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Abstract

Background: Osteoporosis results in reduced bone mass and consequent

bone fragility. Small interfering RNAs (siRNAs) can be used for therapeutic

purposes, as molecular targets or as useful markers to test new therapies.

Sources of data: A systematic search of different databases to May 2023 was

performed to define the role of siRNAs in osteoporosis therapy. Fourteen

suitable studies were identified.

Areas of agreement: SiRNAs may be useful in studying metabolic processes

in osteoporosis and identify possible therapeutic targets for novel drug

therapies.

Areas of controversy: The metabolic processes of osteoporosis are regulated

by many genes and cytokines that can be targeted by siRNAs. However, it is

not easy to predict whether the in vitro responses of the studied siRNAs and

drugs are applicable in vivo.

Growing points: Metabolic processes can be affected by the effect of gene

dysregulation mediated by siRNAs on various growth factors.
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Areas timely for developing research: Despite the predictability of pharma-

cological response of siRNA in vitro, similar responses cannot be expected

in vivo.

Key words: osteoporosis, osteoporosis therapy, small interfering RNA, short interfering RNA, RNA silencing, RNA
interference

Introduction

Osteoporosis (OP) is a common metabolic bone dis-
ease, with a higher incidence in the elderly and post-
menopausal population.1 Affected patients develop
a reduction in bone mass with consequent bone
fragility. The bone microarchitecture is altered from
an imbalance of function between osteoclasts and
osteoblasts.1 In particular, the increased osteoclastic
activity causes fragility that predisposes to fractures
after even minimal trauma.1–3 Advancing age is a pre-
disposing factor, but it is not the cause of osteoporo-
sis.4–6 Physiologically, in elderly subjects the activ-
ity of osteoclasts tends to be greater than that of
osteoblasts. In osteoporosis, the activity of the osteo-
clasts produces excessive resorption, which therefore
exceeds the physiological aging of the bone.5,7

The current management of OP aims to re-
integrate bone components through the use of
calcium, vitamin D; hormones or drugs that act on
osteoclastic activity can be used, but the results are
often unpredictable, and undesirable side effects are
often encountered.5,8

Recent scientific research has focused on the reg-
ulatory mechanisms of eukaryotic cells,9–11 including
ribonucleic acid interference (RNAi),12–15 to identify
possible molecular and gene targets to formulate
novel therapies.16–19

Usually, a small interfering RNA (siRNA) is
composed of about 20 nucleotides arranged to
form a double-stranded ribonucleic acid (RNA)
molecule.12,20,21

The interference mechanism through which
RNAi acts involves various elements, such as
detection wire (passenger wire), sense wire (guide
wire), enzymes such as Dicer, Argonaute and the
central part RISC (RNA-induced silencing complex).
The guide wire is a nucleotide sequence recognized

by Dicer, which selects it and integrates it into RISC.
The guide wire is used to recognize the passenger
wire, which will be then degraded by RISC12,22

(Figure 1).
The study of siRNA should allow to understand

their physiological role, and consequently use their
activity to modulate it for therapeutic purposes. The
field of application of siRNA is very varied, and gene
therapies can be used for viral infections, autoim-
mune diseases or tumors and endocrinological dis-
eases.12,22 The use of siRNA can reduce the expres-
sion of genes involved in several conditions. To date,
the sequence of 4894 chemically modified siRNAs is
available.13,23 SiRNAs can be used to study human
pathologies and the biological processes involved in
such pathologies. However, they have a short half-
life. Structural chemical modifications are used to
increase the half-life of siRNAs, making them more
stable.12,22

In OP, the imbalance between bone resorption
and bone apposition is determined by a decrease
in the activity of osteoblasts and an increase in the
activity of osteoclasts, mediated by both hormonal
and molecular factors.24 Specific siRNAs have been
used to identify specific targets for potential tar-
geted therapies, or study specific pathways to deter-
mine factors and molecules which are increased and
decreased in OP.24

The present review evaluates the current scientific
evidence on the use of siRNAs in the management of
osteoporosis.

Methods

The review follows the Preferred Reporting guide-
lines for systematic reviews and meta-analyses
(PRISMA)25,26 (Figure 2).
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Fig. 1 Mechanism to degrade the messenger wire.

All published investigations reporting the possible
role of siRNA in the management of OP accord-
ing to a priori established inclusion criteria were
considered.

Only studies published in English were included
in the present investigation. Narrative and system-
atic reviews, meta-analyses, technical notes and case
reports were excluded.

Two investigators independently conducted the
systematic search, through May 2023, from the full-
text archives of Embase, Google Scholar, Scopus and
PubMed. In the search, we used combinations of
the following key terms: Osteoporosis, Osteoporosis
therapy, small interfering RNA, short interfering
RNA, RNA silencing, RNA interference, with no
limit of year of publication. Two investigators
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Fig. 2 PRISMA flow diagram.

independently examined the titles and abstracts
to remove duplicates, and evaluated the eligible
studies according to the pre-established inclusion
criteria. If titles and abstracts did not allow to
decide on inclusion or exclusion, the relevant full
text was examined. The bibliographies of the articles
included were reviewed by hand to identify further
related articles. If discrepancies persisted, discussion
with the senior investigator allowed to resolve
them.

Fourteen studies satisfied the inclusion criteria,
and were thus included in the analysis. The details of
the search are detailed in the flowchart in Figure 1.

Results

A total of 875 articles were identified. The duplicates
were subsequently removed, obtaining 578 articles.
At this point, 297articles were excluded after reading
the titles and abstracts. Of the remaining 112 articles,
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98 were excluded as they were not appropriate for
the topics covered or for the incomplete amount of
information reported.

Data from the 14 studies which met the inclusion
criteria were extracted and collected in Table 1.

Of these 14 studies, 12 used siRNAs to silence
specific genes, and then identified gene and protein
targets to produce a targeted therapy. Another two
studies used siRNAs to monitor the function of some
drugs used for the management of osteoporosis.

SiRNAs as potential therapeutic agents

Liu et al.27 studied human osteoblasts of fractured
elderly patients, and rodent osteoblasts. The concen-
tration of pleckstrin homology domain-containing
family O member 1 (PLEKHO1) increases with
aging, and this is this correlated with a reduction
of bone morphogenetic protein (BMP) dependent
on small mother against decapentaplegic (SMAD)
and bone formation. By using siRNA PLEKHO1,
reducing the values of PLEKHO1 could reverse the
process of bone aging. siRNA PLEKHO1 may be
proposed as a possible treatment for osteoporosis.27

Adam et al.,28 using human mesenchymal stem
cells (hMSC) and specific siRNA, provided evidence
that nitrogen-containing bisphosphonates (N-BP)
activates the mitogen-activated protein kinases
cascade (MERK) 5/extracellular signal-related
kinase (ERK) 5, which has an essential role in
osteogenic differentiation and mineralization of
skeletal precursors.28

Using specific siRNAs against Guanylate Bind-
ing Protein 1, Bai et al.29 demonstrated that the
osteogenetic activity in human mesenchymal stem
cells (hMSC) increased when GBP1 was inhibited,
and decreased under normal conditions. This result
was in line with the higher concentration of GBPs
in premenopausal patients, and suggests a possible
use of siRNA-GBP1 as a possible therapeutic target
against osteoporosis.29

SiRNAs to test the efficacy of drugs

Oxidative stress palys an important role in the pro-
gression of osteoporosis. For this reason, Yang et al.30

studied the effects of the natural antioxidant Tan-
shinol against oxidative stress on the differentia-
tion of osteoblastic cells. Hydrogen peroxide (H2O2)
leads to the accumulation of reactive oxygen species
(ROS), decreased cell viability, cell cycle arrest and
apoptosis in a caspase-3-dependent manner.

The action of Thansinol was tested using specific
siRNAs against the transcription factor Forkhead
box O3a (FOXO3A). Tanshinol suppresses the acti-
vation of FoxO3a and the expressions of its target
genes.

Thansinol neutralizes the action of Growth
arrest and DNA-damage-inducible protein 45 alpha
(GADD45-α) and catalase (CAT), produced by DNA
damage. It also counteracts the binding of Wingless
(WNT) to its site of action by targeting genes for axis
inhibition protein 2 (AXIN2), alkaline phosphatase
(ALP), and osteoprotegerin (OPG).

Tanshinol attenuates oxidative stress through the
down-regulation of FoxO3a signaling, and at least
partially reverses the decrease in osteoblastic differ-
entiation, making it a possible drug in the therapy of
osteoporosis.30

Berberine (BBR) has recently been used in
osteoporosis patients. Tao et al.31 investigated the
osteogenic differentiation induced by this drug on
bone marrow mesenchymal stem cells (BM-MSCs).
For this purpose, they used β-catenin specific siRNA
to study cell lines in the presence and absence of
BBR.

BBR can stimulate the osteogenic differentiation
of mesenchymal stem cells (MSC) by improving the
expression of Runt-related transcription factor 2
(RUNX2) and activating the WNT/β-catenin sig-
naling pathway, which is partly responsible for the
osteogenic differentiation induced by MSC BBR in
vitro. BBR is therefore a potential pharmaceutical
drug for osteoporosis.31

SiRNAs to identify potential therapeutic

targets

Tang et al.32 studied human mesenchymal stem cells,
using a specific siRNA against Alternate Read-
ing Frame Guanosine TriPhosphatease-activating-
protein (ARF-GAP) with Ras homolog Guanosine
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TriPhosphatease-activating-protein (RHO-GAP)
domain 3(ARAP 3). They demonstrated a new
pathway of osteogenic activation. siRNA ARAP3
led to the recovery of Ras homolog family member A
(RHOA) and focal adhesion kinase (FAK) activities,
producing an increase in osteogenic activity. This
new route could be used to develop novel therapies
in osteoporosis.32

Zhu et al.33 studied Bone Marrow Mesenchymal
Progenitors. Stimulation with conditioned media
from parathyroid hormone (PTH)-treated osteoblas-
tic and osteocytic cells, which contain soluble
chemotactic factors for bone marrow mesenchymal
progenitors, resulted in increased Epidermal Growth
Factor Receptor (EGFR) phosphorylation in the
treated cells. The study used inhibitors, including
specific siRNAs, showing that PTH increases the
release of amphiregulin from osteoblastic cells,
which acts on EGFRs expressed on mesenchymal
progenitors to stimulate the protein-kinase B (PKB)
and protein 38 mitogen-activated protein kinase
(MAPK) pathways, and subsequently promote their
migration in vitro. Subsequently, the inactivation
of the EGFR signal on osteoprogenitors/osteoblasts
attenuated the anabolic actions of PTH on bone
formation. These results suggest a therapeutic role
of PTH in osteoporosis through an anabolic effect
of EGFR signaling on bone.33

Mullin et al.34 performed a knockdown study of
Ras homolog (RHO) Guanine Nucleotide Exchange
Factor 3 (ARHGEF3) and Ras homolog family
member A (RHOA) genes using small siRNAs in
human osteoblasts and osteoclast-like cells in cul-
ture. Real-Time Quantitative Reverse Transcription
C-reactive Protein (QRT-PCR) showed significant
down-regulation of the Actin Alpha 2 (ACT-α2)
gene, encoding the cytoskeletal protein alpha 2
actin, in response to RHOA knockdown in both
osteoblasts and osteoclasts. RHOA knockdown
also upregulated the parathyroid hormone receptor
1 (PTH1R) gene. Knockdown of Rho Guanine
Nucleotide Exchange Factor 3 (ARHGEF3) in
osteoblast-like cells resulted in down-regulation of
the Tumor Necrosis Factor Receptor Superfamily
Member 11b (TNFRSF11B) gene, coding for

osteoprotegerin. This study identifies ARHGEF3
and RHHOA as potential regulators genes that act
in bone metabolism and can be used as targets in
specific therapies for osteoporosis.34

Sun et al.35 studied the cannabinoid receptor
(CNR2) on bone marrow-derived mesenchymal
stem cells (BM-MSC). The study was conducted
using knockdown of CNR2 by siRNA. Inactivation
of the CNR2 receptor reduces the activity of
alkaline phosphatase (ALP), inhibits the expression
of osteogenic genes and induces a deposition of
calcium in the extracellular matrix. Furthermore,
bone marrow samples showed that the expression of
CNR2 is much lower in patients with osteoporosis
than healthy donors: CNR2 deficiency may be
related to osteoporosis. In the bone marrow samples
examined, the expression of CNR2 is much lower
in patients with osteoporosis than healthy donors,
thus raising the possibility that osteoporosis can be
related to a lack of CNR2.35

Tong et al.36 used blood mononuclear cells
(MNCs), as they are directly involved in osteoclasto-
genesis and osteoporosis. Through a specific siRNA
against Differentiation Antagonizing Non-Protein
Coding RNA(DANCR), they showed a reduction of
interleukin 6 (IL6) and tumor necrosis factor alpha
(TNF-α).

DANCR was therefore a regulator of the
osteoblastic activity. Its inhibition induced greater
osteoblastic activity, shifting the balance against
osteoclastic activity thus favoring bone production
and mineralization. As DANCR is overexpressed
in osteoporosis, DANCR can be a target against
osteoporosis.36

Starting from the evidence of bone abnormalities
and osteoporosis in patients with nevoid basal cell
carcinoma syndrome (NBCCS), Hong et al.37 wanted
to identify a gene that could cause these effects
to use targeted gene therapy in specific patients to
safeguard them from the risk of osteoporosis. The
identified gene, Protein patched homolog 1(PTCH1),
was studied by specific siRNA. The downregulation
of PTCH1 is associated with a reduction in Secreted
Protein Acidic and Cysteine Rich (SPARC) expres-
sion, with a reduction in ossification. PTCH1 may be



Small interfering RNAs in the management of human osteoporosis, 2023, Vol. 148 65

a possible target in the therapy against osteoporosis
in specific patients.37

WNT/β-catenin signaling pathway decreases
bone formation by reducing osteoblast differenti-
ation.38,39

Many investigations have studied the differentia-
tion of hMSCs, with an inverse relationship between
adipocytic and osteocytic development. Therefore,
different signaling pathways induce MSC towards
osteogenic or adipocytic differentiation.40

Wang et al.41 investigated adipogenic differentia-
tion of hMSCs by specific siRNA for insulin receptor
substance 2 (IRS2). The expression of IRS2 was
increased during adipogenic differentiation, but, by
inhibiting it with specific siRNA, such adipogenic
differentiation was inhibited.

The balance between osteogenic and adipogenic
differentiation of hMSCs is altered in pathologies
such as osteoporosis. Such studies may have a ther-
apeutic value to produce drugs which block IRS2,
increasing pro-osteogenic differentiation.41

Pucci et al.42 demonstrated that patients with
OP exhibited degeneration of muscle fibers with
an overexpression of Clusterin (CLU), correlating
to high levels of IL6 and acetylation histone H4
of myoblasts. In the muscle tissues of osteoporotic
patients, the muscle fibers were intact and CLU levels
were low. Using specific siRNAs against CLU, inhi-
bition of CLU restored of the ability of proliferative
myoblasts and repaired muscle tissue damage. CLU
could therefore be considered a potential therapeutic
target in OP patients.42

Zhang et al.43 used specific siRNAs to validate
data obtained through the Multiscale Embedded
Gene Co-Expression Network Analysis (MEGENA)
method that allows to obtain sequence of genes that
are involved in the pathogenesis of osteoporosis. This
allowed to identify some genes, such as transforming
growth factor beta receptor 1 (TGFBR1) and trans-
forming growth factor beta receptor 2 (TGFBR2),
involved in the differentiation and recruitment of
osteoclasts. This study opens up new perspectives to
use siRNA to control more elaborate and large-scale
pathogenetic pathways.43

Discussion

Osteoporosis produces serious structural damage to
bones, increases the risk of fractures, and produces
deformities that can lead to bed rest and increased
mortality.1,44,45 Osteoporosis fractures arise from
multifactorial alteration of the micro-architecture
of bone.5,24,46,47 Hormonal factors are involved.
Indeed, both sexes lose bone mass during life, but
after menopause women lose bone much faster
and are more prone to fragility fractures. Other
factors are cellular, connected to imbalances between
osteoclasts and osteoblasts. Finally, calcium and
vitamin D play an important role.7,26,48–50

Although fractures are often the first and most
striking event of this pathology, such patients have
developed osteoporosis long before the fracture
event.1,51,52

Authors have performed studies on human
cells, mesenchymal stem cells, Bone Marrow
Mesenchymal Progenitors, osteoblasts, osteoclasts
and myoblasts to investigate the various metabolic
pathways and identify the molecular targets on
which it may be possible to intervene.53

The Current management for OP is based on
antiresorptive drugs, including calcitonin, oestro-
gens, bisphosphonates, and bone anabolic drugs,
including teriparatide1,5,8 (Figure 3).

OP patients exhibit poor drug taking compliance.
The drugs often have serious side effects and unpre-
dictable efficacy. Among the side effects, gastroin-
testinal disorders are common, and the most serious,
such as osteonecrosis of the mandible, occur with
bisphosphonate therapy. Long term oral bisphospho-
nate therapy increases the risk of atypical fractures
and the incidence of esophageal cancer. Therefore,
treatment with bisphosphonates for no longer than
five years is recommended. In 2010, denosumab, a
monoclonal antibody targeting the receptor activa-
tor of nuclear factor kappa ligand (RANKL), was
introduced. New therapeutic targets through the use
of siRNAs can be conceived.1,5

Epidermal growth factor receptor (EGFR) binds
to epidermal growth factor (EGF) and also to
transforming growth factor α (TGFα), leading to
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Fig. 3 Osteoporosis treatment.

activation of the receptor which homodimerizes
with a family of proteins including human epidermal
growth factor receptor 2 (ERBB- 2), human epider-
mal growth factor receptor 3 (ERBB-3) and human
epidermal growth factor receptor 4 (ERBB-4).54 This
type of activation induces activity of tyrosine kinase
domains, resulting in phosphorylation and recruit-
ment of proteins such as Son of sevenless (SOS)
which in turn activate Rat sarcoma virus (RAS).55,56

RAS is able to activate the mitogen-activated
protein kinase (MAPK) responsible for the cellular
differentiation of osteoclasts and osteoblasts in OP.55

Another important molecule is TGFBR2, which
codes for transforming growth factor beta (TGFB),
a serine/threonine protein kinase. This gene deter-
mines the phosphorylation of proteins in the cell
nucleus which leads to an increase in the prolifera-
tion of osteocytes and osteoblasts.57,58

Insulin-like growth factors (IGF) is a peptide
hormone with anabolic properties produced by
the liver and by differentiated chondroblasts. IGFs,
structurally similar to insulin and responsible for
anabolic activities, stimulate the synthesis of aggre-
can, type VI and IX collagen and binding proteins
for cell proliferation in bone, determining both the
quality and the conformation of the bone.59–62

Conclusion

Many pathologies seem multifactorial or simply
related to age. I In reality, there are always molecular
and cellular imbalances at the basis of these condi-
tions. Unfortunately, management of osteoporosis
start too late, only when the pathology is already
manifest. Through siRNAs, it is possible to target

the molecular bases that lead to OP, to then direct
a specific therapy to prevent the actual condition.
Various authors have used siRNAs, for example,
to identify the target molecules, or as a therapeutic
target, or to highlight the efficacy of a given drug.
Studies on human cells in vitro give us hope for
possible future drugs that can combat OP at its
origin, without the side effects of current therapies.
Appropriate studies are necessary to be able to
translate these elegant laboratory studies so that they
can be introduced into routine clinical practice.
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