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Diabetic eye disease (DED), including diabetic retinopa-
thy (DR) and diabetic macular edema (DME), is a com-
plication of diabetes and the leading cause of vision loss
among working-age adults in the United States (1–3).
Screening for DED can lead to its early identification
and treatment, thereby preventing irreversible vision
loss (4–7). However, rates of diabetic eye exams for
DED screening remain suboptimal, with reported rates
in the United States ranging from 11 to 70% (8,9).

Autonomous artificial intelligence (AI)–based diabetic
eye exams have the potential to increase access to these
exams and facilitate the early identification of DED so
that timely treatment can be administered to prevent
blindness. Autonomous AI systems use a robotic non-
mydriatic fundus camera with a built-in AI algorithm to
provide feedback to the operator to acquire high-quality
fundus photographs for determining the presence or
absence of referable DED, with immediate results after
image acquisition at the point of care (10–12). The
autonomous AI system guides the operator to acquire
two color fundus images determined to be of adequate
quality using an image quality algorithm, with one each
centered on the fovea and the optic nerve, and guides
the operator to retake any images of insufficient quality.
It is important to note that these systems have been
rigorously validated against a prognostic standard to

identify DR and DME and do not diagnose other eye
conditions.

The first autonomous AI diagnostic system (Luminetics-
Core [formerly IDx-DR], Digital Diagnostics, Coralville,
IA) was de novo–authorized by the U.S. Food and Drug
Administration (FDA) in 2018 after completion of a
pivotal trial demonstrating its safety, efficacy, and
equity in diagnosing referable DED compared with a
prognostic standard outcome (10). In the pivotal trial,
the autonomous AI system demonstrated 87% sensitiv-
ity and 90% specificity in detecting referable DR and/or
DME in adults (10,13). Since this first autonomous AI
system was approved, two additional autonomous AI
systems have been authorized under the FDA’s 510(k)
authorization process using it as a predicate, and there
are several other autonomous AI systems in different
stages of development (11,12).

Because of widespread stakeholder support and based
on the ethical framework under which the first autono-
mous AI diagnostic system was developed and validated
(13,14), performance of diabetic eye exams using an
autonomous AI system was added to the American
Diabetes Association’s Standards of Medical Care in
Diabetes—2019 guidelines (15). Furthermore, in
HEDIS-MIPS (Healthcare Effectiveness Data and Infor-
mation Set Merit-Based Incentive Payment System)
measurement year 2020, eye exams interpreted by an
AI system were determined to meet criteria to fill care
gaps for value-based care (16,17). As of 1 January 2021,
the new Current Procedural Terminology (CPT) code
92229 was established to allow for billing and
reimbursement using autonomous AI technology to
diagnose DED, and, as of 2023, the term “autonomous
AI” was reintroduced into CPT coding (18,19).

Prospective cohort studies have demonstrated autono-
mous AI to improve rates of diabetic eye exams (8,20),
and several health care modeling and cost-savings
analyses have shown these systems to be cost-saving for
patients and health care systems (21–25) and to lead to
greater prevention of vision loss on a population level
than can be achieved via standard-of-care dilated eye
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exams (26). In addition, autonomous AI has been shown
to potentially reduce greenhouse gas emissions (27).

Although there are many studies evaluating the diag-
nostic accuracy of different autonomous AI systems
(28), as well as published observational studies demon-
strating improved screening completion rates, there is
limited information on successful clinical implementa-
tion of these systems and incorporation into clinical
workflow. This article reviews the key considerations
for successful clinical implementation of these systems
in primary care and endocrinology clinics providing
care to people with diabetes.

At our integrated health care system consisting of six
hospitals and more than 30 community-based primary
care clinics, autonomous AI screening using Luminetics-
Core Digital Diagnostics for DED has been implemented
in both the adult and pediatric populations. We were the
first center to implement this autonomous diagnostic AI
system at scale. The start-up time from first initiation to
actual camera use was approximately 6 months, includ-
ing contracting, workflow integration in the electronic
medical record (EMR) system (Epic, Madison, WI), order
and result integration, and workflow planning. In the
first year of use in our multidisciplinary pediatric diabe-
tes center, we completed 310 autonomous AI diabetic
eye exams in youth with diabetes, demonstrating 85.7%
sensitivity and 79.3% specificity in detecting referable
DED in youth compared with a level 2 reference standard
of image interpretation by retina specialists (20). Based
on our successful implementation in pediatrics, our
health care system expanded diagnostic autonomous AI
throughout the adult primary care network and adult
diabetes centers. In this review, we share our experience
and strategies for success from both the pediatric and
adult care perspectives. Table 1 summarizes the tips
highlighted throughout the article.

Engaging Key Stakeholders

Key to successful implementation is that stakeholders
within the system must be engaged at the inception of
the program, while it is still in the planning phase.
These stakeholders include physician champions in the
deploying department (i.e., primary care or endocrinol-
ogy clinic), from the departments of ophthalmology/
optometry, and from the information technology (IT)
teams and staff. Stakeholders need to be comfortable
with the safety, efficacy, and equity of the system,
including such issues as mitigation of racial bias, data
usage and cybersecurity, reimbursement, and value-
based care.

The primary users of the system (i.e., primary care or
endocrinology teams) should identify a champion
within their practice or division to facilitate and oversee
implementation of the AI technology. This champion
should be responsible for informing and educating pro-
viders about the AI system, its functionality, and the
workflow around its use. It is important to be considerate
of the current workflow and to work with providers and
clinic staff to optimize the new workflow that will incor-
porate implementation of diagnostic AI (29).

Getting buy-in from the institution’s ophthalmology/
optometry departments, if available, is helpful in
evaluating which AI system to choose, providing techni-
cal camera support and camera operator expertise, and
setting up scheduling to ensure there is an efficient
referral pathway for patients identified as having poten-
tially blinding disease.

It is also important to engage the IT team, who will play
a crucial role in helping to set up the camera in the
clinic, connecting it to the network, assisting with any
local software issues, and connecting the AI camera to
the EMR system. Connecting the local IT team with the
vendor IT team will also facilitate a smooth startup. The
experience of implementing other systems worldwide
has highlighted the importance of multidisciplinary
team collaboration in the integration of AI into routine
workflows (29).

TABLE 1 Summary of Tips for Successful Implementation
and Use of Autonomous AI for DED Screening

Key stakeholders � Endocrinology and primary care teams
� IT telemedicine teams
� Ophthalmology/optometry clinics

Camera setup � Location: set up in a dimly lit room
� Operator: MA or nurse; no prior experience in

eye imaging needed
� EMR system integration: results available in

patient charts; auto-population of patient
information in the camera

Patient imaging � Adults: reflexive versus predictive pharmacologic
dilation for nondiagnostic exams

� Pediatrics: no pharmacologic dilation required

Workflow � Use BPAs for patients who need eye exams
� Establish a referral route to get timely follow-up

eye care if AI is positive for referable disease

Billing � CPT 92229: “point of care automated analysis
that uses innovative autonomous AI technology
to perform the interpretation of the eye exam,
without requiring that an ophthalmologist interpret
the results.”
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Camera Setup and Integration With
the EMR System

Autonomous AI systems (i.e., nonmydriatic fundus
cameras with assistive AI for image quality feedback
and autonomous diagnostic AI—what the FDA refers to
as “medical devices”) can be used as a standalone,
independent system. In this case, a formatted report of
the diabetic eye exam results can be uploaded into the
EMR system or printed and scanned into the medical
record. PDF documents of the results can be printed for
patients or e-mailed to patients.

At our institution, the autonomous AI system is fully
integrated through HL7 (Health Level Seven) with our
EMR system in a secure manner. A provider places an
order for an autonomous AI diabetic eye exam in the
EMR system. This order is then released to the camera
software, and the patient’s name is automatically added
to the worklist on the camera software. The camera
operator then clicks on the patient’s name from the
worklist and proceeds with obtaining the retinal images
for the diabetic eye exam. Once the exam is complete,
the results are generated as a PDF report within
30–60 seconds, automatically uploaded/pushed to the
EMR system, and stored under the “Media” tab of the
EMR. The actual images also remain on the camera and
can also be pushed to an ophthalmic data management
platform if necessary. Many ophthalmic data manage-
ment platforms exist. Currently, our institution uses
Forum Viewer, v. 4.2.4.15 (Zeiss, Dublin, CA).

Once the order for the autonomous diabetic eye exam is
placed and completed, the best practice alert (BPA)
notification for DR screening on the diabetes dashboard
is fulfilled. This is important, particularly in adult clini-
cal practices where HEDIS-MIPS measures for care gap
closure should be met (17).

Of note, the autonomous AI system reformats the retina
images from the fundus camera in DICOM (Digital
Imaging and Communications in Medicine) format,
which can then be saved in any imaging database. In
our system, the images are stored on the camera and
manually pushed into our ophthalmic data manage-
ment platform from the camera.

Camera Location and Operator

A tabletop nonmydriatic fundus camera requires a
designated space in the clinic setting with enough room
for the camera and its associated computer to sit on an
adjustable tabletop, as well as room for the patient chair
for imaging. Space requirements would be minimal for

handheld cameras with autonomous AI technology, and
although they are used widely around the world with
varying image quality, these devices currently are not
approved by the FDA (30). For best imaging results, it is
ideal to place the camera in a dimly lit room and away
from any windows to avoid glare from outside light. If
there is a window in the room, we recommend darken-
ing shades to keep much of the light from entering the
space with the camera.

The computer and camera software can be operated by
a technician or operator (who should be a high school
graduate, per FDA labeling for the device). The AI system
of LumineticsCore (formerly IDx-DR) has an image quality
algorithm that determines whether the images are of suffi-
cient quality for the diagnostic algorithm to process and
provide a result (10). The camera software also guides
the operator on image acquisition to further ensure suffi-
cient images for interpretation. In the pediatric study, a
learner operator curve was created and demonstrated that
it took �40 patient eye exams for an operator to reach a
consistent average of 6 minutes to complete image
acquisition (20). In subsequent use of the camera with
new operators, we have recommended at least 20 practice
eye exams before imaging patients for clinical care. Addi-
tionally, in the real-world clinical practice setting where
there may be many medical assistants (MAs) or nurses
triaging patients, we recommend training a few desig-
nated camera operators who can quickly build their
imaging experience by using the camera and software
regularly, as opposed to investing time and resources for
training all of the MAs and nurses in a clinic.

Image Acquisition, Imageability, and
Diagnosability

In the first pivotal trial conducted using LumineticsCore
in adults with diabetes, the overall imageability was
96.1%, and 23.6% of adults required pharmacologic
dilation to obtain an AI system result (10). The pivotal
trial of the EyeArt Automated DR Detection System,
v. 2.1.0, also demonstrated high imageability of 87.4%
without dilation and up to 97.4% with a dilation
protocol (11).

Our experience in pediatrics is that no pharmacologic
dilation is required, and simply dimming the lights
causes spontaneous pupil dilation that is sufficient to
obtain images for AI system interpretation (20). In
contrast, our experience with the adult population led
to two main findings. First, the diagnosability rate in
real-world deployment could be lower than that of
clinical trials. In an analysis of our data, we identified
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patient factors, including older age, current smoking,
and having type 1 diabetes, that were associated with
nondiagnostic results. Using factors associated with
nondiagnostic results, we have developed a model that
can predict nondiagnostic results for future design of a
novel predictive dilation workflow, in which patients
most likely to benefit from pharmacologic dilation are
dilated a priori to improve workflow efficiency and
optimize completion of the diabetic eye exam (31).

Several factors leading to insufficient (i.e., nondiagnos-
able) images have been identified in studies using
retinal images in both teleretinal networks and autono-
mous AI. In a study of adults by Liu et al. (8), small
pupils, cataracts, or other media opacities led to subop-
timal retinal image quality. Inconsistent image quality
in combination with comorbidities has made real-world
implementation challenging in adults (32,33). In our
pediatric study, we identified image quality issues of
blurring, edge artifacts, dark images, and diffuse red-
dish hue as causes of insufficient images. The real-world
use of autonomous AI systems has demonstrated that
images of inadequate quality can lead to false-positive
results by the AI system (13,34,35). Thus, if the operator
obtains images with these artifacts, the images should be
retaken before processing the images through the auton-
omous AI algorithm (Figure 1).

Clinic Workflow Considerations

Developing a streamlined workflow for integrating
point-of-care (POC) diabetic eye exams in any busy
clinical practice is important for success. We suggest
considering three factors: 1) identifying patients who
need a diabetic eye exam, 2) integration of AI in the

clinic workflow, and 3) establishing referral routes for
abnormal AI exams (Figure 2).

There are several potential methods for identifying
patients who are due for a diabetic eye exam, and this
process may depend on the practice’s EMR system
and/or clinical workflow. Institutions using Epic may
have a diabetes dashboard that provides “care gaps” for
patients with a diabetes diagnosis or best practice alerts
(BPAs) that inform providers when a diabetic eye exam
is due. If these systems are not available, a manual chart
review of upcoming patients can identify who is due for
diabetic eye exams.

The clinical workflow of a multidisciplinary diabetes
clinic is complex, so one option is to notify patients in
advance of their visit that a POC diabetic eye exam with
immediate results is available at their appointment.
Once a patient arrives in the clinic, there are several
possibilities for the workflow: 1) the eye exam can be
performed by the MA as part of the check-in process,
2) the eye exam can be performed after the patient
checks in but while he or she is waiting to be seen by
the provider, or 3) the eye exam can be performed at
the end of the visit. The limitation to performing the
eye exam at the end of the visit is that this process
would require the provider to wait and return to the pa-
tient once the eye exam is complete and results are
available. Educating patients about the importance of
the diabetic eye exam and the importance of having a
follow-up eye care visit when referable eye disease is
identified at the point of care has been shown to im-
prove adherence with eye care follow-up (8,36).

Establishing a Referral Route for Positive or
Abnormal Eye Exams

Providing abnormal results at the point of care instead
of in a deferred manner is associated with higher adher-
ence to follow-up eye care. In a randomized controlled
trial using AI-assisted DR screening in a low-resource
setting, the researchers found that providing an abnor-
mal result at the point of care instead of 3–5 days later
was associated with higher rates of follow-up with an
eye care provider (37). Additionally, a prospective
cohort study performed using AI screening also dem-
onstrated improved adherence to follow-up eye care
when abnormal results were provided at the point of
care with education on the importance of eye care
follow-up (8).

To facilitate follow-up for patients with AI-positive eye
exams, develop a referral route by providing a list of

Reddish hue Blurred Blurred

Edge ar�fact Image too darkEdge ar�fact

FIGURE 1 Images of insufficient quality and with artifacts.
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local ophthalmologists/optometrists to help patients
find an eye doctor with whom to schedule an appoint-
ment. In health care systems with optometry or ophthal-
mology practices, the diabetes clinic or primary care
office should consider setting up a direct referral system
such that referral orders can be placed and patients can
schedule their follow-up eye care visit on their own, or
the eye clinic staff can contact patients to schedule the
follow-up visit, or follow-up eye care visits can be
scheduled before patients leave their diabetes
appointment.

Billing and Reimbursement

Widespread adoption of autonomous AI for DED screen-
ing requires alignment of incentives of different stake-
holders within a particular health care ecosystem. The
existence of an established screening program such as
the Singapore Integrated DR Program in Singapore or

the National Health Service Diabetic Eye Screening Pro-
gram in the United Kingdom could facilitate the adop-
tion of AI by providing the necessary IT infrastructure,
referral workflow, and regulatory framework. However,
in the absence of widespread, well-coordinated screening
programs, the alignment of financial incentives is of para-
mount importance. For example, as previously men-
tioned, a new CPT code 92229 was established in the
United States in 2021 specifically for the billing and reim-
bursement of autonomous AI exams for DED. This code
is for “point of care autonomous analysis that uses
innovative autonomous AI technology to perform the
interpretation of the eye exam, without requiring that an
ophthalmologist interpret the results.” The Centers for
Medicare & Medicaid Services considers CPT code 92229
to be a diagnostic service reimbursable for Medicare and
provides a definitive way for primary care providers to
perform and be reimbursed for autonomous AI testing
(19,38).

FIGURE 2 Incorporating autonomous AI into clinical workflow.
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Measuring Your Impact

The ultimate goal of deploying autonomous AI screening
for DED is to improve compliance with diabetic eye
exams because regular screenings can lead to early diag-
nosis, timely intervention, and prevention of irreversible
vision loss. In our first deployment in pediatrics, we
measured the baseline screening rate at 49%, and this
rate improved to 95% after implementation of autono-
mous AI diabetic eye exams (20). At Johns Hopkins
Medicine, we initially deployed autonomous AI for dia-
betic eye exams at four adult primary care clinics in
2020. We compared the change in the DED screening ad-
herence rate from 2019 (pre-AI deployment) to 2021
(post-AI deployment) between the sites with autono-
mous AI screening (AI sites) and sites with standard-
of-care screening (non-AI sites). From 2019 to 2021,
the odds of compliance increased by 87% in the AI
sites (odds ratio [OR] 1.87, 95% CI 1.74–2.01) com-
pared with 10% in the non-AI sites (OR 1.10, 95% CI
1.05–1.15) (P <0.001) (39). Future analysis of
patient-level data will use multivariable logistic regres-
sion models to identify at-risk groups and streamline
screening and referrals to optimize compliance and
early identification of DED.

Additionally, acceptability by both providers and
patients as key stakeholders in this process is important
for the success of implementation and dissemination. A
limited body of literature on this topic suggests that
�55% of patients believe that AI will improve their
health care, while voicing concerns related to patient
choice, potentially increased health care costs, bias in
the data source, and data security (40,41). Although
there is general enthusiasm in the medical community
for AI in health care, there is focused attention on the
explainability of AI, as well as ensuring ethics and
equity in the AI algorithm and its implementation
(13,14,42).

Many studies have demonstrated that underserved,
low-income, and racial/ethnic minority populations
negatively affected by social determinants of health are
less likely to access eye care and complete diabetic eye
exams, yet are more likely to have DED and worse
diabetes-related health outcomes (43–47). Implementa-
tion of accessible programs for diabetic eye exams using
autonomous AI in underserved and under-resourced
communities may improve early detection of DR, allow
health systems to focus resources required to provide
specialist eye care for patients with referable disease,
and thereby improve visual outcomes and promote
health equity in these populations.

We hope this review will serve as a practical guide,
providing useful “nuts-and-bolts” and “how-to” imple-
mentation recommendations for anyone planning to
deploy autonomous AI testing for DED in a real-world
clinical setting. In addition to the practical considera-
tions raised herein, there are research and ethical con-
siderations regarding deep learning, machine learning,
and big data. These issues, including data shift over
time, bias, and health equity, are important but beyond
the scope of this review.
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