Skip to main content
. 2024 Jan 15;25:26. doi: 10.1186/s12859-024-05639-3

Table 2.

Individual and average AUCs and MCCs from the validation phase and the additional validation approaches applied to the IBD datasets. The standard deviation of each result was excluded to keep the table simple and avoid complexity

PRJEB21504* 53 features (REFS) 1793 features SelectKbest (k = 53)
Classifier AUC MCC AUC MCC AUC MCC
AdaBoostClassifier 0.9100 0.8623 0.9100 0.8337 0.9100 0.8577
Extra Trees 0.9000 0.8841 0.8600 0.8049 0.9400 0.8577
KNeighbors 0.9300 0.8547 0.5400 0.0845 0.8900 0.8353
MLP 0.9900 0.9900 0.6100 0.2640 0.8900 0.8767
Lasso CV 0.9500 0.7564 0.6700 0.4064 0.8800 0.7165
Average 0.9360 0.8715 0.7180 0.4787 0.9020 0.8287
DRA006094 22 of 53 features (REFS) SelectKbest (21 of 53 features) 10-time random selection
Classifier AUC MCC AUC MCC AUC MCC
AdaBoostClassifier 0.7100 0.3087 0.5190 0.3288 0.7800 0.0761
Extra Trees 0.7800 0.4585 0.5210 0.3881 0.7200 0.0599
KNeighbors 0.8300 0.4245 0.5260 0.4070 0.6800 0.0093
MLP 0.8300 0.4418 0.5510 0.3881 0.7200 0.0916
Lasso CV 0.7400 0.3952 0.5230 0.4151 0.7600 0.0433
Average 0.7780 0.4057 0.5280 0.3854 0.7320 0.0560
PRJNA684584 48 of 53 features (REFS) SelectKbest (52 of 53 features) 10-time random selection
Classifier AUC MCC AUC MCC AUC MCC
AdaBoostClassifier 0.7200 0.4151 0.5410 0.3364 0.6400 0.1112
Extra Trees 0.7500 0.4300 0.5600 0.4026 0.7400 0.1612
KNeighbors 0.7000 0.3111 0.5610 0.1081 0.5900 0.1392
MLP 0.6800 0.3657 0.5700 0.2694 0.6800 0.1393
Lasso CV 0.7000 0.2616 0.5590 0.2908 0.6100 0.1420
Average 0.7100 0.3567 0.5582 0.2814 0.6520 0.1386

*Discovery dataset