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Abstract

Identifying the binding affinity between a drug and its target is essential in drug discovery and repurposing. Numerous computational
approaches have been proposed for understanding these interactions. However, most existing methods only utilize either the
molecular structure information of drugs and targets or the interaction information of drug–target bipartite networks. They may fail
to combine the molecule-scale and network-scale features to obtain high-quality representations. In this study, we propose CSCo-DTA,
a novel cross-scale graph contrastive learning approach for drug-target binding affinity prediction. The proposed model combines
features learned from the molecular scale and the network scale to capture information from both local and global perspectives.
We conducted experiments on two benchmark datasets, and the proposed model outperformed existing state-of-art methods. The
ablation experiment demonstrated the significance and efficacy of multi-scale features and cross-scale contrastive learning modules
in improving the prediction performance. Moreover, we applied the CSCo-DTA to predict the novel potential targets for Erlotinib and
validated the predicted targets with the molecular docking analysis.
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INTRODUCTION
It takes an average of over a decade for a drug to get from the
initial research and development stage to the commercialization
stage [1–3], and the estimated cost for this process exceeds $1
billion [4]. Developing new drug involves several stages, including
target identification [5, 6], drug lead discovery [7, 8], preclinical
development [9] and clinical trials [10]. A report reveals most drug
development failures in clinical trials resulting from insufficient
target validation[11]. The result highlights the significance and
necessity of accurate drug screening for specific targets.

As a result, identifying interactions between drug molecules
and receptor targets plays a crucial role in drug discovery. The
goal is to identify compounds that can bind to disease targets
with an activating or inhibiting effect, akin to matching a key to a
lock [12]. These intermolecular interactions between compounds
and targets occur within the pocket-like region of the protein,
known as the binding site, where specific amino acid residues
play a crucial role [13]. Compounds can engage with the pro-
tein targets in various orientations, influencing the efficacy and
affinity of the binding process [14]. The binding affinity, along
with the binding site and the binding conformation, form an
interconnected system that influences the effectiveness of the
interaction. Evaluating the binding affinity provides a key metric

to assess the strength of interaction between a drug and its target.
Experimentally determined parameters such as dissociation con-
stant, inhibition constant and half-maximal inhibitory concen-
tration are often used to indicate the binding strength between
drugs and targets [15, 16]. However, determining these values by
wet experiments is typically time-consuming and costly.

Over the past decades, computer-aided drug design technolo-
gies have had a revolutionary impact on the field of drug dis-
covery. Molecular docking and dynamics simulation methods are
frequently used to identify and predict potential drug targets,
allowing researchers to accelerate the drug discovery and devel-
opment process [17–19]. These methods can predict binding affin-
ity by considering the geometric structural complementarity and
binding free energy between ligand-acceptor molecules. These
methods usually rely on the three-dimensional structures of the
complexes. Although the tools like AlphaFold have enhanced
the protein structure prediction, obtaining the dynamic protein
structure and structure of protein complex is still challenging
[20]. This limits the power of molecular docking and dynamics
simulation methods.

Recent years have seen the emergence of artificial intelligence
as a promising tool for drug–target prediction using machine
learning and deep learning techniques. Unlike traditional
computer-aided methods, these approaches do not strictly require
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the 3D structure of the ligand–receptor complex as input. Many
studies have focused on binary drug–target interaction (DTI)
prediction, and have achieved good results [21–27]. However, such
type of prediction task may not adequately reflect the binding
capacity of a drug and its target, nor accurately represent the
efficacy of drug. As a result, more attention has been given to
drug–target binding affinity (DTA) prediction recently, which can
be defined as a regression task. Quite a few methods have been
developed to address this task. For instance, Li et al. [28] proposed
a docking scoring function based on a random forest model
to predict affinity values between drugs and targets, and they
found that low-quality data can also help improve the predictive
performance of the machine-learning model. Pahikkala et al.
[29] applied the regularized least squares method to predict the
continuous DTA value. He et al. [30] presented a gradient-boosting
tree model named SimBoost, which utilized informative features
from the drug and target similarities to achieve the purpose of
DTA prediction. And some methods use the sequence information
of drugs and targets. For example, Öztürk et al. [31] employed
double-independent convolutional neural network (CNN) blocks
to extract features of drugs and targets from SMILES strings and
protein sequences, respectively, and used learned representations
for DTA prediction through a fully connected layer. Lin et al. [32]
proposed a novel deep learning-based model named DeepGS.
The model employs a CNN to learn representations of the target
protein sequence and uses a graph attention network and a
bidirectional gating recurrent unit to extract two types of drug
features. These features are then concatenated with the protein
sequence features to predict the binding affinity score. Li et al.
[33] introduced the atom (in the compound)–residue (in the
protein) pairwise interaction matrix to consider the non-covalent
connections and predict the DTA. Zeng et al. [34] presented
MATT\_DTI, which further used a self-attention block to encode
the interaction information between drug representations and
protein representations. Yuan et al. [35] proposed a multi-head
linear attention mechanism to aggregate information for drugs
and targets and applied knowledge distillation in the training
stage. In practice, each drug molecule can be modeled as a
graph with atoms as nodes and bonds as edges. With the recent
advancements in graph neural networks, feature extraction for
graph-structured data has become more convenient and effective.
This has led to the development of various graph-based models
for drug–target affinity prediction. Nguyen et al. [36] represented
each drug as a molecular graph and introduced graph neural
networks to learn the drug feature representations, and the
target feature representations are extracted through CNN by
capturing sequence information. Zhang et al. [37] presented SAG-
DTA that introduced self-attention mechanisms when learning
the representations of the molecular drug graph. However,
these methods still treated the target proteins as sequential
data for processing. Jiang et al. [38] utilized protein structure
prediction (Pconsc4) to construct the protein contact map, and
subsequently employed graph neural networks to learn features
on the protein contact map and the molecular drug map. Most of
the previous studies have utilized deep neural networks to learn
feature representations of protein and drug molecules, which
are then fed into a multilayer perceptron (MLP) for prediction.
This framework is currently the foundation of machine learning
models for predicting DTA. However, these methods only utilized
the molecular structure information of drugs and proteins, with
DTA information only appearing in the model training stage as
the supervised task label. Existing methods did not consider
the topology information of the drug–target network, which has
proven to be useful in existing DTI prediction studies[21, 27].

These studies are achieved based on a drug–target network.
In this network, drugs and targets are represented as nodes,
and the connections between them are considered as edges,
which correspond to the observed interactions between specific
drugs and targets. Adopting this network-based approach enables
us to predict unknown DTIs and understand the underlying
mechanisms governing drug–target association [39, 40]. Molecular
properties and drug–target network topology represent features
of different scales. However, effectively capturing and integrating
features from multiple scales remain a significant challenge.

To improve the performance of drug–target affinity predic-
tion, we propose a novel cross-scale graph contrastive learning-
based drug-target affinity prediction model, named CSCo-DTA,
which differs from previous methods that primarily focus on
using molecular features alone for DTA prediction. CSCo-DTA
considers both network-scale feature and molecule-scale feature
through a graph contrastive learning-based framework. CSCo-
DTA consists of four main components, including molecule-scale
feature extraction, network-scale feature extraction, contrastive
learning across the molecule and network scales and DTA pre-
diction. The proposed method specifically extracts network-scale
features of drugs and proteins from the DTI network, as well as
molecule-scale features of drugs and proteins from the drug and
target molecule network, via graph neural networks. Next, using
the feature representations of molecule-scale and network-scale,
CSCo-DTA explores the consistency between the two perspectives
through contrastive learning. Finally, an objective with a multi-
task training strategy is designed to jointly optimize the represen-
tations of drugs and targets, as well as to predict DTA. We compare
our method with existing methods on two benchmark datasets.
The results demonstrate that CSCo-DTA performs the best on
both datasets. Furthermore, we investigate the impact of multi-
scale features of drugs and targets, as well as using cross-scale
contrastive learning modules on the predictive performance of
the model through the ablation experiment. The results demon-
strate that these components significantly improve the accuracy
of DTA prediction. Moreover, we conduct a case study on the
potential targets of Erlotinib. The results indicate that our model
can effectively predict the binding affinity of DTIs, which could
have important implications for accelerating the drug discovery
process. These findings highlight the potential of our approach
to contribute to the development of more effective and targeted
therapies for various diseases.

METHODS
In this section, we first formulate the DTA prediction task as
a regression problem and then propose a cross-scale graph
contrastive learning-based drug-target affinity prediction model
(CSCo-DTA). CSCo-DTA leverages graph neural network encoders
to extract both molecule-scale and network-scale features, and
maximizes the mutual information between these two scale
features via a cross-scale graph contrastive learning component.
Figure 1 illustrates the framework of the proposed model, which
comprises four parts: the molecule-scale graph representation
learning component (Figure 1A,C), the network-scale graph
representation learning component (Figure 1B), the cross-scale
graph contrastive component (Figure 1D) and the drug–target
affinity prediction component (Figure 1E).

Preliminaries
Before introducing the details of our method, we first formulate
the DTA prediction as a regression problem and give the necessary
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Figure 1. The architecture of CSCo-DTA and its components are shown. A. The drug molecule is modeled as a drug graph and encoded as embeddings
by GCNs. B. Graph representation learning in a drug–target network-scale view. C. The target molecule is modeled as a protein graph and encoded as
embeddings by GCNs. D. The cross-scale graph contrastive learning component is used to maximize the mutual information between the above two
scales. E. The drug–target affinity prediction component consists of an MLP that takes the learned embeddings as input to predict the affinity score.

notation used in our work. drug–target affinity prediction prob-
lem, drug–target bipartite network, drug molecular graph, protein
molecular graph and the Laplacian matrix are defined as follows:

1) drug–target binding affinity (DTA) prediction. Given a set of
drugs D and a set of targets T , the binding affinity values
between drugs and targets can be organized into a matrix
E ∈ R

|D|×|T |. Here, we aim to find a matrix Ê ∈ R
|D|×|T |

to approximate E to predict the unobserved binding affinity
value between the drug and the target.

2) drug–target bipartite network. The bipartite drug–target affin-
ity network could be defined as GN = (D,T ,E), where D and
T are the set of drugs and targets, respectively, and eij ∈ E
indicates the affinity between Di ∈ D and Tj ∈ T . The weight
of edge eij represents how tightly Di binds to Tj. The adjacent
matrix AGN ∈ R

(|D|+|T |)×(|D|+|T |) corresponding to the drug–
target bipartite network can be defined as

AGN =
[

0 E
ET 0

]
(1)

3) Drug molecular graph. Given a drug Di ∈ D, the corresponding
drug molecular graph can be formulated as GDi = (M,A),
where M = {

dm
}|M|

m=1 is the set of atoms of the drug, and
A is the set of bonds of the drug,

(
da, db

) ∈ A indicates the
existence of a bond between the atom da and atom db.

4) Protein molecular graph. Each target protein can be regarded
as a graph with amino acid residues as nodes. The molecule
graph of the target Tj ∈ T is denoted as GTj = (N ,C), where
N is a set consisting of amino acids and (ta, tb) ∈ C indicates
that there is a contact between ta and tb. It is noteworthy
that the protein contact map is used in this paper, which is
represented by a symmetric boolean matrix as a simplified
representation of protein structure. The protein structure’s
relevant characteristics can be obtained by analyzing the
protein contact map.

Graph representation learning components for
different scales
In this part, we employ graph neural networks to obtain feature
representations of drugs and proteins from both network-level
and molecule-level perspectives based on the drug–target bipar-
tite network and molecular graph, respectively. Details are shown
as follows.

Graph representation learning in a drug–target
network-scale view
The theory of network pharmacology models the interactions of
drugs and their targets from the perspective of system biology.
Also, it proves the importance of interactive information in the
drug–target network [41]. Therefore, we perform feature extrac-
tion operations on the DTA bipartite network by utilizing the
graph convolutional network (GCN). The essence of this operation
is to dynamically filter the graph signal in the spectral domain
to obtain low-frequency signal as the feature representations of
drugs and targets in the network.

Mathematically, suppose AGN and F are the adjacent matrix
and initial features corresponding to the DTA bipartite network,

respectively, where F =
[

Fd

Ft

]
, Fd and Ft represent initial features

for drugs and targets, respectively. The feature aggregation oper-
ator of GCN is defined as follows:

F(l) = σ
(
L�(l)σ

(· · · σ (
L�(1)F

) · · · )) , (2)

where σ() denotes the nonlinear activation function, such as ReLU
[42]. L = I − D− 1

2 AGN D− 1
2 is the normalized Laplacian matrix, I is

the identity matrix and D is the diagonal degree matrix defined as
Dqq = ∑

k [AGN ]qk. �(l) represents the trainable parameter matrix
of the lth-layer GCN. F(l) denotes the embedding matrix at the lth-
layer. Equation (2) describes the iterative process of learning the
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embedding of each node by aggregating information from their
neighborhood and transforming the aggregated embeddings via
multiplying a transformation matrix. Each vertex in the network
gradually gains information from its high-order neighbors with
the iterative process. Further, the final representation of the drug
Di and the target Tj based on the network scale can be obtained
as follows:

hnv
Di

= F(l)[i, :]; (3)

hnv
Tj

= F(l)[|D| + j, :], (4)

where F(l)[i, :] represents the i-th row of F(l), and hnv
Di

and hnv
Tj

represent, respectively, the embedding of drug Di and target Tj

based on the molecular scale.

Graph representation learning in a molecule-scale view
In order to extract the molecule-level features, drug and target
molecules are modeled as undirected graphs. For a drug molec-
ular graph, nodes and edges in the graph represent atoms and
bonds between atoms, respectively. For a protein molecular graph,
nodes and edges in the graph represent residues and contacts
between residues, respectively. The GCN is applied to encode the
topology structure of a molecule-level graph.

More concretely, given a drug Di, let GDi = (M,A) be the
corresponding molecular graph (see the Preliminaries section for
details). For the atom of a drug, the initial feature consists of
several properties, including element type, bonding number, the
count of attached hydrogen atoms, valence and whether the
atom is an aromatic ring. For detailed information on the initial
characteristics of nodes and edges in drug molecules, please
refer to Supplementary Table 1. Based on initial atom features
and molecular graph structure, we employ GCNs to learn an
embedding vector for each atom and obtain the representation
of the drug molecule through the readout function. Following the
strategy of neighborhood aggregation, GCN produces the feature
representation for each atom via aggregating embeddings of its
neighbor atoms and itself iteratively. Formally, the feature aggre-
gation in a single-layer GCN for the atom u in the drug molecule
is defined as

x(l+1)
u = σ

⎛⎝ ∑
v∈ND

u

1
cucv

�
(l)
D x(l)

v

⎞⎠ , (5)

where x(l)
u ∈ R

fD is the embedding of the atom u in the lth-layer
and fD represents the dimension of the atom feature. �

(l)
D is the

parameter matrix of the lth-layer GCN. ND
u is the neighborhood

set of the atom u containing itself. cu = ∣∣ND
u

∣∣ is a normalization
constant.

Given a target Tj, let GTj = (N ,C) be the corresponding molecu-
lar graph (see the Preliminaries section for details). For the residue
of a target, the initial feature consists of position-specific score,
residue type, whether the residue is aromatic, residue weight
and so on. For detailed information on the initial characteristics
of nodes and edges in protein target molecules, please refer to
Supplementary Table 2. We also define the feature aggregating
operation for an amino acid residue u in the target molecule as
follows:

y(l+1)
u = σ

⎛⎝∑
v∈NT

u

1
cucv

�
(l)
T y(l)

v

⎞⎠ , (6)

where y(l)
u ∈ R

fT is the representation of the residue u in the
lth-layer and fT represents the dimension of residue feature. �

(l)
T

represents the parameter matrix of the lth-layer GCN. NT
u is the

neighborhood set of the residue u containing itself. cu = ∣∣NT
u

∣∣ is a
normalization constant.

To sum up, the representation of each atom (amino acid
residue) can be learned by the molecule-scale GCN, and the
corresponding feature of the drug (protein) molecular can be
further represented by a readout function as follows:

hmv
Di

= �
({

x(l+1)
m | m ∈ M

})
; (7)

hmv
Tj

= �
({

y(l+1)
n | n ∈ N

})
, (8)

where �() is the differentiable readout function, which is an add
operation. hmv

Di
and hmv

Tj
represent the embedding of drug Di and

target Tj based on the molecular scale. Through this molecule-
level feature extraction, we can gain the feature representation of
drugs and proteins from a microscopic perspective.

Cross-scale graph contrastive learning module
The molecule scale-based embeddings and the network scale-
based embeddings represent drug and target features from dif-
ferent views, which may be related. In order to enhance feature
representations by combining the molecule and network scales,
we propose a cross-scale graph contrastive learning method to
model embeddings based on different scales.

We first introduce the contrastive learning scheme for drugs.
The scheme for targets is similar. After obtaining the drug rep-
resentations of different scales by aforementioned graph neural
network-based method, we first map them into the same feature
space with an MLP, as shown in the following equation:

h̃mv
Di

= MLP
(
hmv

Di

)
; (9)

h̃nv
Di

= MLP
(
hnv

Di

)
, (10)

where MLP() is a two-layer feedforward neural network. It is noted
that MLP() is shared by embeddings of different scales.

Afterwards, as shown in Figure 1D, the proposed model utilizes
a contrastive learning scheme to optimize the representations.
Given a drug as an anchor, its representation should be consistent
with its positive samples and different from its negative sam-
ples across different scales. One of the key challenges of graph
contrastive learning across scales is to define the positive and
negative samples of a given anchor for providing self-supervised
signals. In general, given an embedding of a drug Di ∈ D learned
based on the network scale, its embedding learned from the
molecular scale can be defined as the positive sample. In this
study, to generate positive samples, we propose a novel sampling
strategy, which includes molecular feature-based sampling and
network structure-based sampling. For molecular feature-based
sampling, the idea is that nodes with similar molecular structures
are considered highly related and can be used as positive sample
pairs. Specifically, the PubChem structure clustering tool [43] is
used to calculate the molecular level drug–drug similarities, saved
as Sd ∈ R

|D|×|D|, and the Smith–Waterman algorithm [44] is used to
calculate the protein sequence similarities, saved as St ∈ R

|T |×|T |.
Both drug–drug similarities and protein sequence similarities are
molecular-level information. For network structure-based sam-
pling, the idea is that nodes that share common neighbors in the
network are related. We propose a meta-path-based method to

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad516#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad516#supplementary-data
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calculate the similarity between drugs. The similarities between
drugs are defined as the number of meta-path, which is drug–
target-drug, between drugs in the drug–target network. The drug
similarities are normalized and saved as Qd ∈ R

|D|×|D|. Simi-
larly, we obtained the target similarities, saved as Qt ∈ R

|T |×|T |.
Following aforementioned ways, we selected positive samples
for each drug and each target according to molecule-level and
network-level views. Specifically, to select positive samples for Di,
we summed Sd and Qd, then rank the samples with the i-th row
in descending order. The top K samples are selected as positive
samples and the others are considered as negative samples.

The embeddings of positive sample pair should be similar.
The embeddings of negative sample pair should be different.
Therefore, inspired by InfoNCE [45], the contrastive loss function
of network scale is defined as follows:

Ldrugnv
Di

= − log

∑
Du∈PDi

exp
(
s
(
h̃nv

Di
, h̃mv

Du

)
/τ

)
∑

Dk∈(PDi
∪NDi

) exp
(
s
(
h̃nv

Di
, h̃mv

Dk

)
/τ

) , (11)

where s
(
ha, hb

)
represents the cosine similarity between ha and

hb. τ is a temperature parameter that used to adjust the similarity
distribution of embeddings to better distinguish between positive
and negative samples, and is typically set empirically. PDi and NDi

denote the positive and negative sample sets of Di, respectively.
Similarly, the contrastive loss function of molecule scale is

defined as follows:

Ldrugmv
Di

= − log

∑
Du∈PDi

exp
(
s
(
h̃mv

Di
, h̃nv

Du

)
/τ

)
∑

Dk∈(PDi
∪NDi

) exp
(
s
(
h̃mv

Di
, h̃nv

Dk

)
/τ

) (12)

In similar way, we can also define Ltargetnv

j and Ltargetmv

j for the
target Tj as follows:

Ltargetnv
Tj

= − log

∑
Tu∈PTj

exp
(
s
(
h̃nv

Tj
, h̃mv

Tu

)
/τ

)
∑

Tk∈(PTj
∪NTj

) exp
(
s
(
h̃nv

Tj
, h̃mv

Tk

)
/τ

) (13)

Ltargetmv
Tj

= − log

∑
Tu∈PTj

exp
(
s
(
h̃mv

Tj
, h̃nv

Tu

)
/τ

)
∑

Tk∈(PTj
∪NTj

) exp
(
s
(
h̃mv

Tj
, h̃nv

Tk

)
/τ

) (14)

In general, the part of the contrastive loss function is given as
follows:

Lgcl−drug = 1
|D|

|D|∑
i=1

[
λ · Ldrugnv

Di
+ (1 − λ) · Ldrugmv

Di

]
(15)

Lgcl−target = 1
|T |

|T |∑
j=1

[
λ · Ltargetnv

Tj
+ (1 − λ) · Ltargetmv

Tj

]
, (16)

where λ is a hyperparameter to balance the effect of both scales.

Objective with multi-task training strategy
We introduce a supervised-based loss by exploiting the original
paired DTA data during training, in addition to the cross-scale
contrastive-based loss. This approach allows us to fully utilize the
existing labeled DTA data and maximize its potential.

In our approach, we learned the representations of drugs
and targets from two different scales and projected them to

the embedding space using an MLP. This results in two sets
of embeddings for drugs and targets: h̃mv

Di
, h̃nv

Di
∈ R

|D|×f , and

h̃mv
Tj

, h̃nv
Tj

∈ R
|T |×f . To obtain the final representations for drugs

and targets, we concatenated the mapped embeddings of both
views, as shown below:

hDi =
[
h̃mv

Di
‖h̃nv

Di

]
; (17)

hTj =
[
h̃mv

Tj
‖h̃nv

Tj

]
, (18)

where [ || ] denotes the concatenation operation. We used the
concatenated embeddings hDi ∈ R

2f and hTj ∈ R
2f to predict the

binding affinity score. The mean squared error (MSE) loss can be
represented as follows:

LMSE =
∑

(i,j)∈�

1
|�|

∥∥∥eij − MLP
([

hDi ‖hTj

])∥∥∥2

F
, (19)

where MLP() is a feedforward neural network and � is used to
denote the entries in the training set. eij represents the experi-
mentally verified binding affinity score between Di and Tj.

To summarize, the mathematical formulation for multi-task
training in DTA prediction is as follows:

L = LMSE + 1
2
LLgcl−drug + 1

2
LLgcl−target

(20)

By incorporating the cross-scale contrastive training objective
into the DTA prediction task, we jointly optimized both objec-
tives to improve the representations of drugs and targets during
training.

RESULTS AND DISCUSSION
Data preparation
To comprehensively evaluate the performance of our proposed
method, CSCo-DTA, we use two public drug–target affinity bench-
mark datasets: the Davis dataset [46] and the KIBA dataset [47].
The Davis dataset takes the negative logarithm of dissociation
constants (pKd) as affinity values and includes 30 056 values
between 68 drugs and 442 targets. The affinity scores range from
5.0 to 10.8 and indicate the binding strength of drug–target pairs.
The KIBA dataset comprises 52 498 compounds and 467 kinase
targets, and integrates the information of Kd, Ki and IC50 as drug–
target affinity scores. The dataset was preprocessed following the
method described in [30], resulting in 118 254 binding affinity
scores between 2111 drugs and 229 targets, ranging from 0.0 to
17.2. In addition, each drug molecule was processed by RDKit [48]
and target molecule was processed by PconsC4 [38, 49] to gener-
ate compound graph and protein contact map in the molecule-
scale view (as described in Methods section). We compared our
proposed method with other methods on these two datasets. The
datasets were randomly divided into six subsets of equal size, with
five subsets used for training, and one subset used as the test set
[31, 34–36, 38]. To comprehensively evaluate the performance of
the models, the MSE and r2

m were used to assess the predictive
performance of all methods.

The performance evaluation of CSCo-DTA and
baseline methods
We compared the proposed CSCo-DTA with the existing baseline
methods, including DeepDTA [31], GraphDTA [36], DGraphDTA
[38], MATT_DTI [34] and FusionDTA [35]. DeepDTA utilized CNNs
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to extract features from drug and target sequences, which
were then used to predict their binding affinities. GraphDTA
utilized graph neural networks to embed drug molecular graph
and the target sequence embeddings were extracted through
CNN. DGraphDTA utilized protein contact maps to represent
the interaction between residue pairs in protein molecules, and
employed graph neural networks to extract features from both
protein contact maps and drug molecule graphs. MATT_DTI
used 1D CNNs to learn the sequence representations of drugs
and targets, and multiple attention blocks to establish the
relationships between them. FusionDTA employed knowledge
distillation and a novel multi-head linear attention mechanism,
which aggregated global information using attention weights
to make DTA predictions. In addition, we used CSCat-DTA for
comparison, which directly concatenated the embeddings learned
from network-scale and molecule-scale features via GCNs for
fusion, and then used an MLP for prediction. The comparison
methods were re-implemented based on the descriptions in
the original publications. The experimental parameters for all
comparison methods were set according to the model parameters
given in the paper of each method.

The main hyperparameters of CSCo-DTA are as follows: (i)
the temperature parameter τ in the contrastive loss function,
(ii) the biased item λ to balance the effect of two scales in the
contrastive loss function, (iii) the number of positive samples K for
each node in contrastive learning scheme, (iv) the number of GCN
layers at the network-scale and (v) the number of GCN layers at
the molecule-scale. Specifically, while keeping other parameters
fixed, we systematically varied one parameter at a time to assess
its influence on MSE to evaluate the effect of these parameters on
the performance of CSCo-DTA. The effects of different parameter
choices on model performance are presented in Supplementary
Figure 1. We used τ = 0.8, λ = 0.5, K = 3, two layers of GCN in the
network-scale, three layers of GCN in the molecule-scale and a
learning rate of 2e-4 as experimental settings for CSCo-DTA.

The performances of CSCo-DTA and other methods on the
Davis dataset and KIBA dataset are shown in Table 1. The results
indicate that CSCo-DTA achieves the best performance compared
with the other baseline methods in most cases. Specifically,
the results show significant improvement in CSCo-DTA and
DGraphDTA compared with DeepDTA, which demonstrates
the advantages of modeling drugs and targets as graphs to
leverage their molecule structural information compared with
modeling them as sequences. Moreover, CSCo-DTA outperforms
DGraphDTA on both datasets, achieving 24.89% improvement in
MSE and 12.95% improvement in r2

m on the Davis dataset and
3.05% improvement in MSE and 1.38% improvement in r2

m on
the KIBA dataset. These results demonstrate that integrating
molecule-scale and network-scale information can enhance
drug–target affinity prediction. Compared with FusionDTA, the
performance of CSCo-DTA achieves an average relative improve-
ment of 20.19% in MSE and 3.60% in r2

m on the Davis dataset.
The comparison between CSCo-DTA and CSCat-DTA indicates
that the cross-scale graph contrastive learning component
effectively improves DTA prediction performance in comparison
with directly concatenating molecular scale and network scale
features for prediction.

The predicted affinity scores are correlated with
the experimental affinity scores
To further evaluate the performance of our proposed drug–target
affinity prediction model, we conducted experiments to compare
the predicted values with the measured values on two datasets.

Figure 2. Scatter plot showing the correlation between CSCo-DTA’s pre-
dicted scores and measured binding affinities on the Davis dataset. The
x-axis represents scores predicted by the CSCo-DTA model, and the y-axis
represents true measured values.

Figure 3. Scatter plot showing the correlation between CSCo-DTA’s pre-
dicted scores and measured binding affinities on the KIBA dataset. The
x-axis represents scores predicted by the CSCo-DTA model, and the y-axis
represents true measured values.

We visually presented the results in the form of scatterplots, as
shown in Figure 2 and 3, where the x-axis represents the predicted
values and the y-axis represents the true measured values. The
red dashed line represents the line of perfect agreement between
the predicted and true values, and closer data points to this line
indicate higher prediction accuracy.

Our analysis reveals that for the Davis dataset, the dense region
of data points is within the range of [5, 6], as more than half of the
measured values (24 578/30 056) fall within this interval. Similarly,
for the KIBA dataset, the dense region is within the range of [10,
14]. The results demonstrate that the CSCo-DTA model predicted
the affinity scores very close to the ground-truth values, as evi-
denced by the data points from both datasets being distributed
around the red dashed line. In summary, the experimental results
support the high accuracy and reliability of our proposed model in
predicting drug–target affinity scores, and highlight its potential
in facilitating drug discovery and development efforts.

Multi-scale integration and contrastive learning
enable CSCo-DTA to benefit
In this section, we conducted ablation studies to investigate the
contribution of each component in our proposed model. Specifi-
cally, we examined the effectiveness of different level features and
the cross-scale graph contrastive module by removing each com-
ponent one by one and examining prediction performance. We
conducted experiments on the Davis dataset, and the prediction
performance results were shown in Figure 4 and Figure 5, which
demonstrate the contribution of each component to the overall
performance of the proposed model.

The results in Figure 4 and Figure 5 indicate that using only
molecule-scale feature (i.e. CSCo-DTA−NetFeature) or network-scale

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad516#supplementary-data
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Table 1: Comparison results of MSE and r2
m values for CSCo-DTA and baseline methods, proving our proposed method has improved

performance compared with baseline methods on the Davis dataset and KIBA dataset. Lower MSE values indicate better performance.
Higher r2

m values indicate better performance

Davis KIBA

Methods MSE ↓ r2
m ↑ MSE ↓ r2

m ↑
DeepDTA[31] 0.244 0.664 0.180 0.721
GraphDTA[36] 0.242 0.679 0.154 0.736
DGraphDTA[38] 0.221 0.687 0.131 0.797
MATT_DTI[34] 0.228 0.693 0.134 0.786
FusionDTA[35] 0.208 0.749 0.130 0.791
CSCat-DTA(ours) 0.178 0.767 0.130 0.797
CSCo-DTA(ours) 0.166 0.776 0.127 0.808

Figure 4. The MSE performance comparison of CSCo-DTA and its three
variants on Davis dataset, proving the importance of features at different
scales and the fusion of multi-scale features.

Figure 5. r2
m performance comparison of CSCo-DTA and its three variants

on Davis dataset, proving the importance of features at different scales
and the fusion of multi-scale features.

feature (i.e. CSCo-DTA−MolFeature) leads to decreased performance
compared with the original model (CSCo-DTA). Specifically, the
MSE values for CSCo-DTA−NetFeature and CSCo-DTA−MolFeature are
0.241 and 0.188, respectively, while the MSE value for CSCo-
DTA is 0.166. This finding highlights the importance of both
scale features in the performance of model, and underscores
the necessity of integrating them to achieve optimal results. In
addition, the MSE and r2

m of the model without cross-scale graph
contrastive component (i.e. CSCo-DTA−Contrast) are reduced to 0.177
and 0.770, respectively. The results indicate that the cross-scale
graph contrastive component plays a crucial role in improving the
performance of the model. Thus, it can be concluded that each
component of our proposed model contributes to the prediction
performance of DTA.

Furthermore, we conducted experiments to assess the impact
of input features on the performance, and the findings are pre-
sented in Supplementary Table 3. The results indicate that both
node features and edge weights at the molecular and network
scales are crucial to the performance. We further assessed the
impact of drug–target network topology on the model’s perfor-
mance through random edge removal and random edge swapping
(Supplementary Tables 5 and 6).

Case study: predicting the new potential targets
of Erlotinib
In this study, we applied the proposed CSCo-DTA model to predict
potential targets for drug repositioning and performed molecular
docking to validate the predicted targets. Specifically, we pre-
dicted the potential targets for Erlotinib, a tyrosine kinase receptor
inhibitor used for the treatment of advanced or metastatic pan-
creatic cancer or non-small cell lung cancer [50–52]. Erlotinib was
known to bind to the target receptor EGFR and inhibit its activity
[53]. We obtained the potential targets for Erlotinib by ranking
protein targets according to the prediction scores from CSCo-
DTA, and found that 9 out of the top 10 targets with the highest
predicted scores (Supplementary Table 4) had predicted value
ranks consistent with their experimental activity ranks. To further
validate our results, we performed molecular docking via LibDock
[54] for the remaining target, IRAK4, which yielded a docking score
of 118.115 compared with 122.603 for EGFR, suggesting a potential
interaction between the drug and IRAK4. The docking results were
visualized in Figure 6, which demonstrated that IRAK4 formed
intermolecular forces with the amino acid residues of the targets.
Furthermore, we performed the same experiment with the other
method GraphDTA. The result show that IRAK4 is not included
in the top 10 predicted targets for Erlotinib. This also indicates
the effectiveness of our method on the drug target prediction.
In conclusion, our study successfully predict potential protein
targets for drugs using a computational model and validate the
predicted target protein by molecular docking. These findings pro-
vide valuable insights into the mechanism of action of Erlotinib
and its potential applications in the treatment of other diseases.

CONCLUSION
Predicting drug–target affinity is crucial for drug discovery and
repurposing. In this study, we propose the CSCo-DTA approach
to predict the binding affinity scores of drugs with targets. The
proposed approach models the interactions between drugs and
targets by learning representations from the drug–target affin-
ity network. In addition, CSCo-DTA utilizes a GCN to extract

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad516#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad516#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad516#supplementary-data
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Figure 6. A case of the molecular docking visualization for the interaction
between Erlotinib and IRAK4. The left part draws the DTIs. The right part
further shows the visualization of the drug and the target pocket.

molecule-level features of drugs or targets, and employs a con-
trastive learning framework to capture the potential relation-
ship between the network-level and molecule-level views and
make the learned representation more informative and inte-
grated. Finally, we optimize the model using an objective with a
multi-task training strategy. The evaluation results demonstrate
that CSCo-DTA outperforms other methods in terms of MSE and
r2
m and different components of CSCo-DTA contributes to the

performance improvement. We also apply CSCo-DTA to predict
potential targets of Erlotinib. The results indicate that the CSCo-
DTA may lead to the potential expansion of the therapeutic
application of drugs.

Key Points

• We present a novel cross-scale contrastive learning-
based method (CSCo-DTA) for predicting drug–target
binding affinities.

• CSCo-DTA utilizes graph convolutional network
encoders to extract molecule-scale and network-
scale features of drugs and targets. A contrastive
learning framework is employed to maximize the
mutual information between the features of two scales
and explore their potential relationship.

• The experimental results show that the CSCo-DTA
outperforms state-of-the-art methods on both Davis
dataset and KIBA dataset.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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