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 Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with increased preva-
lence and incidence in recent decades. Its etiology remains largely unclear, but it seems to involve a 
strong genetic component and environmental factors that, in turn, induce epigenetic changes during 
embryonic and postnatal brain development. In recent decades, clinical studies have shown that in-
utero exposure to valproic acid (VPA), a commonly prescribed antiepileptic drug, is an environmental 
factor associated with an increased risk of ASD. Subsequently, prenatal VPA exposure in rodents has 
been established as a reliable translational model to study the pathophysiology of ASD, which has 
helped demonstrate neurobiological changes in rodents, non-human primates, and brain organoids 
from human pluripotent stem cells. This evidence supports the notion that prenatal VPA exposure is a 
valid and current model to replicate an idiopathic ASD-like disorder in experimental animals. This re-
view summarizes and describes the current features reported with this animal model of autism and the 
main neurobiological findings and correlates that help elucidate the pathophysiology of ASD. Finally, 
we discuss the general framework of the VPA model in comparison to other environmental and genet-
ic ASD models. 
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1. INTRODUCTION 

 Autism Spectrum Disorder (ASD) is a complex neurode-
velopmental disorder that affects communication, social in-
teraction, and behavior [1]. In the past few decades, the inci-
dence and prevalence of ASD have been increasing, making it 
a major public health concern worldwide [2, 3]. Despite exten-
sive research, the etiology of ASD remains largely unknown, 
but it is widely accepted that genetic and environmental fac-
tors play a significant role in its pathogenesis [4, 5].  
 One such environmental factor that has been linked to 
ASD is in-utero exposure to valproic acid (VPA), a com-
monly prescribed antiepileptic drug [6], also used for the 
treatment of bipolar disorder, migraine, neuropathic pain, 
and headaches [7, 8]. Studies have shown that children ex-
posed to VPA during pregnancy are more likely to develop 
ASD [9]. This association has been established through clin-
ical studies where prenatal VPA exposure in rodents has 
been developed as a reliable translational model to study the 
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pathophysiology of ASD [10]. However, the procedures used 
to replicate behavioral phenotypes have consistently differed 
in dosages, concentrations, the gestational development peri-
od of exposure to VPA, and the molecular and biological 
mechanisms proposed to explain the physiopathology asso-
ciated with ASD. Several experimental models have been 
conducted on different species, including rodents, zebrafish, 
and non-human primates. Furthermore, recent advances have 
been made by using organoids from human induced pluripo-
tent stem cells, which report gene expression patterns affect-
ed by VPA exposure and allow for correlation with the bio-
logical mechanisms proposed by animal studies [11-13]. 
Thus, increasing evidence suggests that VPA impacts the 
growth, migration, and differentiation of neurons and certain 
types of glia, as well as the development of functional synap-
ses. This study aims to review the potential mechanisms by 
which prenatal exposure to VPA can result in changes to 
brain development in contrast to findings from other animal 
models and postmortem evidence from individuals diag-
nosed with ASD. 

2. VALPROATE (VPA) 

 Valproic acid, also known as 2-propyl pentanoic acid, is 
a branched and short-chain fatty acid chemically produced 
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by different synthetic pathways [14], one of them as a prod-
uct derivate from valeric acid [8] (Fig. 1). After oral admin-
istration, VPA is absorbed from the gut and metabolized in 
the liver by three routes, mainly glucuronidation, β oxidation 
in the mitochondria, and, in less proportion, by cytochrome 
P450-mediated oxidation [15, 16]. VPA has a high protein 
bound mainly to albumin and low clearance [15].  
 

 
 
Fig. (1). Molecular structure of Valproate (VPA). (A) Valproic acid 
can be chemically synthesized from valeric acid, a natural sub-
stance from Valeriana officinalis. (B) Valproic acid by addition of 
sodium hydroxide to obtain sodium valproate. Both are the most 
common forms of valproate in the clinical. (A higher resolu-
tion/colour version of this figure is available in the electronic copy 
of the article). 
 
 VPA was first introduced in the clinical as a broad-
spectrum antiepileptic drug [17], which is currently used for 
the treatment of multiple seizure disorders [18], bipolar dis-
order as a mood stabilizer [19], migraine [20, 21], and schiz-
ophrenia [22]. VPA is also used for the treatment of pediatric 
diseases such as epilepsy, conduct disorder and for symp-
toms of irritability, aggression, and impulsivity [8]. VPA can 
cross through the placenta and accumulate in the fetal circu-
lation with a higher concentration than maternal blood [23, 
24], conferring a major risk to the fetus by exposure to VPA. 
On the other hand, VPA metabolites, such as 4-ene VPA, 
cannot cross through the placenta, and fewer concentrations 
are observed in comparison to VPA [24, 25].  

3. STUDIES RELATED TO FETAL VPA SYNDROME 
AND ASD 

 Gestational exposure to VPA has been extensively asso-
ciated with an increased risk of major congenital malfor-
mations, delayed cognitive development, and ASD [26-31]. 
Currently, its clinical recommendation for pregnant women 
is controversial [6, 32, 33]. 
 Fetal valproate syndrome (FVS) was first reported in 
1993 to describe a group of major congenital malformations 
associated with exposure to VPA during the first trimester 

[34]. Currently, there is a long list of congenital disturbances 
associated with FVS, including neural tube defects and skin, 
musculoskeletal, cardiovascular, genital, and pulmonary ab-
normalities [35-38]. Furthermore, fetal exposure to VPA is 
related to cognitive impairments and developmental delays 
[6, 39-44]. However, there is no clear linear relationship be-
tween VPA dose, exposure time window, and risk of major 
congenital or developmental delays arising from prenatal 
exposure to VPA. In general, the first trimester of pregnancy 
could be a period of susceptibility to the teratogenic effects 
of VPA during development [43-48]. However, this suscep-
tibility may be explained by developmental processes during 
the first trimester of pregnancy. During this period, the pro-
cesses of organogenesis and neural tube closure occur [49, 
50], which are especially vulnerable to external factors such 
as infections, medications, and environmental toxins, which 
can interfere with the normal development of organs and 
structures and lead to congenital malformations [47, 51-53].  
 In addition, the first studies describing FVS also reported 
an increase in the incidence of autism diagnosis in children 
[27, 54-56]. Further studies support VPA during gestation as 
a risk factor for increased ASD diagnosis in children [28, 57-
59]. In a longitudinal study with 528 children exploring the 
relationship between prenatal exposure to antiepileptic drugs 
and the prevalence of neurodevelopmental disorders, ASD 
was the most frequent diagnosis for the offspring of pregnant 
women taking monotherapy or polytherapy of VPA [60]. 
One of the largest studies, conducted from 1996 to 2006, 
with a sample of 655, 615 children, reported a two-fold in-
creased risk of a diagnosis of ASD in children exposed to 
VPA in utero [31]. Further studies with large cohorts found 
similar results [39, 61, 62]. Curiously, fetal VPA exposure in 
any trimester of gestation had an increased risk of ASD di-
agnosis in children [9], which supports the importance of 
elucidating the mechanism of VPA in the cellular and mo-
lecular processes underlying ASD.  

4. PRENATAL VPA EXPOSURE AS A MODEL OF 
ASD 

 According to clinical evidence, there is a link between 
maternal treatment with VPA and an increased risk of ASD 
diagnosis in their children. As a result, prenatal VPA expo-
sure has been suggested as an experimental animal model for 
autism-like behaviors. The study of animal models that mim-
ic some of the pathogenic mechanisms and clinical pheno-
types observed in human disease can be valuable for devel-
oping new therapies that can be extrapolated to humans [63-
65]. Currently, no medical test is available for diagnosing 
ASD, nor are there specific neurobiological markers associ-
ated with the disorder. Instead, clinicians rely on evidence 
from behavioral criteria described in DSM-V-TR [66], which 
limits the face validity criteria considered to model clinical 
phenotypes in animals. This also highlights the relevance of 
understanding the physiopathology of human disorders. 
Therefore, the face validity of prenatal VPA exposure is based 
on detecting behavioral impairments that resemble ASD in 
humans [67]. Also, this model partially achieves construct 
validity by using VPA, a widely described risk factor associ-
ated with ASD. The etiological and pathological mechanisms 
involved are not fully understood, but they are complex and 
heterogeneous conditions involving genetic and epigenetic 
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interactions during early brain development. According to 
this, the prenatal VPA exposure model represents a form of 
idiopathic ASD that involves environmental factors.  
 Since the first study reporting prenatal exposure to VPA 
in rats as a model linked to autism [68], it has been exten-
sively reported across multiple studies that reproduce the 
behavioral features associated with ASD. These features 
include lower sociability, deficits in communication, in-
creased repetitive behavior and stereotypies, deficits in pre-
pulse inhibition, lowered sensitivity to pain, increased anxie-
ty, and hyperlocomotor activity [69-72]. Despite the promis-
ing results, there is considerable variability in the methods 
used to induce the VPA model. The first study reporting the 
critical method to induce autism-like behaviors in rats in-
volved injecting pregnant rats with a single dose of VPA 
around the time of fetal neural tube closure, which occurs at 
approximately gestational day 12 [73]. One common source 
of variability is the gestational day of exposure to VPA. 
Studies choose to expose embryos earlier or later than day 
12. Indeed, social deficits and sensory abnormalities have 
also been observed in rodents following early postnatal ex-
posure to VPA [74-76]. This finding supports the notion that 
short gestational development in rodents is comparable to the 
early postnatal period in humans [77]. However, the effects 
of VPA on gene expression were different during the postna-
tal period [78]. Additionally, the dose of administration and 
sex-specific studies are common sources of variability be-
tween studies, especially in rats and mice, which are the 
most commonly used species for modelling purposes, as 
previously discussed [69, 79]. Despite the differences report-
ed to induce an autism-like behavioral model, behavioral 
features and the pathophysiological mechanisms involved 
appear to be conserved across species. Several studies sup-
port the role of VPA in ASD in nonhuman primates, rats, 
mice, chicks, and fish (Table 1). This makes it a valuable 
model for further research into the complex gene-
environment interactions involved in ASD. In humans, ma-
ternal VPA is a risk factor because it affects fetal brain de-
velopment but seems not to be associated with a specific 
trimester of gestation [9]. A systematic analysis conducted in 
rodents recapitulates the differences in dose and time of ad-
ministration for the two major core symptoms of ASD. The-
se symptoms are characterized by deficits in social interac-
tion and communication, and an increase in restricted or re-
petitive/stereotyped behavior [66]. Moreover, there is an 
additional sub-category described as cognitive rigidity or 
inflexibility, concluding that despite methodological differ-
ences, a dose between 400-600 mg/kg and a time window 
around E11.5-12.5 consistently induce core behavioral im-
pairments related to ASD. This holds true even across differ-
ent rodent strains and routes of administration [80]. In addi-
tion, there is consistent evidence that a dose between 300-
600 mg/kg administered around E10-E13 can induce autism-
like behaviors.  
 Herein, we have compiled a summary of studies that have 
investigated the effects of prenatal exposure to VPA in ro-
dents. We have focused on studies that used a consistent 
dosage range (400-600 mg) and administered the VPA 
around E11.5-E12.5. Additionally, we have included studies 
conducted in nonhuman primates, chicks, and fish that have 
reported behavioral impairments related to the two major 

core symptoms of ASD (Table 1). In addition, the studies are 
classified according to the developmental period of the spe-
cies during which the behavioral test was performed. In this 
sense, although the evaluation period has introduced addi-
tional variation into the model, the results have been conclu-
sive.  

5. VPA AND DISRUPTION OF BRAIN DEVELOP-
MENT 

 The mechanisms by which VPA disrupts development 
have not yet been fully explained. However, several reports 
have shown that prenatal exposure to VPA alters the pro-
cesses of cell growth, neurogenesis, migration, differentia-
tion, and apoptosis during gestational or early postnatal de-
velopment [81, 82]. Multiple mechanisms have been pro-
posed to explain how a single exposure to VPA in the period 
near the closure of the neural tube impacts the course of neu-
ral development and reproduces the morphological and func-
tional changes found in ASD patients. 
 Children with ASD commonly display a range of altera-
tions of brain networks [199-201], which are considered a 
brain connectivity disorder that modifies excitatory/ 
inhibitory balance [202]. However, several processes during 
brain development can affect this balance and the connectivi-
ty of several structures. Postmortem brain analysis of ASD 
patients reported alterations in cellular distribution, brain 
volume, and abnormal neuronal morphologies that affect 
their connectivity and functioning [82, 203-206]. In this sec-
tion, we focus on how prenatal exposure to VPA in experi-
mental animals replicates the clinical evidence reported in 
patients with ASD (Fig. 2), which helps to understand the 
physiopathology of this disease.  

5.1. Neurogenesis and Cell Growth 

 Neurogenesis is the process of generating new neurons 
by neural stem cells (NSCs) and neural progenitor cells 
(NPCs), which are regulated by epigenetic and genetic fac-
tors. Neurogenesis and cell growth are coordinated events 
during brain development and are essential to developing 
functional structures and neural circuits [207]. Therefore, 
neurodevelopmental disorders such as ASD are linked to 
alterations in this process. 
 It was proposed that abnormal growth patterns during 
brain development in the physiopathology of ASD [208, 
209], which manifest as differences in head circumference or 
brain size [210-215], are even related to higher co-morbidity 
with macrocephaly and microcephaly [213, 216]. These mac-
ro anatomical changes could be related to the disruption of 
neurogenesis and cell migration during brain development. 
Postmortem brain tissue from young ASD patients has 
shown an increased neuronal population in the cortex [217-
219], abnormal cortical lamination [219], and cerebral dys-
plasia in several regions of the brain [220]. However, evi-
dence from brain postmortem or imaging in ASD patients is 
limited, hence the relevance of animal models. 
 Based on the evidence from ASD patients, several reports 
have indicated that prenatal exposure to VPA alters the pro-
cesses of neurogenesis by affecting the population of NSCs 
and NPCs [185, 221, 222] that, in turn, reduces the number 
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Table 1. Autism-like behaviors by prenatal VPA exposure model across different species.  

- Behavioral Trait Evaluated

VPA Dose and 
Time Exposure 

Specie 
Developmental 
Stage Tested 

Cluster A: Social & Communication 
Deficits (References) 

Cluster B: Restrictive and Perseverative 
Behaviors (References) 

Between  
400-600 mg/kg 

Around E11.5-12.5 

Rodent 

(Rat/Mouse) 

 

Newborn-Infant 

Rat/Mouse 

P0 > P19 

� Ultrasonic vocalizations [83-92] 

� Free social interaction [93]  
� Open-field repetitive behaviors [93] 

Juvenile 

Rat P20 >P39 

Mouse P20 > P29 

� Social preference [73, 85, 87, 89, 94-
120] 

� Social Novelty  

[73, 85, 87, 89, 90, 94-113, 115-123] 

� Free social interaction [84, 86, 87, 89, 
90, 93, 101, 106, 111, 114, 116, 120, 
124-137] 22/10/23 3:49 PM 

� Open-field repetitive behaviors [87, 89, 
94, 95, 99, 103, 106-112, 116, 117, 119, 
122-125, 127, 128, 130, 131, 133, 134, 
137-141] 

� Marble Burying [104, 116, 142]

� Inflexibility by T or Y maze [84, 101, 
111, 129, 132] 

Pubertal 

Rat P40 > P69 

Mouse P30 > P59 

� Social preference [83, 85, 95, 97, 98, 
102, 104, 104, 105, 107, 108, 110, 111, 
113, 115-117, 119-122, 143-159] 

� Social Novelty [85, 95, 97, 98, 102, 
104, 107, 110, 111, 113, 117, 119-122, 
145, 150-153, 155-160] 

� Free social interaction [86, 111, 116, 
120, 124, 125, 128-130, 134, 135, 137, 
161-170] 

� Open-field repetitive behaviors [85, 95, 
107, 108, 111, 116, 117, 119, 122, 124, 
125, 128, 130, 134, 137, 140, 143, 146, 
147, 150-152, 152-155, 157-161, 169-
174] 

� Marble Burying  

[104, 116, 148, 158, 170] 

� Inflexibility by T or Y maze [111, 129, 
145, 150-152, 155, 156, 159, 163, 168] 

Adult 

Rat P70 > 

Mouse P60 > 

� Social preference [83, 89, 101, 104, 
114, 115, 120, 145, 149, 154, 175-179] 

� Social Novelty [89, 104, 120, 145, 
154, 175, 179] 

� Free social interaction [89, 90, 101, 
114, 120, 124, 134, 135, 167, 180, 
181] 

� Open-field repetitive behaviors [89, 124, 
134, 138, 140, 154, 180-183] 

� Marble Burying [104] 

� Inflexibility by T or Y maze [101, 104, 
145] 

Between 

200-300 mg/kg 

Daily E60-68  
[184] 

Double: 

E26 & 29  
[185] 

Daily E60-66  
[186] 

Nonhuman  
Primate 

 

Infant 

3 months+ 
● Vocalizations [184] - 

Juvenile 

17-21 months++

● Social visual preference [185] 

● Free social interaction [185] 
● Stereotypic circling behavior [185] 

Adult 

1.4-2.2 years+ 
● Third-party social reciprocity [186] - 

35 µmol p/egg 

Embryo egg day 14 

Domestic  
Chick 

 

Newborn 

to 1st week of age 

● Social preference [187, 188] 

● Social visual preference [189] 

● Social attachment [190]

● Free social interaction [191] 

● Vocalizations [191, 192] 

-

2nd to 3rd week of 
age 

● Social (familiar) preference [192] - 

 
(Table 1) Contd… 
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- Behavioral Trait Evaluated 

VPA Dose and  
Time Exposure 

Specie 
Developmental 
Stage Tested 

Cluster A: Social & Communication 
Deficits (References) 

Cluster B: Restrictive and Perseverative 
Behaviors (References) 

Between 

5-75 µM 

Long exposure 

8-108 hpf [193] 

4-120 hpf [194] 

0-48 hpf [195] 

10-24hpf [196] 

Zebrafish 

 

Young 

5-21 dpf 

● Social preference [194] 

● Social visual preference [193] 

● Free social interaction [193] 

● Shoaling behavior [193] 

● Stereotypic circling behavior [194] 

Adult 

70 & 120 dpf  
[195] 

6 mpf [196] 

● Social preference [195, 196] -

Note: Studies conducted are classified according to three criteria: 1) Group of species tested, such as rodents, including mice and rats from different strains; 2) 
Developmental stage when the behavioral test was conducted for each species. Rodent developmental stages were considered based on sexual development and 
typical gonadal hormone-sensitive social behavior in comparison to humans [197]. Studies involving nonhuman primates, domestic chicks, and zebrafish exam-
ined the stage of development relevant to each study; 3) Autism-like behaviors were grouped and categorized based on the two diagnostic criteria outlined in 
DSM-V-TR [66]. Variations on behavioral tests were grouped based on the common core of impairments reported. From Cluster A: Social preference: The 
preference to choose social stimuli, usually an animal from the same species, over neutral or nonsocial stimuli like an empty space or object. Social novelty: 
The preference to choose novel social stimuli over familiar ones. In domestic chicks, social familiarity is expected, which leads to opposing behavior. Free 
social interaction: This behavioral test measures typical social behaviors in each species, allowing animals to interact freely. Vocalizations: An analysis of the 
pattern and frequency of vocal calls to communicate with each other, or with its mother. Social visual preference: The tendency to choose an image or object 
with typical social characteristics of each species, such as faces or shapes. Third-party social reciprocity: Individuals discriminated between human actors who 
reciprocated in social exchanges and those who did not. Social attachment: The adaptive or learned formation of social bonds with specific individuals. Shoal-
ing behavior: The tendency of fish to form groups or schools and swim together in a coordinated manner. From Cluster B: Open-field repetitive behavior: 
Frequency of behaviors, typically in an open field [198], which allows measuring behaviors outside of a familiar home cage arena and includes repetitive 
movements, rearing, self-grooming, locomotion, or hyperactivity. Marble burying: Frequency of behaviors exhibited in a familiar home cage environment (with 
bedding material) and unfamiliar objects that elicit digging behavior toward the novel object. Common behaviors reported: The number of marbles buried, time 
and frequency of burying, digging, or self-grooming. Inflexibility in the T or Y maze: The test requires the animals to switch to a new reward location between 
trials, thus assessing their behavioral flexibility. Stereotypic circling behavior: Repetitive and circular movement patterns exhibited by animals, including pri-
mates, mice, and zebrafish. Terminology: E, embryo, or gestational day (E11.5); P, postnatal day (P3); hpf, hours post-fertilization; dpf, days post-fertilization; 
mfp, months post-fertilization. +Marmoset monkey (Callithrix jacchus), ++Cynomologus monkey (Macaca fascicularis). 

 

 
 

Fig. (2). Anatomical and cellular disorganization in neuronal distribution and white matter circuits observed in the human brain of ASD sub-
jects and the autism-like model of VPA exposure. Abbreviations: CC Corpus callosum, HIP Hippocampus, PHG Parahippocampal gyrus, 
AMY Amygdala, CBV Cerebellar vermis, ACC Anterior cingulate cortex, PFC Prefrontal cortex, V Motor nuclei, SOC Superior olivary 
complex, VIS2 Secondary visual area, DG Dentate gyrus, CA1 Hippocampal field CA1, AI Agranular insular area, TL Temporal lobe, Pir 
Piriform cortex, BLA Basolateral amygdala, MB Midbrain, ORB Orbitofrontal area. (A higher resolution/colour version of this figure is 
available in the electronic copy of the article). 
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of neuroblasts and modifies their cell fate during embryo 
development [82, 223, 224]. Prenatal exposure to VPA in a 
window from embryonic day (E) 10.5 to E12.5 alters the 
neuronal distribution and density in the postnatal brain hip-
pocampus, cerebellum, brainstem motor nuclei, superior 
olivary complex, and cerebellar vermis [129, 225-228]. 
Some studies even suggest differences in cortical layers af-
fecting the neuronal distribution in the upper layers of the 
prefrontal, somatosensory, and secondary visual cortex [88, 
229] and middle and lower layers of the prefrontal and soma-
tosensory cortex [130, 230]. Consistent with this, hippocam-
pal neurogenesis in the adult brain was found to be reduced 
after prenatal exposure to VPA [81], and cell density im-
pairments were reported in the dentate gyrus and CA re-
gions. Similarly, acute exposure to VPA during the entire 
gestational period inhibits the cell cycle exit of NPCs and 
increases the production of projecting neurons in superficial 
neocortical layers [231]. 

 Interestingly, non-murine models of prenatal exposure to 
VPA, such as non-human primates and zebrafish, show a 
consistent neurogenesis impairment. Prenatal exposure to 
VPA in cynomolgus monkey at gestational day 26, which is 
an equivalent period in murine models, found a decreased 
neurogenesis and fewer cells in the cerebellar external granu-
lar layer and layers II and IV of the prefrontal cortex (PFC) 
[185]. Zebrafish embryos exposed to VPA after eight hours 
post fertilization showed an increased proliferation rate [193] 
and reported on this model delayed neurogenesis NeuroD1 
disruption on the optic tectum, a brain region with homology 
to the superior colliculus in humans [232, 233]. In addition, 
studies in vitro have helped us understand VPA’s effects on 
neurogenesis and cell growth. Exposure to 1mM VPA de-
creases the proliferation of human NPCs in culture, followed 
by mitochondrial dysfunction and increased differentiation to 
an excitatory neuronal phenotype [234]. Interestingly, NPCs 
from rat embryos exposed to 0.5 mM VPA increase prolifer-
ation and differentiation to a neuronal phenotype [222], sug-
gesting different effects according to the VPA concentration. 
Lastly, novel techniques such as three-dimensional cultures, 
called brain organoids, have become especially relevant for 
modeling brain development and neurodevelopmental disor-
ders directly from human-derived cells [235, 236]. Single 
VPA exposure in brain organoids from human embryonic 
stem cells (hESCs) alters the neurogenesis and NPC popula-
tion, which contributes to dysregulated neuronal fate toward 
upper-layer neurons, causing abnormal neocortical expan-
sion [12]. The effects of the exposure to VPA appear to be 
time-dependent, as observed when a five-day exposure to 0.5 
mM VPA in human-brain organoids shows an increase in the 
proliferation of neural precursors, but not after 10 days of 
VPA exposure [11]. This event seems to be dependent on 
Wingless (Wnt) signaling and Pax6 transcription factor ex-
pression [122, 222] that, in turn, can lead to differential out-
comes in the total number of mature neurons. Overall, these 
results suggest a dysregulation in the early processes of neu-
rogenesis and cell growth arising from prenatal exposure to 
VPA, similar to what occurs during neurodevelopment in 
patients with ASD. 

5.2. Migration  

 Neural migration is a crucial event in the development of 
brain circuits (Pan et al., 2019). In this process, nascent neu-
rons undergo cellular migration from the ventricular-sub-
ventricular zone [237] in a programmed pattern to align radi-
ally into columnar structures, providing a functional unit in 
the neocortex [224, 238]. Disruption in the number of new-
born cells or the migration process could lead to the abnor-
mal neuronal distribution discussed in the previous section. 
Interestingly, abnormalities in cortical lamination have been 
previously reported in ASD patients [239-242]. Thus, prena-
tal VPA exposure disrupts granule cell number during the 
migratory period of cerebellar development, causing abnor-
mal Purkinje cell layer [243], and exotopic Purkinje cells 
have been identified [82]. A study comparing migration pat-
terns of BrdU+ cells from mice embryos exposed to VPA on 
days 12.5, 13.5, or 14.5 found less number of cells incorpo-
rated in cortical layers on postnatal day 7 by prenatal expo-
sure on day E12.5. Interestingly, prenatal exposure on day 
13.5 slightly reduces the number of BrdU+ cells, and no dif-
ferences were reported in migration patterns by prenatal ex-
posure on day 14.5 [130]. Previous studies reported that pre-
natal exposure to VPA alters the migration of NPCs in the 
adult hippocampal neurogenesis and decreases the expres-
sion of Cxcr4 [244], a chemokine related to proper migratory 
patterns of granule newborn neurons in neurogenesis [245, 
246], suggesting a mechanism implicated in seizure suscep-
tibility [244]. These disturbances of the migration pattern of 
new neurons in the adult hippocampus caused by prenatal 
VPA exposure are related to increased seizure susceptibility 
[244]. However, changes in CXCR4 transcription have been 
directly linked to the inhibition of histone deacetylase activi-
ty (HDACi) by VPA, thus increasing Histone H3 acetylation 
at the promoter site for Cxcr4 in cultured mesenchymal cells, 
increasing their ability to migrate [247]. In addition, several 
genes involved in cell adhesion and migration processes are 
differentially expressed after prenatal VPA exposure [244], 
including Cntnap2, a gene recently associated with ASD 
[248]. Therefore, transcriptome dysregulation of genes regu-
lating cell migration could be a mechanism related to the 
pathophysiology of ASD. 

5.3. Cellular and Molecular Impairments in Neuronal 
Organization 

 During brain development, neurons exhibit unique mor-
phological and molecular changes that give rise to broad 
neuronal phenotypes and complex neural circuits. These 
structural and functional changes include a long axonal pro-
cess to connect with target neurons, complex dendritic arbor-
ization, the establishment of functional synapses, specific 
molecular profiles such as neurotransmitters, and properties 
of neural firing reflecting functional phenotypes [249, 250]. 
Furthermore, the neuronal arrangements lead to complex 
connectivity and brain function [251]; therefore, disrupting 
these processes could lead to dysfunctional networks [224]. 
In addition, ASD was previously suggested as a heterogene-
ous group of disorders emphasizing differences in brain 
growth and molecular phenotypes [208].  
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 Postmortem brain analysis of ASD patients showed an 
increased number of 5-HT+ ascending fibers from sero-
tonergic neurons of the medial/lateral forebrain bundles, in-
cluding increased innervation density into the amygdala, 
piriform, superior temporal, and parahippocampal cortices 
[252, 253]. Furthermore, small soma in neurons and in-
creased cell density per area were reported in the hippocam-
pus, cerebellum, and frontal and temporal lobes of ASD pa-
tients [206, 254]. In addition, decreased density of dendritic 
spines was reported in the prefrontal cortex and hippocampal 
neurons [255-258]. According to these findings, prenatal 
VPA exposure generates large soma in neurons from cere-
bellar nuclei [227] and altered dendritic arborization patterns 
by higher complexity in the proximal dendritic segment, but 
fewer branches at distal sites of cerebellar Purkinje cells 
[228]. Besides, decreased dendritic density or spine density 
has been reported in the hippocampus, amygdala, prefrontal 
and somatosensory cortex [81, 82, 259, 260]. Previous stud-
ies have reported abnormal neuron compartmentation of cells 
in the striatum, which leads to decreased corticostriatal syn-
apses and impaired circuits with the prefrontal, granular in-
sular, and somatosensory cortices because of prenatal VPA 
exposure [88].  
 In addition, studies in vitro and on zebrafish have been 
helpful in understanding the mechanisms implicated in cellu-
lar and molecular impairments arising from prenatal expo-
sure to VPA. Axonal ectopic branches and excessive abnor-
mal branching increased in a VPA concentration-dependent 
pattern during the gestational development of zebrafish 
[261]. In contrast, at higher doses, VPA induces delayed 
neuropil formation and axogenesis [232]. Interestingly, VPA 
induces abnormal differentiation of serotoninergic neurons 
by downregulating the proneural ascl1b gene, a mechanism 
mediated by HDAC1 inhibition [262]. The effect on neu-
ronal differentiation could be dependent on the period of 
development. In culture neurons from mice, embryos ex-
posed to VPA at day 12.5 but not E14.5 had reduced dendrit-
ic morphology and expression of synaptic proteins such as 
Nlgn1, Cntnap2, and Shank3, all of which are associated 
with ASD [263]. 

5.4. Excitatory/Inhibitory Imbalance 

 The excitatory and inhibitory (E/I) neural activities are 
highly regulated at molecular, cellular, and circuitry levels in 
the nervous system. These changes maintain a relatively sta-
ble relationship through multidimensional and time-scaled 
neural circuits in the brain. Otherwise, structural alterations, 
especially during the brain development of cortical layers 
and synapse formation, could lead to dysregulated synaptic 
transmission, plasticity, and intrinsic neuronal excitability. 
These factors may contribute to an imbalance in E/I signal-
ing, which could explain the etiology of ASD [202, 264]. 
The term was first introduced to explain sensory, social, and 
emotional behaviors in individuals with ASD [265]. Binocu-
lar rivalry is a perceptual process that emphasizes the im-
portance of reciprocal inhibition [266, 267], which is de-
pendent on E/I dynamics and is reduced in individuals with 
ASD [268, 269]. The distribution of neurons in the neocortex 
is arranged in mini-columns, which modulates the microcir-
cuitry of glutamatergic and GABAergic signaling. This ar-

rangement is altered in ASD subjects, leading to impaired 
integration [254, 270-272] and processing of signals [273]. 
In addition, lower GABA concentrations in the sensorimotor 
cortex correlate positively with increased sensitivity to tactile 
stimuli in ASD adult subjects [274]. However, differences in 
neurotransmitter concentrations may not be the only factor 
that explains these differences in sensory processing. A study 
found no variations in GABA levels in adults with ASD of 
similar age [275]. In addition, human postmortem studies 
have reported decreased levels of GABAA and GABAB re-
ceptors in the anterior cingulate cortex [276, 277] and 
dysregulated expression of glutamate decarboxylase en-
zymes GAD65 and GAD67 in the cerebellum [278-280]. 
Also, several genetic variants in GABA receptor subunits 
have been reported in individuals with ASD [281]. Both in-
creased and decreased ratios of E/I activity have been sug-
gested in ASD subjects. This could be attributed to various 
compensatory mechanisms that underlie the heterogeneity of 
the ASD population [282].  
 Prenatal exposure to VPA induces a decrease in the ex-
citability of glutamatergic neurons and an increase in local 
connectivity of the prefrontal cortex in adult rats but not in 
adolescence [283]. This could be explained as an impaired 
compensatory mechanism or the result of delayed prefrontal 
cortex maturation. In addition, altered expression of glutama-
tergic (vGluT1, GluN1-2, PSD-95) and GABAergic (vGAT, 
GAD65, GAD67) proteins, as well as changes in the number 
of synapses, were reported in adolescent and adult mice ex-
posed to VPA [284]. The same increased imbalance in E/I 
proteins was reported in the prefrontal cortex [95, 285]. Ad-
ditionally, pharmacological blockage of the glutamatergic 
transmission reverses the impairments in social behavior 
[285]. Selectively inhibiting D2R+ pyramidal neurons in the 
medial PFC ameliorates social deficits, whereas non-specific 
inhibition does not improve social behavior [286]. In the 
somatosensory cortex, an overexpression of NMDA receptor 
subunits and enhanced mediated transmission and LTP were 
reported in rats prenatally exposed to VPA [287]. Moreover, 
local hyperconnectivity and reduced excitability of pyrami-
dal neurons have been reported in this region, specifically 
the PFC [288, 289], which contribute to the altered microcir-
cuitry of glutamatergic and GABAergic signaling. In addi-
tion to this E/I imbalance, the number of PV+ GABAergic 
interneurons was reduced in the neocortex [229], and inhibi-
tory post-synaptic currents were reduced in the temporal 
cortex [290]. Consistently, studies have reported abnormal 
amygdala synaptic E/I imbalance and hyper-excitability 
[131]. In the anterior cingulate cortex, there was a significant 
decrease in the E/I imbalance during the postnatal develop-
ment of mice from P7 to P30. This imbalance resulted in 
altered transmission and synaptic plasticity, which were as-
sociated with decreased BDNF expression during the devel-
opmental period [291]. Abnormal development of synaptic 
transmission was also reported in the cerebellum of VPA-
treated mice [228]. In addition, nonhuman primates exposed 
to VPA during gestation showed impaired levels of proteins 
related to glutamatergic (vGluT2, mGluR5, GluN2) and 
GABAergic (vGAT) systems [185]. Also, a study reported a 
differential effect on expressed genes in E/I neurons in hu-
man forebrain-derived organoids exposed to VPA [13]. 
Overall, these results support the hypothesis that prenatal 
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exposure to VPA exposure leads to an E/I imbalance, which 
is associated with the physiopathology of ASD. 

5.5. Oligodendroglia and Myelination Impairments  

 Oligodendrocytes (OLs) and myelination play critical 
roles in shaping the functional and structural connectivity of 
the central nervous system. OLs are glial cells responsible 
for the production and maintenance of myelin sheaths around 
axons. They facilitate neuronal transmission and provide 
trophic and metabolic factors [292]. Oligodendrocyte precur-
sor cells (OPCs) have been identified since E12-E14 in ro-
dents and gestational weeks 6-10 in humans. However, mye-
lination begins late in gestational development in humans 
and postnatally in rodents [293-295].  
 Abnormalities in the development of myelination and 
white matter integrity have been reported in ASD subjects, 
which disrupt the connectivity of inter-hemispheric, short-
local, and long-range association fibers, resulting in abnor-
mal brain growth patterns [296-299]. Enlargement of white 
matter structures during the first years of life is described in 
individuals with ASD, but it tends to decrease in size as they 
age [300]. A study conducted with ASD adolescents revealed 
a low density of white matter tracts in the corpus callosum 
and long-range association fibers, such as the uncinate and 
arcuate fasciculus [301]. Also, a combination of decreased 
and increased white matter across brain structures has been 
reported, emphasizing age-related differences [302]. Thus, 
pathological changes in the cytoarchitecture of the white 
matter in the cerebral cortex and abnormal myelination in the 
corpus callosum may explain the dysfunctional connectivity 
found in several regions of ASD subjects. In addition, the 
presence of white matter abnormalities or their resolution is 
associated with the severity of symptoms [303-310]. Abnor-
malities in the population of OLs and axon myelination 
could explain these differences.  
 Prenatal exposure to VPA resulted in a decrease in mye-
lin basic protein (MBP) immunoreactivity in the basolateral 
amygdala and piriform cortex of adult mice, which correlates 
with impaired social behavior. Additionally, the basolateral 
amygdala and piriform cortex exhibited an increase in mye-
lin sheath thickness and a decrease in the number of Olig2+ 
and CC1+ cells. Olig2 is a transcription factor for the OL 
lineage, while CC1 is a common marker of mature OLs. 
These changes were observed in both the PFC and piriform 
cortex [299]. However, differences in age, brain structures, 
and the process of oligodendroglia maturation have been 
reported. In rats prenatally exposed to VPA, variations in 
Olig2 messenger RNA (mRNA) and protein levels, as well 
as the number of Olig2+ cells, were observed in the hippo-
campus, PFC, and cerebellum [83, 311]. Also, differences 
were reported between early, juvenile, and adult develop-
ment, with both increased and decreased patterns of Olig2 
marker or positive cell numbers [311]. In contrast, a study 
reported a decrease in myelin content but a preserved popu-
lation of OL cells in the corpus callosum at PND15. Howev-
er, there was a consistent disruption observed in myelin con-
tent, number of myelinated axons, and OL population from 
PND15 to PND36 [312]. These stages in rats are similar to 
the infant and juvenile stages of human development [197]. 
Overall, these results suggest a significant reduction in the 

postnatal development of OLs and myelination in the corpus 
callosum. Additionally, prenatal exposure to VPA appears to 
affect the trajectories of OL and myelination in the gray mat-
ter differently. According to this, there is a consistent finding 
of reduced white matter density and structural integrity of the 
corpus callosum in ASD subjects, regardless of age. Howev-
er, there are different patterns observed in gray matter struc-
tures and long-range association fibers [302]. In addition, 
downregulated expression was reported in Olig2, Mbp, and 
Chd7, while upregulated expression of Lingo1 was observed 
in the PFC of prenatally exposed rats [313]. In this sense, 
CHD7 is a chromodomain helicase DNA-binding protein 
that promotes OL differentiation [314], and LINGO1 is a 
transmembrane signaling protein that inhibits OL differentia-
tion and myelin production [315]. Overall, a few studies 
have addressed the impairments in OLs and myelination 
caused by prenatal exposure to VPA. Nevertheless, further 
studies are needed to clarify the mechanisms involved during 
gestational development and their relationship with ASD. 

5.6. Immune and Oxidative Stress Impairments  

 Prenatal insults, such as infections, toxins, and maternal 
stress, as well as subsequent immunological activation, can 
increase the risk of neurodevelopmental disorders [316]. The 
mechanism by which maternal immune activation (MIA) 
leads to ASD has not been fully understood. This includes 
several pathological processes, such as the upregulation of 
cytokine and chemokine expression, oxidative stress, mito-
chondrial dysfunction, early glial activation, and maternal 
autoantibodies that cross to the fetus [317-321]. These pro-
cesses result in long-lasting changes in the expression of 
other immune molecules, such as major histocompatibility 
complex I and molecules that regulate synapse formation and 
brain development [317].  
 MIA plays a significant role in the heterogeneous and 
biological etiology of ASD [322]. In individuals with ASD, 
decreased mononuclear cells, T lymphocytes CD4+, low 
responsiveness to mitogen stimulation [323, 324], and in-
creased levels of pro-inflammatory cytokines [325-327] have 
been reported. Postmortem studies have reported increased 
activated microglia and reactive astrocytes in the cerebellum, 
fronto-insular cortex, prefrontal cortex, and visual cortex 
[328-330]. Noninvasive neuroimaging studies with (11C)(R)-
PK11195, a selective radioligand for microglia, have shown 
an increased activated phenotype in several brain regions, 
including the cerebellum, midbrain, pons, fusiform gyri, an-
terior cingulate, and orbitofrontal cortex [331]. In addition, 
MIA involves oxidative stress and mitochondrial dysfunction 
[332, 333]. Moreover, in individuals with ASD, impaired 
production of oxidative markers such as reactive oxygen 
species (ROS) and nitrogen free radicals [317, 318, 334] has 
been reported. Additionally, decreased levels of glutathione 
(GSH), oxidized glutathione (GSSG), and glutathione re-
dox/antioxidant capacity (GSH/GSSG) [318] suggest in-
creased oxidative stress and reduced antioxidant capacity.  

 Although VPA exposure is not an infectious factor, pre-
natal exposure has been shown to induce immune activation 
in the brain. In murine models, an increased density of astro-
cytes and microglia was reported in the prefrontal cortex, 
hippocampus, and cerebellum [154, 311, 335]. In the hippo-
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campus, prenatal exposure to VPA increased the expression 
of anti-inflammatory microglial M2 phenotype markers. 
Otherwise, in the cerebral cortex, both M2 and pro-
inflammatory M1 phenotype markers are increased, which is 
consistent with the increased expression of pro-inflammatory 
cytokines only in the cerebral cortex [336]. An increase in 
ROS and a limited antioxidant capacity have also been 
demonstrated in both regions [336]. This could potentially 
trigger immune activation. Also, TREM2 downregulation, a 
transmembrane immune receptor expressed exclusively in 
microglial cells, has been proposed as a mechanism related 
to the activation of a pro-inflammatory phenotype and its 
role in synaptic pruning [337]. In contrast, a reduction in 
Iba1+ microglia was observed in the motor cortex, which 
may be attributed to the early postnatal age [338]. In addi-
tion, studies have reported increased responses to inflamma-
tory stimuli and elevated basal levels of corticosterone [149, 
154, 180], which have both suppressive and enhancing ef-
fects on immune function [339]. According to this, prenatal 
exposure to VPA induces atrophy of the thymus [135, 180]. 
It also leads to lower levels of IFN-γ/IL10 and increased 
production of nitric oxide (NO) in peritoneal macrophages 
[180]. In fact, the levels of both IFN-γ and NO were posi-
tively correlated in individuals with ASD [340]. In contrast, 
several studies have reported the anti-inflammatory proper-
ties of histone deacetylase (HDAC) inhibition with VPA 
[341-343]. However, increased pro-inflammatory cytokines 
TNFα, NO, and IL-1β were reported after acute exposure to 
VPA in macrophages, but only in response to an inflammato-
ry stimulus [344]. Blood-brain barrier (BBB) impairment 
during the gestational period was also suggested as a pivotal 
event to increase immune activation [345]. Accordingly, 
prenatal exposure to VPA causes impaired BBB permeability 
and aquaporin expression in the choroid plexus, prefrontal 
cortex, and somatosensory cortex [346]. Overall, this evi-
dence supports immune alterations caused by prenatal expo-
sure to VPA during postnatal brain development or in adult 
mice. 

6. VPA MECHANISM OF ACTION DURING GESTA-
TION 

 The long-term behavioral and neurobiological impair-
ments associated with ASD in human patients caused by 
VPA are not completely elucidated in terms of how they 
begin after a single VPA exposure. However, we summarize 
these neurobiological alterations in the postnatal brain in 
Table 2. Several studies have suggested a set of intersecting 
pathways and multiple chemical interactions with VPA [69]. 
Some of these interactions have been experimentally demon-
strated, such as HDAC [347, 348], while others have been 
suggested theoretically or in silico, such as GSK3β, PKCβII, 
JARID1A, and EZH2 [349-351]. Furthermore, it is not clear-
ly understood how HDAC inhibition leads to several dysreg-
ulated processes during gestational development, which we 
will discuss in the following section. Additionally, it is un-
clear how these disturbances converge with other ASD-
related animal models, suggesting a complex genetic-
epigenetic interplay associated with the etiology of ASD 
[352]. 

6.1. Epigenetics: HDAC Inhibition and Chromatin Re-
modeling  

 VPA can regulate gene expression due to its mechanism 
as a histone deacetylase inhibitor (HDACi). HDAC is an 
enzyme responsible for removing acetyl groups from histone 
proteins, which can result in the tightening of chromatin 
structure and the repression of gene expression [353]. Con-
versely, HDACi, such as VPA, increase the level of histone 
hyperacetylation associated with a more open chromatin 
structure, allowing for increased accessibility of DNA to 
transcription factors and other regulatory proteins [353].  
 VPA and its analogs inhibit multiple HDACs from Clas-
ses I and II (excluding Class IIb, which is composed of 
HDAC6 and 10). This inhibition leads to an increase in his-
tone H3 and H4 acetylation [347, 348, 354], specifically at 
lysine (K) residues [355]. The acetylation levels of H3/H4 
were transiently increased after embryonic exposure to VPA 
in mice, which also exhibited autism-like behaviors [130]. 
H3K9ac was increased after VPA exposure in mouse embry-
onic stem cells starting on day 14 [356]. This is a critical 
histone modification that helps regulate embryonic stem cell 
pluripotency and neural differentiation [357, 358]. In addi-
tion, H3K9 is deacetylated by HDACs from Class I [359], 
which are highly expressed during mid-late embryonic de-
velopment [360]. Additionally, the hyperacetylation pattern 
of Histones induced by VPA HDACi resulted in an increase 
in gene expression at promoter sites, including the CDKN1A 
promoter region (p21Cip/WAF1). In this sense, VPA increases 
hematopoietic cell differentiation in a p21-dependent manner 
through increased HDAC inhibition [347]. Interestingly, 
deficient HDAC1 activity during mid-late embryonic devel-
opment was directly related to the up-regulation of p21 
[360]. Also, lysine acetylation at the core histone domain, 
such as H3K56, was increased by VPA exposure [371]. 
H3K56 is located at the entry-exit sites of the DNA wrapped 
around the nucleosome. Acetylation of these sites modulates 
the unfolding of nucleosome-chromatin [372, 373], and it 
has been previously suggested that this process of chromatin 
remodeling relocates developmental genes, allowing the re-
cruitment of transcription factors to promote cellular differ-
entiation while downregulating genes that maintain pluripo-
tency [374]. Mouse ESCs exposed to VPA undergo a signifi-
cant change in chromatin accessibility. Specifically, there is 
a shift from pluripotency factors such as Pou5f1, Nanog, and 
Sox2 to specific loci associated with chromatin remodeling 
and neuronal differentiation. One of the loci affected by this 
switch is Pax6 [371]. 
 In addition to the relationship between HDAC inhibition 
by VPA and ASD, several compounds analogous to VPA in 
chemical structure, such as valpromide (VPD), which lack 
the effect of HDAC inhibition, did not induce autism-like 
behaviors in murine models or cause abnormalities in brain 
development [130]. Also, the epigenetic effect of VPA on 
other pathways was not observed with non-HDACi analogs. 
The inhibition of NPC proliferation mediated by Wnt signal-
ing in brain organoids exposed to VPA was not replicated 
with VPD [12].  
 Consequently, prenatal exposure to VPA induces a se-
quential chain of events, starting with HDAC inhibition and 
leading to changes in developmental transcriptional profiles. 
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Table 2. Neurobiological and molecular impairments caused by VPA exposure through in vivo and in vitro studies. 

Category Rodent Nonhuman  
Primate Zebrafish In Vitro Studies (2D Culture 

& Brain Organoids) 

Histone acetyla-
tion/methylation 
and Chromatin 

remodeling 

� ↑ H3Kac and H4Kac [122, 130, 361] 
� ↑ H3Kme and H4Kme [362] 
� ↓ H3Kme and H4Kme [362] 
� Chromatin remodeling [363] 

- � ↑ H3Kac and H4Kac 
[233, 364] 

� ↑ H3Kac and H4Kac [365] 
� ↑ H3Kme and H4Kme [366] 
� Chromatin remodeling [365] 

ASD-associated 
genes expression 

� Chd7 [313], Shank2, Shank3, Nlgn3  
[336, 367], Mecp2 [368] 

� SHANK3, 
SHANK1 [185] 

� shank3, nrxn1, nlgn3 
[194] 

� Shank2-3, Nlgn1 [263],  
Cntnap2 [244, 263], FOXP1, 
RELN, CHD7, CHD8, 
NLGN2-3, TSC1-2,  
SHANK1-3 [365] 

Neurogenesis  
and cell density 

� ↑ Proliferation [122, 222] 
� ↑ Cortical cell density [88] 
� ↓ Proliferation [130, 230] 
� ↓ Cortical cell density [88, 130, 230] 
� ↑ Neuronal phenotype differentiation 

[122, 222] 

� ↓ Proliferation 
[185] 

� ↓ Cortical cell 
density [185] 
22/10/23 3:49 PM 

� ↑ Proliferation [262] 
� ↓ Proliferation [233] 
� ↑Neuronal phenotype 

differentiation [194] 
� ↓Neuronal phenotype 

differentiation [232, 
262] 22/10/23 3:49 PM 

� ↑ Proliferation [222] 
� ↓ Proliferation  

[12, 221, 234, 369] 
� ↓ Cortical cell density  

[11, 12, 234] 
� ↑ Neuronal phenotype differ-

entiation [221, 234, 369] 

Excitatory/ 
Inhibitory  
Imbalance 

� ↑ Glutamatergic neuronal excitability 
[131, 284, 285, 288, 289] 

� ↓ Glutamatergic neuronal excitability 
[283, 286, 291] 

� ↑ Glutamatergic neuronal density [122] 
� Altered synaptic protein expression  

[95, 122, 284, 291, 336, 337, 361] 
� ↓ GABAergic neuronal density [229] 

� Altered synaptic 
protein expression 
[185] 

- 

� ↑ Glutamatergic neuronal 
density [234] 

� Altered synaptic protein 
expression [11, 361] 

Oligodendroglia 
and Myelination 

impairments 

� ↓ OL density or associated gene/protein 
expression [83, 299, 311-313] 

� ↓ Myelin density or gene/protein expres-
sion [83, 299, 311, 312] 

- - - 

Immune and 
Oxidative stress 

impairments 

� ↑ Oxidative stress [336] 
� ↑ Microglia density [149, 154, 311, 335] 
� ↓ Microglia density [338] 
� ↓ Pro-inflammatory cytokines [154, 336] 

- - - 

Note: Studies conducted in vivo considered prenatal VPA exposure in a single dose during embryonic development (rodent and non-human primate) and the first five days postfertili-
zation (zebrafish), reporting impairments during the gestational or postnatal period. Studies conducted in vitro considered VPA exposure over embryonic progenitor cells (EPCs), 
neural progenitor cells (NPCs), or induced pluripotent stem cells (iPSCs) under neural differentiation in 2D cultures and brain organoids. ASD-associated genes were considered 
according to the top ranking in the Autism Informatics Portal (AutDB) [370]. 
 
As a result, this leads to increased activity of transcription 
factors and, indirectly, abnormal neural proliferation and 
differentiation that may arise from these early epigenetic 
modifications. Chromatin immunoprecipitation demonstrated 
increased binding of acetylated histones to the Pax6 promot-
er region, which leads to transient up-regulation of Pax6 ex-
pression and increased glutamatergic differentiation in the 
prefrontal cortex in VPA-treated embryos [122]. The same 
results were reported in mouse ESCs exposed to VPA, which 
led to an increase in H3K56ac locus-specific gain of function 
within the Pax6 promoter [371]. This transcription factor 
regulates the balance between neural stem cell (NSC) prolif-
eration and their differentiation into neurons [375, 376]. It 
specifically affects the development of glutamatergic pheno-
types derived from the ventricular zone of the dorsal telen-
cephalon that migrates into the cortex [377]. Interestingly, 
the outcome of neural differentiation could vary depending 
on the timing and level of Pax6 expression. This is due to the 
gain-of-function or loss-of-function effects caused by the 

transcriptional regulation of Pax6 on self-renewal, neurogen-
esis, and the cohort of genes that determine cell fate [378]. 
Also, a predicted increase in occupancy of the Gabpa tran-
scription factor was reported after VPA exposure in mouse 
ESCs [371], which binds to the Tert promoter to enhance its 
expression [379]. In addition, VPA exposure increased his-
tone acetylation at the Tert promoter region, as demonstrated 
in vitro in NPCs and in vivo by E14 embryo brains from rats 
prenatally exposed to VPA at E12 [361]. This increase also 
led to enhanced Pax6 and Brg1 immunoprecipitation, which 
subsequently recruited transcription factors that determined 
glutamatergic neuronal differentiation. In contrast, H3K56ac 
locus-specific loss of function within Asf1a was reported 
after VPA exposure in mouse ESCs [371]. The downregula-
tion of their expression was associated with a decrease in 
pluripotency markers (Nanog, Sox2, Oct4) and an increase in 
differentiation markers (Sox17, FoxA2, Pax6) [380]. Con-
sistently, VPA and MS-275, both HDAC inhibitors, in-
creased the expression of the pre-synaptic glutamatergic 
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vGluT1 vesicle transporter and decreased the expression of 
GABAergic markers such as vGAT, GAD65, and GAD67 in 
cultured cortical neurons [284]. In contrast to this gain-of-
function in glutamatergic neuronal differentiation, Chd7 
binds strongly to H3K27ac and Sox10/Olig2 chromatin en-
hancers in OPCs to promote oligodendroglial lineage differ-
entiation [314]. However, Chd7 expression is downregulated 
in the PFC of rats exposed to VPA prenatally [313]. Alt-
hough these differences were reported in the postnatal brain, 
OPCs have been identified as early as E12 in mice, which is 
a common timeframe for VPA prenatal exposure. In a simi-
lar way to how VPA inhibits HDAC function, a mouse mod-
el of HDAC1 or HDAC2 loss-of-function by conditional 
knockout (cKO) promotes β-catenin translocation into the 
nucleus and its stabilization with transcription factors to re-
press OL differentiation [381]. In addition, Chd7 loss-of-
function decreased GABAergic differentiation during em-
bryonic development [382], which can also contribute to an 
imbalance between E/I signaling in ASD.  
 Although VPA is a well-recognized HDAC inhibitor, the 
complex epigenetic interactions resulting from the hyper-
acetylation state are not fully elucidated. In this sense, 
HDACi allows for an open chromatin state while also facili-
tating access to other modulatory enzymes. Previously, it 
was suggested that the longer open state of chromatin ob-
served after VPA treatment could be attributed to DNA and 
histone methylation [383]. Prenatal exposure to VPA in-
creases the demethylation and expression of Wnt1 and Wnt2 
ligands. It also upregulates mRNA levels of the downstream 
target genes En1 and Ccnd1 in the prefrontal cortex and hip-
pocampus [363]. In addition, VPA increases both DNA de-
methylation of the Reln and Gad67 promoters and acetylated 
H3 binding to the promoter regions of these genes [384, 
385]. This effect of VPA was previously suggested to de-
pend on DNA demethylase activity [386]. Accordingly, a 
passive mechanism was proposed that involves the decreased 
expression of DNA methyltransferase 1 (DNMT1) [387-
389]. Additionally, an active mechanism was identified in-
volving the activation of a DNA demethylase [390, 391], 
which acts on methylated CpG sites in gene promoters [392]. 
However, multiple mechanisms could interact in a dependent 
manner with histone acetylation changes. Previously, it was 
reported that VPA increases the expression of fat mass and 
obesity-associated protein (FTO). This protein suppresses the 
posttranscriptional processing of Mbd2 mRNA, thereby af-
fecting its function as a CpG demethylase over the Scn3a 
promoter region [393]. These results in indirect downregu-
lated expression by methylation of Scn3a are evoked by 
HDAC inhibition.  
 Class I HDACs are contained in multiprotein complexes 
that commonly repress transcription [394]. Previously, it was 
demonstrated that VPA inhibits HDAC, thereby relieving 
transcriptional co-repression of PPARδ. According to this, 
VPA does not directly increase the expression of the PPARδ 
transcription factor. Instead, it downregulates the corepressor 
complex, which allows PPARδ to bind co-activators and 
enhance its transcriptional activity [395]. In addition, the 
interaction between PPARδ and VPA was ruled out. There-
fore, it is more likely that HDAC3 inhibition, which is a core 
component of the nuclear corepressor complex, is responsi-
ble. Instead, acetyl groups are preserved, which partially 

facilitates the recruitment of co-activators [396]. According 
to this, VPA has the lowest IC50 for class I HDACs (HDAC 
1-3) [347].  
 These corepressor complexes also include specific histone 
demethylases (HDMs), which are commonly involved in the 
combination of histone modifications [397]. According to this, 
both histone lysine methylation and demethylation were re-
ported after exposure to VPA [398]. In contrast to histone 
acetylation, which promotes gene expression, methylation 
can either stimulate or suppress gene expression, depending 
on specific residues. In this regard, histone 3 at lysine 4 
(H3K4) dimethyl and trimethylation (H3K4me2/me3) pro-
mote gene expression, and lysine 9 methylation (H3k9me) 
promotes gene repression [394]. Both H3K4 histone modifi-
cations were increased after VPA exposure in mouse embry-
onic stem cells [366], in rats exposed prenatally by E9 [362], 
and in cultured astrocytes and postnatal cortical neurons 
[399]. In contrast, prenatal exposure in rats decreased H3K9 
monomethylation. However, the mechanism by which VPA 
induces both increased and decreased histone methylation is 
not fully understood. Previous studies suggest that crosstalk 
between histone modifications is facilitated by a complex 
that induces both regulatory enzymes. This crosstalk in-
volves methylase activity-dependent substrate acetylation as 
well as the direct effects of VPA on EZH2 methyltransferase 
and JARID1A demethylase [350, 387, 400]. Moreover, his-
tone methylation is more stable and can last for several days 
[383]. Increased H3K4me2 persisted for five days after ex-
posure to VPA in cultured cortical neurons [399].  

 Lastly, in addition to the complex epigenetic effects of 
VPA, there has been a recent review of the emerging role of 
histone modifications and HDAC enzymes in the alternative 
splicing transcription of mRNAs. In general, chromatin re-
modeling not only enables the recruitment of regulatory en-
zymes and transcription factors but also can influence the 
timing of spliceosome complex coupling to exonic and in-
tronic splicing sites of DNA, as well as the recruitment of 
chromatin-splicing adaptor proteins [401]. According to this, 
HDACis such as Trichostatin A (TSA) or VPA can promote 
H4 acetylation around splicing sites instead of promoter re-
gions, which affects the sequential events and leads to an 
increase in alternative splicing of mRNAs [402]. Moreover, 
differentiated excitatory neurons from hiPSCs treated for 24 
hours with VPA showed an increase in splicing transcrip-
tional profiles from several genes related to ASD, as well as 
chromatin and transcriptional regulatory genes [365]. Given 
the significant importance of spatiotemporal expression pat-
terns of alternative splicing during brain development [403] 
and the growing evidence of abnormal splicing variants in 
ASD [404], future studies should prioritize the identification 
of this emerging in vitro evidence from splice variants in 
brain development following prenatal exposure to VPA.  
 Overall, the mechanism of the VPA by HDACi could be 
strongly related to the heterogeneity of ASD, which is asso-
ciated with genetic changes. Recently, a study was conduct-
ed using 45 postmortem brain samples from ASD subjects. 
The study demonstrated a shared histone-acetylome pattern 
in 68% of individuals, including both syndromic and idio-
pathic forms of ASD [405]. Interestingly, common pathways 
were associated with these epigenetic modifications, such as 
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synaptic transmission, histone deacetylation, and immunity. 
The genes associated with ASD primarily encode synaptic 
proteins, transcriptional regulators, and chromatin remodel-
ing factors, suggesting that synapse formation and the estab-
lishment of neuronal circuits during brain development play 
a crucial role in ASD [367]. 

6.2. Signaling Pathways 

 Previous studies suggest several signaling processes as 
mechanisms of action of VPA, including Wnt/β-catenin, 
PI3K/Akt, and MAPK/ERK pathways [69, 349, 406]. How-
ever, it is still unclear how many of these processes are 
dysregulated as a direct result of a VPA mechanism of ac-
tion. Otherwise, it has even been suggested that dysregula-
tion of Wnt/β-catenin may be a downstream event in the 
mechanism of action of VPA on HDAC [369]. Therefore, 
this section focuses on the direct evidence from VPA as a 
mechanism of action during gestation on signaling processes 
and their role in cellular processes that may alter neuronal 
and network development related to ASD etiology.  
 The Wnt signaling pathway plays a key role in embryon-
ic development, regulating processes such as cellular growth 
and proliferation, migration, maintenance of stem cells, and 
neuronal polarity [407, 408]. The canonical Wnt signaling 
pathway leads to increased levels of β-catenin, which trans-
locate to the nucleus, promoting the transcription of Wnt-
dependent genes. β-catenin is regulated by the phosphoryla-
tion of glycogen synthase kinase-3β (GSK-3β), which leads 
to its degradation and the stabilization of cytoplasmic β-
catenin [349, 409]. Some studies suggest that VPA stimu-
lates the canonical Wnt signaling pathway through the 
modulation of HDAC and GSK-3β [406, 409]. VPA is pro-
posed to activate Wnt-dependent gene expression through its 
HDACi activity [349, 410-412]. Prenatal exposure to VPA 
leads to the upregulation of the Wnt/β-catenin signaling 
pathway through increased degradation of GSK-3β and sub-
sequent elevation of β-catenin levels [342, 363]. Also, VPA 
upregulates the Wnt/β-catenin pathway by increasing the 
phosphorylation of GSK-3β and decreasing the phosphoryla-
tion of β-catenin. This leads to a decrease in the expression 
of the redox proteins Trx1 and Trx2 and an increase in the 
expression of the oxidative stress marker 4-HNE in the pre-
frontal cortex and hippocampus [174]. Wnt ligands are gly-
coproteins secreted in an autocrine or paracrine fashion, in-
teracting with the Wnt inhibitory factor and the Fzd receptor 
to transmit the signal downstream [413]. Prenatal exposure 
to VPA increases the expression of Wnt1 and Wnt2 ligands 
and upregulates mRNA levels of the downstream target 
genes En1 and Ccnd1 in the prefrontal cortex and hippocam-
pus [363]. 
 In addition, altered signaling of the Wnt/β-catenin path-
way has been reported in ASD [409, 414], including variants 
of Wnt ligands [415-419]. Also, the chromodomain helicase 
DNA binding protein 8 (CDH8) has been identified as a sig-
nificant candidate gene for ASD [420, 421]. One of the 
pathways regulated by CHD8 is the Wnt signaling pathway 
[422]. The Phosphatase and tensin homolog (PTEN) is an-
other major candidate gene for ASD that interacts with the 
Wnt pathway [423]. This signaling protein is known to be an 
important regulator of neural circuit formation [408, 424], 

indicating that these pathways play a role in neural prolifera-
tion, migration, and differentiation during embryonic brain 
development. It is possible that Wnt/β-catenin signaling is 
dysregulated in ASD [406, 425].  
 Overall, this evidence suggests a strong modulation of 
Wnt signaling following exposure to VPA. Although it has 
been previously suggested that there is crosstalk between 
multiple signaling processes, few studies have been conduct-
ed during the gestational period or under similar in vitro 
conditions to explain these interactions. In this sense, the 
effect of VPA on β-catenin stabilizes Ras, promoting ERK-
p21Cip/WAF1 signaling. This signaling pathway then promotes 
the differentiation and inhibits the proliferation of embryonic 
E14 NPCs [369]. Lastly, mTOR signaling through PI3K/Akt 
or PTEN modulation can contribute to the differentiation-
induced process by VPA [426-428]. 

6.3. Oxidative Stress and Immune Response 

 The epigenetic effects and downstream signaling path-
ways altered by VPA exposure can partially explain an early 
oxidative stress environment contributing to impairments 
during embryogenesis and immune activation. Previously, an 
upregulated transcription of immune system pathways was 
reported to change across postnatal amygdala development 
in dams prenatally exposed to VPA [429]. In addition, expo-
sure to gestational VPA before neural tube closure (E9) in 
mice increases ROS production and the occurrence of neural 
tube defects [430]. In contrast, the postnatal brain of prena-
tally exposed VPA showed a continued decrease in the ex-
pression of redox proteins and an increase in the expression 
of oxidative markers and pro-inflammatory cytokines [174, 
336]. Although some of these changes could be partly ex-
plained by the epigenetic effect of VPA on transcriptional 
profiles, as previously suggested [429], further studies must 
elucidate their role through direct or indirect modulation, 
such as Wnt/β-catenin [174]. 

7. CONVERGENCE OF PRENATAL VPA EXPOSURE 
COMPARED TO OTHER MODELS OF AUTISM-
LIKE BEHAVIOR: IDIOPATHIC AND SYNDROMIC 
FORMS OF ASD 

 ASD is frequently described as syndromic when its etiol-
ogy is related to a single gene mutation or chromosome ab-
normality that explains a syndrome with a high prevalence of 
ASD diagnosis. Examples of such syndromes include Phe-
lan-McDermid’s syndrome, which is often associated with a 
SHANK3 mutation; Rett’s syndrome and MecP2 duplication 
syndrome, which are associated with MECP2 mutations; 
Fragile-X syndrome, which is associated with FMR1 muta-
tions, Tuberous sclerosis complex, which is associated with 
TSC1/2 mutations, Angelman’s syndrome, which is associated 
with UBE3A mutations, Prader-Willi’s syndrome, which is 
associated with chromosome 15q11-q13 deletion, and CAC-
NA1C mutations [431]. On the other hand, non-syndromic 
ASD cases, which do not have identified etiological factors, 
are often referred to as idiopathic [432]. Both concepts are 
frequently applied to animal models, including prenatal ex-
posure to VPA as an idiopathic model.  
 Also, risk factors associated with the incidence of ASD 
can be classified into environmental factors, epigenetic 
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changes, and genetic variants [433]. Nevertheless, bounda-
ries between this classification can be diffuse, given that 
environmental factors can cause epigenetic modifications. 
However, it is important to note that not all of the epigenome 
results from an environmental insult. It also depends on the 
interaction with specific genetic patterns and the predisposi-
tion of genetic variants [434]. Moreover, ASD-related genet-
ic variants could lead to epigenetic modifications, such as 
MecP2 variants [435]. Instead, the etiology of ASD could be 
better conceptualized as an interplay of genetic-epigenetic 
interactions that affect specific pathways in brain develop-
ment. This supports the observed complex heterogeneity in 
ASD [436]. According to this view, environmental risk fac-
tors such as VPA primarily increase the epigenetic load for 
ASD. On the other hand, single, well-identified mutations 
mainly increase the genetic load. Each case contributes to 
compromising shared pathways during brain development. 
Interestingly, a novel histone methyltransferase (EHMT1) 
loss-of-function syndrome in mice results in reduced levels 
of H3K9me3 in the embryonic brain at E11.5. This syn-
drome also leads to differential gene expression, including 
enrichment in Wnt signaling. Furthermore, mice with this 
syndrome exhibit behavioral inflexibility and social deficits 
during the postnatal period [437, 438]. Also, the knockdown 
of EHMT1 in NSCs promotes a differentiated state [439]. A 
novel inbred strain BTBR/R idiopathic ASD model gains 
copy number variants (CNVs) in HDAC1, contributing to 
epigenetic reprogramming and immune dysfunction during 
embryogenesis at E11.5 [440, 441]. In addition, impairments 
in HDAC are involved in SHANK3 mutations in Phelan-
McDermid syndrome [442]. Prenatal HDAC inhibition by 
VPA transiently reduces the expression of Shank3 14 days 
after culturing embryonic neurons [263], which suggests the 
presence of a compensatory mechanism that reduces the ge-
netic load for ASD, in contrast to the strong impact of 
Shank3 mutations in Phelan-McDermid syndrome. Interest-
ingly, Shank3 expression and protein levels are lower during 
postnatal development of the cerebellum in mice exposed to 
prenatal VPA [367]. This indicates that differences could be 
established in specific structures in the postnatal brain. 
Moreover, MECP2 mutations in Rett syndrome and ASD 
models highlight the importance of genetic variants that re-
sult in impairments in dependence on the epigenetic back-
ground. MecP2 binds to methyl CpG sites in the promoter 
region of several genes, which mainly leads to gene repres-
sion but can also result in gene expression depending on its 
interaction with co-factors [435]. In contrast, prenatal expo-
sure to VPA at E12.5, but not E14.5, downregulated the ex-
pression of Mecp2 and increased the expression of Bdnf and 
miR132 after exposure but not at birth [368]. Interestingly, 
this study suggests that MecP2 expression would not be di-
rectly regulated by HDACi. Instead, it was reported that 
HDACi increased Bdnf expression, increasing miR132 ex-
pression through a downstream transcription factor. As pre-
viously reported, increased miR132 expression leads to the 
downregulation of Mecp2 expression [443]. This explains 
the immediate BDNF expression one hour after VPA until 
six hours, but only mir-132 shows sustained expression 24 
hours later [368]. Moreover, the MecP2-BDNF-miR132 reg-
ulatory feedback loop was found to be altered in postmortem 
brain tissue from individuals with Rett syndrome [444]. In 
addition, exposure to VPA increased CpG promoter demeth-

ylation of Reln and Gad67, as well as H3ac binding. This 
could be attributed to the activity of HDACi and demethyla-
tion [384, 385, 392], which contribute to the epigenetic load 
caused by VPA exposure. Overall, these monogenic and en-
vironmental ASD models recapitulate several points of con-
vergence with prenatal exposure to VPA and the interplay of 
genetic-epigenetic interactions during brain development.  
 As summarized in Table 2, prenatal exposure to the VPA 
model has been shown to explain certain aspects of ASD 
etiology, especially the regulation of epigenomics through 
histone acetylation. This model also involves downstream 
pathways, such as Wnt signaling, during gestation, which 
affect various brain developmental processes, including the 
proliferation of NPCs, differentiation, and cellular organiza-
tion in the cerebral cortex. Some of these impairments in 
differentiation could be triggered after exposure to VPA, 
leading to a reprogramming of transcriptional profiles. This 
reprogramming may result in increased glutamatergic differ-
entiation and impairments in GABAergic and oligoden-
droglial lineages. Epigenetic modifications, such as histone 
acetylation, induce immediate and transient differential gene 
expression, while DNA and histone methylation could later 
sustain it. Also, it has been suggested that VPA, through Wnt 
signaling, could regulate the expression of redox proteins 
such as Trx1/2, leading to an increase in oxidative stress. 
Overall, these early events during gestational development 
could later result in an imbalance between E/I signals as well 
as impaired immune function and connectivity. Still, it is 
unclear how these early gestational events selectively impact 
certain structures that contribute to the core ASD symptoms 
in the postnatal brain. However, both gestational and postna-
tal impairments reported by prenatal exposure to VPA align 
with common pathological processes observed in ASD sub-
jects. Interestingly, other environmental and monogenic-
induced models of ASD converge on several mechanisms 
that could explain a common physiopathology [10, 202, 264, 
409, 445]. 

8. PERSPECTIVES AND LIMITATIONS 

 The prenatal VPA exposure model has consistently reca-
pitulated core ASD symptoms and neurobiological impair-
ments that have been reported in multiple studies involving 
human and animal models. The significant variability report-
ed in the model should be carefully considered to establish 
more reproducible results. The in vivo studies would consid-
er the period of embryonic development, which may affect 
the outcome after VPA administration. This includes the 
effect on neural progenitor differentiation processes and the 
reported behavioral disturbances. Some of these changes 
appear to be temporary, so the timing of the evaluation 
should also be taken into consideration. In summary of the 
articles discussed here, a dose of 400-600 mg/kg and embry-
onic exposure time between E11.5 and E12.5 seem to be 
reasonable thresholds, as previously suggested [80]. Interest-
ingly, when considering this VPA threshold, consistent im-
pairments in two core behaviors of ASD were reported 
across postnatal developmental stages. Given the limited 
number of studies reporting autism-like behaviors resulting 
from prolonged prenatal or early postnatal exposure, these 
models should not be discarded. Instead, they should be fur-
ther classified as single or sustained prenatal and postnatal 
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exposures to VPA, and the neurobiological correlates should 
be carefully compared. In general, for VPA and other ASD 
models, behavioral evidence can be enhanced by standardiz-
ing current protocols and expanding specific domains. These 
domains include semi-natural habitat social behavior, deci-
sion-making, cognitive flexibility, perseverative behavior, 
and sensory processing and integration [80, 446-448]. Fur-
thermore, animal models of ASD should increase their focus 
on endophenotypes, which are characteristics that may have 
a genetic relationship to a disorder without necessarily pre-
dicting a diagnosis. Identifying the points of convergence 
and divergence between monogenic and environmental mod-
els will help us better understand the complex and heteroge-
neous etiology of ASD. For example, seizure susceptibility, 
anxiety-like behaviors, abnormalities in sensory processing, 
and sleep disturbances are frequently reported endopheno-
types in ASD animal models. Prenatal exposure to VPA ex-
posure is a common factor that converges with monogenic 
and other environmental models [449, 450].  
 The in vitro studies would consider the standardized dose 
and time of administration of VPA, as well as the days after 
exposure. This is because concentration and time depend-
ence in transcriptional profiles by HDACi, including VPA, 
have been previously reported [451]. Interestingly, this study 
demonstrated an adaptive response to epigenomic disruption 
by HDACi, including the downregulation of lysine acetyl-
transferases (KATs) in a dose-dependent manner. Consider-
ing that most in vitro studies have been conducted using cells 
of embryonic origin, iPSCs, or NPCs to assess the level of 
neuronal differentiation, it seems that the dosage is the least 
significant variation factor. Commonly used concentrations 
include 0.2, 0.5, 1, and 2 mM, with similar results observed 
in the 0.5-1 mM range. On the other hand, the duration of 
exposure and the number of days after exposure have been 
identified as the primary sources of variation across different 
studies, with both ranging from hours to days. Cell genomic 
programs during pluripotency and the proliferative state are 
different compared to differentiated cells, which are com-
promised by VPA HDACi and should be taken into consid-
eration. Many of the in vitro studies considered in this re-
view focus on the effect of VPA on neural development and 
ASD. These studies primarily use proliferative cells, such as 
embryonic progenitors or iPCs, that have been repro-
grammed to exhibit a neural phenotype. To mechanistically 
explain the epigenetic regulation of VPA, several studies 
were conducted on cell lines, including tumor-derived cell 
lines with proliferative capacity.  
 It is important to note that the VPA model has limita-
tions, and it is unclear if the variation between the VPA 
models represents a wide spectrum of ASD or more technical 
differences in approach among different laboratories. The 
specific causes of autism are still largely unknown, and it is 
reasonable to assume that most patients were not exposed to 
VPA during gestation. This raises questions about the validi-
ty of the VPA model in relation to human autism. On the 
other hand, highly penetrant ASD-related gene variants have 
not been identified in the majority of cases, accounting for 
only about 5-15% of ASD cases [270, 452]. Also, some of 
these gene variants are related to specific clinical features 
unrelated to ASD. Interestingly, these monogenic disorders 
share comorbidities with idiopathic ASD cases, which may 

be attributed to epigenomic reprogramming and impairments 
during embryonic development, both of which are associated 
with exposure to VPA. 

CONCLUSION 

 The prenatal exposure to the VPA model has been a val-
uable tool for studying the etiology and physiopathology 
related to ASD over the past three decades. This model has 
garnered research support, demonstrating both construct va-
lidity and face validity as an animal model. Since the first 
studies suggested multiple targets and interactions of VPA, 
there has been a better understanding of a complex series of 
events during embryonic development. These events begin 
with epigenetic modifications and later involve the repro-
gramming of transcriptional profiles following HDAC inhi-
bition. This conceptualizes the framework in which this 
model fits into the epigenetic-genetic interplay in brain de-
velopment. It contributes to the understanding of the etiology 
of ASD and subsequent disturbances in the postnatal brain, 
including neuronal organization and architecture, immune 
dysregulation, and imbalances in the functioning of excitato-
ry/inhibitory systems. These disturbances are mainly caused 
by synapse signaling and interact with other environmental 
and genetic models. Thus, combining human and animal 
studies has helped us better understand the molecular and 
neurobiological mechanisms associated with the behavioral 
phenotypes of ASD. 

LIST OF ABBREVIATIONS 

ASD = Autism Spectrum Disorder 
BBB = Blood-brain Barrier 
BTBR/R = Inbred Mouse Strain BTBR TF/ArtRbrc 
cKO = Conditional Knock-out 
CNV = Copy Number Variant 
CpG = Cytosine Guanine Dinucleotide 
DMNT1 = DNA Methyltransferase 1 
dpf = Days Post-fertilization 
E,DSM-V-TR = Diagnostic Statistics and Mental Health 

Disorders V-Text Revised Embryonal 
day 

E/I = Excitatory/Inhibitory Imbalance 
EHMT1 = Histone Methyltransferase 
FVS = Fetal Valproate Syndrome 
GSK-3β = Glycogen Synthase Kinase-3β 
H3/H4Kac = Histone Lysine Acetylation 
H4/H4Kme = Histone Lysine Methylation 
HDACi = Histone Deacetylase Inhibition 
HDM = Histone Demethylase 
hiPSC = Human Induced Pluripotent Stem Cell 
HPF = Hours Post-fertilization 
MFP = Months Post-fertilization 
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MIA = Maternal Immune Activation 
mRNA = Messenger RNA 
NO = Nitric Oxide 
NPC = Neural Progenitor Cells 
NSC = Neural Stem Cells 
P = Postnatal Day 
PFC = Prefrontal Cortex 
ROS = Reactive Oxygen Species 
TSA = Trichostatin A 
VPA = Valproate 
VPD = Valpromide 
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