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Abstract

Motivation: In recent years, circular RNAs (circRNAs), the particular form of RNA with a closed-loop structure, have attracted widespread
attention due to their physiological significance (they can directly bind proteins), leading to the development of numerous protein site
identification algorithms. Unfortunately, these studies are supervised and require the vast majority of labeled samples in training to produce
superior performance. But the acquisition of sample labels requires a large number of biological experiments and is difficult to obtain.

Results: To resolve this matter that a great deal of tags need to be trained in the circRNA-binding site prediction task, a self-supervised learning
binding site identification algorithm named CircSI-SSL is proposed in this article. According to the survey, this is unprecedented in the
research field. Specifically, CircSI-SSL initially combines multiple feature coding schemes and employs RNA_Transformer for cross-view
sequence prediction (self-supervised task) to learn mutual information from the multi-view data, and then fine-tuning with only a few sample
labels. Comprehensive experiments on six widely used circRNA datasets indicate that our CircSI-SSL algorithm achieves excellent performance
in comparison to previous algorithms, even in the extreme case where the ratio of training data to test data is 1:9. In addition, the transplantation
experiment of six linRNA datasets without network modification and hyperparameter adjustment shows that CircSI-SSL has good scalability.
In summary, the prediction algorithm based on self-supervised learning proposed in this article is expected to replace previous supervised
algorithms and has more extensive application value.

Availability and implementation: The source code and data are available at https://github.com/cc646201081/CircSI-SSL.
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crosslinking immunoprecipitation (HITS-CLIP), many RBP
targets in mature circRNAs have been found in eukaryotes
(Dudekula et al. 2016, Ruan et al. 2019). However, due to
the high cost of detecting each pair of interaction sites, many
computational methods for identifying circRNA-RBP sites
have been developed. Thanks to the advancements in deep
learning, the identification performance of RBP-binding sites
has been continuously improved. For example, CSCRSites
(Wang et al. 2019a,b) is a deep learning algorithm that identi-
fies RBP-binding sites about cancer-specific only using nucleo-
tide sequences information. CircSLNN (Ju et al. 2019) is a
novel approach that transforms the RNA-binding site predic-
tion problem into a sequence labeling problem, which adopts
a word-embedded based coding scheme to capture the context
and semantic information of sequences. CRIP (Zhang et al.
2019) proposes a stacked codon encoding deep learning algo-
rithm based on convolutional neural networks and recurrent

1 Introduction

Circular RNA (circRNA) is the peculiar class of RNAs pro-
duced by pre-mRNA. Unlike common RNAs with the two
ends of 5" and 3, circRNA has a unique ring structure formed
by the reverse splicing mechanism (Bogard er al. 2018, Hao
et al. 2019), widely present in human, hippocampus, mouse,
and other cells and tissues (Dori et al. 2019, Li and Han
2019). This special structure can enhance the stability of
circRNA and usually has a stage-specific expression pattern
(Rybak-Wolf et al. 2015). More and more evidence has
proved that circRNA can participate in the processes of gene
expression regulation through combining the corresponding
RNA-binding protein (RBP) (Chen 2016, Zang et al. 2020).
Like other non-coding RNAs (Huang et al. 2022a,b), It can
also play a crucial part in the screening and therapy of many
diseases (Jiao et al. 2021, Wang et al. 2021), especially cancer

(Zhang et al. 2018, Su et al. 2022). Therefore, the under-
standing of the action mechanism between circRNA and RBP
is crucial to reveal the circRNA formation and its biological
function (Chen et al. 2022, Niu et al. 2022a,b,c).

With the emergence of some biological technologies about
sequencing, such as high-throughput sequencing with

neural networks, which respectively learn abstract features
and sequence dependences to complete the RBP-binding site
recognition task. However, these methods are single-view
algorithms, and the useful features obtained from the
sequence are quite limited, and often constrained by the
size of the data, and cannot achieve good performance.
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Subsequently, researchers have introduced some multi-view
algorithms. PASSION (Jia et al. 2020) is a multi-view inte-
grated neural network algorithm, and the optimal feature sub-
set is selected and input into the network through incremental
features selection and XGBoost algorithm. iCircRBP-DHN
(Yang et al. 2021) proposes to use two new encoding
schemes: K-tuple nucleotide frequency patterns and
CircRNA2Vec word embedding encoding as inputs. Deep
multi-scale residual network, bidirectional gate recurrent unit
(BiGRU), and self-attention mechanism are used as algo-
rithms for deep network architecture. CRBPDL (Niu et al.
2022a,b,c) proposes an Adaboost integrated deep network ar-
chitecture, which includes deep multi-scale residual networks
and BiGRU. The performance of the algorithm is further im-
proved. HCRNET (Yang et al. 2022) incorporates a fine-
tuned DNABERT model and a deep temporal convolutional
network to capture global context-dependent semantic and
syntactic information for circRNA sequences.

As for the networks based on CNN, RNN or their defor-
mation used in the above research as deep feature extraction
networks, there are problems, such as poor network parallel
capability, difficulty to capture features long-time series de-
pendence, and insufficient algorithm stability. CircSSNN
(Cao et al. 2023) proposes an algorithm that fully uses the
self-attention mechanism to extract deep features and achieves
better performance. Although these algorithms are constantly
updating the performance of the recognition task, they are
based on supervised learning, in other words, the algorithm
requires a great number of sample labels in network training.
Usually, the ratio of training samples to test samples is as high
as 80%:20%. Although the algorithm achieves good perfor-
mance, it greatly limits the exploration of the unknown
circRNA-RBP interaction mechanism. As a consequence, it
has immense practical significance to develop an algorithm
based on supervised weakly, self-supervised, and even unsu-
pervised in this task.

Self-supervised learning (SSL) (Liu et al. 2021) is a special
kind of unsupervised learning. It learns required features
without the need for real labels through pre-designed agent
tasks, and subsequent tasks often require only a few labels (or
even none) to significantly enhance performance according to
specific tasks. Contrast learning performs particularly well in
computer vision because it can learn invariant representations
from enhanced data without label information (Hjelm et al.
2019, Chen et al. 2020, He et al. 2020), demonstrating signif-
icant self-supervised capabilities. The specific operation pro-
cess is as follows: first, data augmentation is used to get a
number of different perspectives (usually two) from the origi-
nal image that are slightly different. Then, different views of
the same sample are taken as positive sample pairs and the
others as negative samples. By maximizing the similarity be-
tween positive sample pairs and minimizing the similarity be-
tween positive sample and negative sample, a “label” is
artificially constructed to guide the learning of network fea-
tures. However, while contrast learning can be useful in the
field of images, it is difficult to apply to time-series data for
several reasons: above all, there exists a challenge of capturing
temporal dependencies in the data, which is very critical.
Secondly, image-based augmentation techniques, such as ran-
dom cropping, do not work with time-series datasets. Thus
far, there have been few studies on contrast learning for time-
series data, and it has not been applied to the prediction of
circRNA-binding sites.
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For the sake of reducing the dependence of the algorithm
on the sample label as much as possible, thereby enhancing its
applicability across a wider range of scenarios. This article
carried out in-depth research and innovatively proposed an
algorithm named circRNA-binding site identification based
on self-supervised learning (CircSI-SSL). The algorithm uses
only KNFP, CircRNA2Vec, and electron—ion interaction
pseudo-potential (EIIP) shallow statistical feature descriptors,
which reduces the computational resource requirements.
After encoding, our Transformer model RNA_Transformer,
which is improved for CircRNA recognition task, is used to:
(i) perform cross-view sequence prediction tasks to train the
network, capture temporal dependencies in sequence multi-
view data, and learn the overall representation of the se-
quence; (ii) apply a very small number of sample tags (10%)
to fine-tune network parameters for a specific task, thereby
completing the RBP-binding site prediction task. Through a
comprehensive experiment conducted on 12 widely used data-
sets, it is shown that the algorithm obtains a significant im-
provement over the supervised learning algorithms. In
summary, the primary contributions of this article can be out-
lined as follows.

A novelSSL method is applied in the domain of circRNA-
binding protein recognition, which changes the situation that
most of the label information is needed to obtain good perfor-
mance. Using only a small amount of supervised information
can lead to a substantial enhancement in the algorithm’s per-
formance, which has a wide range of application value.

We propose a novel proxy task that captures sequence tem-
poral dependencies using an improved RNA_Transformer as
a benchmark model and completes cross-view sequence pre-
diction based on multiple feature descriptors instead of using
sequence augmentation techniques.

Comprehensive experiments conducted on six widely used
circRNA datasets and six linRNA datasets demonstrate that
the proposed algorithm exhibits comprehensive advantages
over previous supervised learning approaches. Even when uti-
lizing only 10% of the labeled data for training, the proposed
algorithm demonstrates stable and outstanding performance,
along with robust scalability.

2 Materials and methods
2.1 Datasets

In order to assess the validity of our approach, we selected six
widely used circRNA datasets, WTAP, FXR1, C170RF85,
QKI, TAF15, and AUF1. These circRNA sequences derive
from circRNA interaction set of database (https://circinterac
tome.nia.nih.gov/), which extracted data includes circRNA-
RBP interaction information, also includes RBPs that bind to
mature circRNA upstream and downstream flanker sequences
(Yee et al. 2019). We then use the identical data processing
steps as previous research (Zhang et al. 2019). Resulting 101
nucleotides sequence fragments in length are obtained as posi-
tive samples, and randomly selecting other sequences to ac-
quire negative samples with same numbers. These similar
sequences are removed using CD-HIT technique, with the
threshold of 0.8 (Li and Godzik 2006). After the removal of
sequence redundancy, a total of 15 570 samples were
obtained, and all samples used in the experiments were ran-
domly shuffled.

In addition, we transplant the circSI-SSL algorithm to linear
RNA datasets and compare the performance of several
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existing supervised algorithms in identifying RBP interactions.
The same linear RNA datasets are downloaded from iDeepS
(Pan et al. 2018) and DeepBind (Alipanahi ef al. 2015), in-
cluding six datasets after HITS-CLIP processing: hnRNPC-2,
U2AF65, hnRNPC-1, QKI, ELVAL1-2, and Y2AF6S5.

2.2 Feature muti-descriptors

To enrich the originally single sequence, we employ three
quantitative feature methods to extract the preliminary statis-
tical features of the sequence: (i) KNFP, which is used to cap-
ture local semantic features at disparate positions. (ii)
CircRNA2Vec, which is employed to capture remote depen-
dencies. (iii) The EIIP, which is utilized to characterize the free
electron energy on the circRNA sequence.

2.2.1 KNFP

In this section, we introduce KNFP schema in detail. Different
from the traditional One-hot representation (Zhang et al.
2019), KNFP schema can extract various short-range se-
quence-dependent information (Orenstein et al. 2016) and lo-
cal semantic features, which greatly makes up for the
deficiency of One-hot information and retains the original se-
quence schema.

Taking a specific circRNA sequence of length L as an ex-
ample, KNFP slidingly selects k& consecutive nucleotides on
the circRNA sequence, and counts the frequencies of the cor-
responding combinations in the form of k tuples (different
combinations of k nucleotides), as the final encoding. In de-
tail, for a k-tuple, which has 4K different combinations, the
frequency p of the corresponding K-tuple pattern is statisti-
cally calculated according to the specific circRNA sequence.

P = [p1,02,03: P4, -, Pgx]. (1)

Here, p; represents the frequency of the i-th k-tuple pattern.
Upon processing a single circRNA sequence, the resulting fea-
ture dimension becomes (L — k 4 1, 4X). We concatenate the
encoded features obtained by k=1, 2, and 3, respectively,
and complete them with 0 at the end.

2.2.2 CircRNA2Vec

CircRNA2Vect (Yang et al. 2021) is a feature descriptor that
employs the Doc2Vec algorithm to learn global contextual
features of circRNA. Doc2Vec (Le and Mikolov 2014) is an
extension of Word2Vec, capable of learning fixed-length fea-
ture representations from variable-length texts. Unlike
Word2Vec, Doc2Vec introduces an additional paragraph vec-
tor d at the input layer, which captures the contextual infor-
mation of paragraphs. This enables the linkage of word
vectors with paragraph vectors, addressing the limitation of
Word2Vec that focuses solely on training word vectors while
overlooking the grasp of paragraph-level context.

We collect as many circRNA splicing sequences as possible
from circBase (Glazar et al. 2014) to serve as the corpus.
Utilizing a sliding window of size 10, extract subsequences
from each circRNA sequence, resulting in multiple sequences.
This allows the algorithm to capture semantic information
within these subsequences for modeling purposes. Given a
text sequence of length T, where the word at time step # is
denoted as w;. For context window size k, the likelihood func-
tion of the model is the probability of generating a specific
word w;, which express as term p(w;|w;_p, . .., wsip, d). The

goal of the model is to maximize the average logarithmic
probability as follow:

1 T—k
Tz Ing(Wt|wt,k7...,wt+k,d). (2)
t=k

2.2.3 ElIP

EIIP, as introduced by Nair and Sreenadhan (2006), is a novel
feature encoding scheme that describes the energy of delocal-
ized electrons in amino acids and nucleotides present in
circRNA sequences. Four binary indicator sequences are used
to encode the sequence. It has been widely utilized in the
Resonance Recognition Model. The EIIP values for the nucle-
otide “G,” “C,” “T,” and “A” are “0.0806,” “0.1340,”
“0.1335,” and “0.1260,” respectively. To enrich the feature
representation, we incorporate a PSTNPss encoding scheme.
It is position-specific feature encoding based on single-strand
of DNA. See He et al. (2018) for more details.

2.3 CircSI-SSL algorithm architecture

In this section, we introduce the CircSI-SSL self-supervised al-
gorithm framework for learning high-quality representations
of sequences, using only a small number of samples to fine-
tune the CircSI-SSL algorithm for specific tasks to achieve ex-
cellent results. The overall framework is shown in Fig. 1. For
a more intuitive understanding, we provide the pseudo-code
as follow. The model consists of two components: cross-view
prediction and fine-tuning. (i) Multiple feature encoders are
employed to encode initial features obtained from various
descriptors extracted from the raw sequence data. A cross-
view  sequence  prediction is  conducted  using
RNA_Transformer. (ii) The trained encoded features are then
fused, followed by employing RNA_Transformer to extract
structured features from the fused multi-view features based

Algorithm 1 CircSI-SSL

Input: CircRNA sequence x, label y, Maximum iterations
MaxIter

Output: Neural network parameters W, Prediction label y’

for iter in range(Maxlter): # Self-supervised stage

encl=KNFP(x)

enc2 = CircRNA2Vec(x)

enc3 = EIlIP(x)

¢1=RNA_Transformer(enc1) # Context c¢1 of encl is

extracted by RNA_Transformer

c2 =RNA_Transformer(enc2)

¢3 =RNA_Transformer(enc3)

8. Calculate cross-view contrast loss according to Formula 6
and 7

9. Update W according to Adam optimizer

10.  foriter in range(Maxlter): # Fine-tuning stage

11. enc = concatenate(lenc1, enc2, enc3]) # Obtaining the
encl, enc2, enc3 follows the same steps as above

12. ¢ =RNA_Transformer(enc)

13. y' = softmax(c)

14.  Calculate cross-entropy loss of y and y' according to
Formula 9

15.  Fine-tune W according to Adam optimizer

akrwnN =

N o
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Figure 1. CircSI-SSL framework.
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Figure 2. RNA_Transformer structure.

on a small number of labels, facilitating the classification
task.

2.3.1 Cross-view prediction

The initial research on SSL started with the application of
agent tasks on image datasets, which aims to learn high-
quality representations. For example, some previous work
predicts image rotation (Gidaris ef al. 2018), images coloriza-
tion (Zhang et al. 2016), and puzzle solving (Noroozi and
Favaro 2016). By using image augmentation technology to
construct positive and negative samples, the application range
of contrast learning is broadened: case discrimination fields,
such as SImCLR (Chen et al. 2020) and MoCo (He et al.
2020); time-series analysis, such as CPC (Oord et al. 2018)
and TS-TC (Eldele ef al. 2021). Unfortunately, these algo-
rithms’ performance depends heavily on the augmentation
techniques used, especially for time-series data, and it is diffi-
cult to find a set of effective and widely used augmentation
techniques for operations, such as random cropping and im-
age graying. This greatly restricts the application of contrast
learning to time-series data. Building upon this, this article
studies a new contrast task, which extracts features from mul-
tiple real views for mutual prediction without the help of aug-
mentation techniques.

We take the improved Transformer (Vaswani et al. 2017)
and TS-TC (Eldele et al. 2021) as feature extraction networks,
as revealed in Fig. 2. It principal consists of Multi-head
Attention and Feed Forward Neural Network (FFN), Layer
Normalization (LN) blocks. The FFN block consists of a fully
connected layer, a non-linear ReLU function and dropout.

The model uses a pre-norm residual connection (Wang et al.
2019a,b) and LN prior to passing through a multi-head self-
attention network, resulting in more stable gradients:

Tl

LN, 4(z) = 0 Oy+ 5, (3)
MHA(K, V, Q) = softmax (Q\/K;) V. (4)

Where p and ¢ are the mean and variance of z, respectively,
y and f represent the parameter vectors of scaling and transla-
tion, respectively. Query information, key information, and
value information related to a specific task are represented as
q, k, and v, respectively. The number of operation heads is
represented as b, and the aggregated g, k, and v after multiple
heads are denoted as Q, K, and V| respectively. Here, d signi-
fies the dimensions of the input vector. Then, LayerNorm reg-
ularization is carried out, and the features extracted by
multiple heads are aggregated through FFN blocks to finally
obtain the context feature C that represents the whole
sequence.

The entire process can be summarized as follows: given a
circRNA sequence with a batch size of 7, the preliminary fea-
tures x(2) and x® are extracted by CircRNA2Vec and EIIP
descriptors, respectively. It is then encoded by an encoder (us-
ing a 1D convolutional neural network) as z®and 2, where
the feature sequence length is 7. Then, context variables ¢(?)
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and ¢ are extracted by improved transformer respectively,
and cross-view mutual prediction is carried out. The loss func-
tions are:

Lotf = L2 + L (S)

S A (0 D

S (Onle)) )

1 g g P (08 () )
£2 = n;dmg log > e <<Wf(6(3)))TZ§Z)> - (7

n
t=

2.3.2 Fine-tuning

After mutual prediction across the sequence of views, we get
the trained RNA_Transformer. This allows him to learn the
expression of the context of the overview from the sequence
features. We then fine-tune the network for specific tasks to
meet the needs of circRNA-protein binding site prediction.
Specifically, we combine the features 2@ encoded by the
above three feature descriptors and input them into
RNA_Transformer. Context information ¢ of fusion fea-
tures is extracted, processed by projection_head and normal-
ized by softmax to obtain prediction label y. Finally, using
cross-entropy loss and training with only a very small number
of real labels, excellent results can be obtained:

exp (o(Wo (¢41) +1,))

S TR o S e S

1 m
L= f%Z[Y,- logy; + (1 —y;) log(1 —,)]. ®)
i=1

As far as we know, this is the first time to apply the SSL al-
gorithm to address the RNA-protein binding site prediction
problem. Different from HCRNet and CircSSNN, the three
feature descriptors we selected are relatively shallow algo-
rithms and do not use DNABert’s large language model,
which requires lower hardware resources and is easy to be
widely used. Compared with previous supervised learning
algorithms, it reduces the excessive dependence on actual
labels. After representing sequences in agent task learning
without using real tags, superior performance can be achieved
with only a small number of tags depending on the final task.

3 Results and discussion

3.1 Experimental setup

In our experiment, the networks are trained by the Adam op-
timizer, where , = 0.99, ; = 0.9, and weight_decay is set
to 3e-4 and batchSize to 64. The optimizer’s learning rate is
automatically controlled by the scheduling that comes with
pytorch, where initial value is 3e-3. We employ a layer of

RNA_Transformer and set dim to 400, heads to 8, and
mlp_dim to 200.

3.2 Existing supervised algorithm performance

We demonstrate the AUC performance achieved by eight
existing supervised recognition algorithms on six circRNA-
RBP datasets, as shown in Fig. 3. These include CircSSNN,
HCRNet, iCircRBP-DHN, PASSION, CRIP, CircRB,
CSCRSites, and CircSLNN. The dataset ratio is set to 8:2,
based on the number of training and test samples as claimed
in their respective papers. It can be seen from the picture that
the latest algorithm CircSSNN has achieved nearly perfect
performance, and HCRNet and iCircRBP-DHN are not much
different from it. Since Fig. 3 cannot be well distinguished, we
independently draw the results of these three algorithms on
these datasets to draw box plots (Fig. 4). However, it should
be noted that these algorithms require up to 80% of the train-
ing samples, i.e. 80% of the labeling labels obtained through
biological experiments need to be invested in the algorithm
for auxiliary learning, so as to guide the network to learn

C170RF85

CircSSNN
HCRNet
iCircRBP

PASSION WTAP

CRIP
CSCRSites
CircSLNN
CircRB

Figure 3. AUC discrimination performance obtained by eight existing
supervised algorithms.
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Figure 4. AUC performance obtained by the latest three supervised
learning algorithms on six datasets.
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Figure 5. Performance comparison between CircSI-SSL and the latest three supervised algorithms in four indicators.

useful and easily distinguishable features. We know that the
biological experiment analysis cost is high, the cycle is long,
the efficiency is low, consumes a lot of human, material, and
financial resources, which greatly limits the universality of the
algorithm. Therefore, the algorithm’s dependence on labels
should be reduced as much as possible to reduce the cost.

3.3 Our CircSI-SSL performance

To validate the low dependency for labels and recognition ef-
fectiveness of our CircSI-SSL algorithm, we selected three
algorithms with the best supervised performance, CircSSNN,
HCRNet, and iCircRBP-DHN, and compared them with our
algorithm under the premise of train:test=1:9. The results
are shown in Fig. 5. It can be seen that our algorithm has

achieved remarkable performance on most datasets and indi-
cators, but we also see that our algorithm is slightly lower
than HCRNet in Recall index. The reason may be that when
very little supervision information is involved in training, su-
pervised algorithms tend to pay too much attention to individ-
ual indicators and failure to achieve overall performance. For
example, HCRNet focuses on recall index, while ACC and
Precision fail to achieve good results. In contrast, our CircSI-
SSL achieves a balanced and excellent performance across all
metrics. It can also be seen from the comprehensive index
AUC that the algorithm in this article has the best comprehen-
sive ability and has a wide application prospect. For the con-
venience of comparison, we visualized the average AUC of
the algorithm on six datasets as Fig. 6. It can be intuitively
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Figure 6. Average AUC performance comparison between CircSI-SSL and
the latest three supervised algorithms on six datasets.

Table 1. AUC performance of CircSI-SSL algorithm under different

training sample proportions.

Ratio WTAP FXR1 C170RF85 QKI TAF15 AUF1 AVG
1:9 0.887 0.981 0.964 0.961 0986 0.971 0.958
2:8 0.914 0.980 0.962 0.964 0986 0.970 0.963
3:7 0.913 0.984 0.962 0.967 0987 0973 0.964
4:6 0.926 0.987 0.963 0.964 0989 0972 0.967
5:5 0.938 0.983 0.961 0.968 0.988 0.973 0.968
6:4 0.943 0.985 0.960 0.969 0991 0.977 0.971
7:3 0.938 0.983 0.959 0.971 0990 0.975 0.969
8:2 0.978 0.989 0.956 0.970 0989 0979 0.977

seen that the algorithm in this article achieved the highest per-
formance compared with other datasets, which was 3.3%
higher on average and more than 5% higher on some
datasets.

To further explore the relationship between the perfor-
mance of the proposed algorithm and the amount of super-
vised information introduced, it is proved that the proposed
algorithm can achieve stable performance under the condition
of very few training samples. We conducted a step test accord-
ing to the training samples from 1 to 9. Ratio was used to rep-
resent the ratio between the training set and the test set. The
AUC performance obtained was shown in Table 1. We can
see that in general, the algorithm has learned easily distin-
guishable features under the sample ratio of 1:9, and achieved
excellent classification performance. With the continuous in-
crease of training samples, the performance of the algorithm
can maintain a certain increase, but the difference is not much
compared with the initial. This fully indicates that the cross-
view prediction task based on SSL has trained the
RNA_Transformer feature extractor and learned enough con-
textual features to represent the entire sequence. Only a very
small number of samples are required to fine-tune for subse-
quent recognition tasks.

3.4 Ablation analysis

In this section, we conduct an ablation analysis to demon-
strate that the improved performance of our algorithm is a di-
rect result of the SSL task we designed. The AUC
performance obtained by the CircSI-SSL algorithm on these
datasets is presented in Table 2, where fine-tuning based on

Table 2. AUC performance of CircSI-SSL algorithm (without self-
supervision task) under different training sample proportions.

Ratio WTAP FXR1 C170RF85 QKI TAF15 AUF1 AVG
1:9 0.881 0.883 0.941 0.866 0.888 0.653 0.852
2:8 0.876 0.895 0.944 0.838 0.931 0.848 0.889
3:7 0.878 0.923 0.941 0.923 0.913 0.711 0.881
4:6 0.885 0.904 0.936 0.926 0.831 0.744 0.871
5:5 0.918 0.938 0.733 0.673 0915 0.673 0.809
6:4 0.907 0.500 0.945 0.703 0.909 0.500 0.744
7:3 0.902 0.898 0.940 0.934 0.853 0.775 0.884
8:2 0.930 0.886 0.946 0.873 0.836 0.922 0.899
0.977
. ; 0871 0.969
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Figure 7. Average AUC performance with and without SSL across six
datasets.

real labels is performed directly without cross-view sequence
prediction task. It is evident that when no proxy task is per-
formed, the algorithm performance drops off a cliff, with an
average decline of about 10%, as shown in Fig. 7. In particu-
lar, there is also an extreme AUC performance of 0.5. This is
sufficient to show that it is necessary to conduct self-
supervised tasks, to learn the overall expression of the
sequence from the data (without labels), and thus to signifi-
cantly improve subsequent classification tasks with only a few
labels.

3.5 Transplant analysis

To further demonstrate the advantages of the proposed algo-
rithm in more aspects, we transplanted the circSI-SSL algo-
rithm originally designed for circRNA into the binding
protein prediction task of inRNA without any network modi-
fication and with consistent hyperparameters. In the perfor-
mance comparison between the six widely used linRNAs and
several supervised algorithms as shown in Fig. 8 below, the
ratio of training set to test set is still 1:9. Remarkably, the pro-
posed algorithm achieves the best overall performance with-
out any task-oriented tuning. In Fig. 8, we can see that
although iCircRBP-DHN also obtained a good average AUC
value, it can also clearly see huge fluctuations in ACC,
Precison, and Recall, which are separate indicators. HCRNet
algorithm is relatively stable, but its performance on Recall in-
dex is poor. In the case of a very small number of training
datasets put into training, the performance of the above two
in each indicator is not balanced, and the overall good perfor-
mance is not achieved. Therefore, supervised learning
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Figure 8. Comparison of transplant performance on linRNA datasets.

algorithm is not a good choice when there are only a few la-
beled samples. In contrast, the algorithm in this article
achieves the overall optimal performance, even in such a
harsh environment.

4 Conclusion

In this article, we propose the novel CircSI-SSL framework
for circRNA-RBP site recognition tasks based on SSL. By de-
signing a cross-view sequence prediction task, the algorithm
can learn the overall representation of the sequence in an
unsupervised manner, and significantly enhance subsequent
RBP identification performance with only a small amount of
supervised information. Based on the improved Transformer

hnRNPC-1 U2AF65 hnRNPC-2

Y2AF65 ELVAL1-2 QKI

AVG

hnRNPC-1 U2AF65 hnRNPC-2

Y2AF65 ELVAL1-2 QKI

AVG

Cao et al.

AUC

0.94

0.92

0.90

0.88

-0.86

-0.84

0.871 | 0.82

iCircRBP-DHN

]
HCRNet
Recall

CircSI-SSL

'
HCRNet

CircSI-SSL iCircRBP-DHN

network RNA_Transformer in this article, the framework
extracts sequence context features from multiple views to
characterize the sequence. By designing reasonable and effec-
tive proxy tasks, along with a stable and efficient network ar-
chitecture, significant improvements were achieved with only
a small amount of supervised information on the widely used
six circRNA datasets and six linRNA datasets compared to
supervised learning algorithms.

In short, the CircSI-SSL algorithm based on SSL has good
identification performance, expansion performance, and wide
application range, only a small amount of label information
can significantly improve the recognition performance. It is a
very competitive tool for circRNA-RBP binding site
identification.
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