 23

Test Adult Hyperacute phase of trauma  #Positive: 37 0.85 0.34 (0.33-0.34) 0.76 (0.75-0.77) 0.507 (0.50-0.51) 0.23 (0.22-0.24) 0.595 (0.60-0.61)

Model parameters included 51 genes predictive of sepsis mortality, MinMaxScaler, CC sampling technique, and Extra-trees Classifier at a threshold of 0.429.

85%.

Table 3: Model performance to estimate risk of MODS across validation and test sets using 51 gene predictive of sepsis mortality and fixed parameters reported at a sensitivity of
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various phenotypes of MODS. In future studies, we will
seek to prospectively validate our findings and leverage
the gene-expression signature of persistent MODS to
identify biologically relevant subclasses or endotypes,
which may hold potential to demonstrate heterogeneity
of treatment effect with modulators of the innate im-
mune response among patients.”

Our data has several limitations. (1) The sample size
of our training cohort and the percentage of patients
who had persistent MODS trajectory were relatively
limited. We therefore did not have sufficient statistical
power to determine the signature of persistent MODS
relative to those with a resolving MODS trajectory alone.
Accordingly, we were forced to include those with no
MODS in the comparison group, which may have
contributed to diluting the signal of interest. (2) We
used microarray data in the training dataset and iden-
tified a relatively small set of genes associated with or-
gan dysfunction trajectories. Bulk RNA-sequencing is
likely to provide a wider dynamic range including novel
and low-abundance transcripts with higher sensitivity
and specificity. (3) Although we identified the shared
signature associated with MODS, it is likely that further
heterogeneity exists. Large cohorts enriched for children
and adults with MODS may shed further light on the
underlying biology and address each of the above con-
cerns. (4) Gene-expression data were collected at a single
time point. However, temporal transcriptomic shifts
and endotyping class switching are well documented
between day 1 and 3 in paediatric septic shock.*
Further, evolution of organ dysfunctions in sepsis is
dynamic and influenced by both the underlying biology
and the interventions used to support organs. Thus,
sampling the transcriptome at multiple time points to
determine gene-expression trajectories may better
inform the evolution of organ dysfunctions among those
critically”” (5) We used only gene-expression datasets
and did not sample other ‘omic’ layers. Multi-omics
approaches may thus serve to deepen our understand-
ing of MODS pathobiology and identify causal genes
with mechanistic relevance.*

Conclusions

We provide evidence for a gene-expression signature
associated with persistent MODS trajectory. Pending
validation in enriched cohorts with a high burden of
organ dysfunctions, our gene-expression classifier may
facilitate the early identification of high-risk critically ill
patients who may benefit from targeted therapies,
including those that modulate the innate immune
response.
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