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Abstract
Summary: Several popular haplotype-based statistics for identifying recent or ongoing positive selection in genomes require knowledge of hap-
lotype phase. Here, we provide an update to selscan which implements a re-definition of these statistics for use in unphased data.

Availability and implementation: Source code and binaries are freely available at https://github.com/szpiech/selscan, implemented in C/Cþþ,
and supported on Linux, Windows, and MacOS.

1 Introduction

Haplotype-based summary statistics—such as iHS (Voight
et al. 2006), nSL (Ferrer-Admetlla et al. 2014), XP-EHH
(Sabeti et al. 2007), and XP-nSL (Szpiech et al. 2021)—have
become commonplace in evolutionary genomics studies to
identify recent and ongoing positive selection in populations
(e.g. Colonna et al. 2014, Zoledziewska et al. 2015, Nédélec
et al. 2016, Crawford et al. 2017, Meier et al. 2018, Lu et al.
2019, Zhang et al. 2020, Salmón et al. 2021). When an adap-
tive allele sweeps through a population, it leaves a characteris-
tic pattern of long high-frequency haplotypes and low genetic
diversity in the vicinity of the allele. These statistics aim to
capture these signals by summarizing the decay of haplotype
homozygosity as a function of distance from a putatively se-
lected region, either within a single population (iHS and nSL)
or between two populations (XP-EHH and XP-nSL).

These haplotype-based statistics are powerful for detecting
recent positive selection (Colonna et al. 2014, Zoledziewska
et al. 2015, Nédélec et al. 2016, Crawford et al. 2017, Meier
et al. 2018, Lu et al. 2019, Zhang et al. 2020, Salmón et al.
2021), and the two-population versions can even out-perform
pairwise Fst scans on a large swath of the parameter space
(Szpiech et al. 2021). Furthermore, haplotype-based methods
have also been shown to be robust to background selection
(Fagny et al. 2014, Schrider 2020). However, each of these
statistics presumes that haplotype phase is known or well-
estimated.

As the generation of genomic sequencing data for non-
model organisms is becoming routine (Ellegren 2014), there
are many great opportunities for studying recent adaptation
across the tree of life (e.g. Campagna and Toews 2022).
However, often these organisms/populations do not have a
well-characterized demographic history or recombination rate

map, two pieces of information which are important inputs
for statistical phasing methods (Delaneau et al. 2013,
Browning et al. 2021).

Recent work has shown that haplotype-based statistics can
be adapted for use on unphased data (Klassmann and Gautier
2022) and that converting haplotype data into “multi-locus
genotype” data is an effective approach for using haplotype-
based selection statistics such as G12, LASSI, and saltiLASSI
(Harris et al. 2018, Harris and DeGiorgio 2020, DeGiorgio
and Szpiech 2022) in unphased data. Recognizing this, we
have reformulated the iHS, nSL, XP-EHH, and XP-nSL statis-
tics to use multi-locus genotypes and provided an easy-to-use
implementation in selscan 2.0 (Szpiech and Hernandez 2014).
We evaluate the performance of these unphased statistics un-
der various generic demographic models and compare against
the original statistics applied to simulated datasets when
phase is either known or unknown.

2 Materials and methods

When the –unphased flag is set in selscan v2.0þ, biallelic ge-
notype data is collapsed into multi-locus genotype data by
representing the genotype as either 0, 1, or 2—the number of
derived alleles observed. In this case, selscan v2.0þ will then
compute iHS, nSL, XP-EHH, and XP-nSL as described below.
We follow the notation conventions of Szpiech and
Hernandez (2014).

2.1 Extended haplotype homozygosity

In a sample of n diploid individuals, let C denote the set of all
possible genotypes at locus x0. For multi-locus genotypes,
C :¼ f0;1;2g, representing the total counts of a derived allele.
Let C xið Þ be the set of all unique haplotypes extending
from site x0 to site xi either upstream or downstream
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of x0. If x1 is a site immediately adjacent to x0, then
C x1ð Þ :¼ f00; 01;02;10; 11; 12;20;21; 22g, representing all
possible two-site multi-locus genotypes. We can then compute
the extended haplotype homozygosity (EHH) of a set of
multi-locus genotypes as

EHH xið Þ
X

h2C xið Þ
nh

2

� ��
n
2

� �
;

where nh is the number of observed haplotypes of type h.
If we wish to compute the EHH of a subset of observed

haplotypes that all contain the same “core” multi-locus geno-
type, let Hc xið Þ be the partition of C xið Þ containing genotype
c 2 C at x0. For example, choosing a homozygous derived ge-
notype (c ¼ 2) as the core, H2 :¼ f20; 21;22g. Thus, we can
compute the EHH of all individuals carrying a given genotype
at site x0 extending out to site xi as

EHHc xið Þ ¼
X

h2Hc xið Þ
nh

2

� �
=

nc

2

� �
;

where nh is the number of observed haplotypes of type h and
nc is the number of observed multi-locus genotypes with core
genotype of c. Finally, we can compute the complement EHH
of a sample of multi-locus genotypes as

cEHHc xið Þ ¼
X

h2C xið ÞnHc xið Þ
nh

2

� �
=

nc0

2

� �
;

where nc0 is the number of observed multi-locus genotypes
with a core genotype of not c.

2.2 iHS and nSL

Unphased iHS and nSL are calculated using the equations
above. First, we compute the integrated haplotype homozy-
gosity (iHH) for the homozygous ancestral (c ¼ 0) and de-
rived (c ¼ 2) core genotypes as

iHHc ¼
XjDj
i¼1

1
2
ðEHHcðxi�1Þ þ EHHcðxiÞÞdðxi�1;xiÞ

þ
XjUj
i¼1

1
2
ðEHHcðxi�1Þ þ EHHcðxiÞÞdðxi�1; xiÞ;

where D is the set of downstream sites from the core locus
and U is the set of upstream sites. dðxi�1;xiÞ is a measure of
genomic distance between to markers and is the genetic dis-
tance in centimorgans or physical distance in basepairs for
iHS (Voight et al. 2006) or the number of sites observed for
nSL (Ferrer-Admetlla et al. 2014). We similarly compute the
complement integrated haplotype homozygosity (ciHH) for
both homozygous core genotypes as

ciHHc ¼
XjDj
i¼1

1
2
ðcEHHcðxi�1Þ þ cEHHcðxiÞÞdðxi�1;xiÞ

þ
XjUj
i¼1

1
2
ðcEHHcðxi�1Þ þ cEHHcðxiÞÞdðxi�1;xiÞ:

The (unstandardized) unphased iHS is then calculated as

iHS ¼ iHS2; if iHS2 > iHS0

�iHS0; otherwise
;

�

where iHS2 ¼ log10 iHH2=ciHH2ð Þ and iHS0 ¼
log10 iHH0=ciHH0ð Þ: Conceptually, this is nearly identical to
the phased version of iHS, where the log ratio of the inte-
grated haplotype homozygosity is computed between all hap-
lotypes carrying the ancestral allele at the core locus versus all
haplotypes carrying the derived allele at the core locus. In this
case, however, we compare the iHH of the haplotypes con-
taining homozygous genotypes of one allele at the core locus
to the iHH of the haplotypes containing all other genotypes at
the core locus. Doing this for both homozygous derived and
homozygous ancestral haplotypes separately, we then choose
the most extreme value. We assign a positive sign for long
low-diversity haplotypes containing the derived homozygous
genotype at the core locus, and we assign a negative sign for
long low-diversity haplotypes containing the ancestral homo-
zygous genotype at the core locus. Unstandardized iHS
scores are then normalized in frequency bins, as previously
described (Voight et al. 2006, Ferrer-Admetlla et al. 2014).
Unstandardized unphased nSL is computed similarly with the
appropriate distance measure [see Ferrer-Admetlla et al.
(2014) where they show that nSL can be reformulated as iHS
with a different distance measure]. Large positive scores indi-
cate long high-frequency haplotypes with a homozygous de-
rived core genotype, and large negative scores indicate long
high-frequency haplotypes with a homozygous ancestral core
genotype. Clusters of extreme scores in both directions indi-
cate evidence for a sweep.

2.3 XP-EHH and XP-nSL

Unphased XP-EHH and XP-nSL are calculated by comparing
the iHH between populations A and B, using the entire sam-
ple in each population. iHH in a population P is computed as

iHHP ¼
XjDj
i¼1

1
2
ðEHHðxi�1Þ þ EHHðxiÞÞdðxi�1;xiÞ

þ
XjUj
i¼1

1
2
ðEHHðxi�1Þ þ EHHðxiÞÞdðxi�1; xiÞ;

where the distance measure is given as centimorgans or base-
pairs for XP-EHH (Sabeti et al. 2007) and number of sites ob-
served for XP-nSL (Szpiech et al. 2021). The XP statistics
between population A and B are then computed as
XP ¼ log10 iHHA=iHHBð Þ and are normalized genome wide.
Large positive scores indicate long high-frequency haplotypes
in population A, and large negative scores indicate long high-
frequency haplotypes in population B. Clusters of extreme
scores in one direction indicate evidence for a sweep in that
population.

2.4 Simulations

We evaluate the performance of the phased and unphased ver-
sions of iHS, nSL, XP-EHH, and XP-nSL under a generic
two-population divergence model using the coalescent simula-
tion program discoal (Kern and Schrider 2016). We explore
five versions of this generic model and name them Demo 1
through Demo 5 (Supplementary Table S1). Let N0 and N1 be
the effective population sizes of Population 0 and Population
1 after the split from their ancestral population (of size NA).
For Demo 1, we keep a constant population size post-split
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and let N0 ¼ N1 ¼ 10 000. For Demo 2, we keep a constant
population size post-split and let N0 ¼ 2N1 ¼ 10 000. For
Demo 3, we keep a constant population size post-split and let
2N0 ¼ N1 ¼ 10 000. For Demo 4, we initially set N0 ¼ N1 ¼
10 000 and let N0 grow stepwise exponentially every 50 gen-
erations starting at 2000 generations ago until
N0 ¼ 5N1 ¼ 50 000. For Demo 5, we initially set N0 ¼ N1 ¼
10 000 and let N1 grow stepwise exponentially every 50 gen-
erations starting at 2000 generations ago until
5N0 ¼ N1 ¼ 50 000.

For each demographic history we vary the population di-
vergence time td 2 2000; 4000; 8000f g generations ago. For
non-neutral simulations, we simulate a sweep in Population 0
in the middle of the simulated region across a range of selec-
tion coefficients s 2 0:005; 0:01; 0:02f g. We vary the fre-
quency at which the adaptive allele starts sweeping as
e 2 0; 0:01; 0:02; 0:05; 0:10f g, where e ¼ 0 indicates a hard
sweep and e > 0 indicates a soft sweep, and we also vary the
frequency of the selected allele at time of sampling f 2
0:7; 0:8; 0:9; 1:0f g as well as g 2 50; 100f g representing fix-

ation of the sweeping allele g generations ago. For all simula-
tions we set the genome length to be L ¼ 500 000 basepairs,
the ancestral effective population size to be NA ¼ 10 000,
the per site per generation mutation rate at l ¼ 2:35� 10�8,
and the per site per generation recombination rate at
r ¼ 1:2� 10�8. For neutral simulations, we simulate 1000
replicates for each parameter set, and for non-neutral simula-
tions we simulate 100 replicates for each parameter set. We
sample 2n 2 f200; 100; 40; 20g haplotypes, randomly
paired together to form n 2 f100; 50; 20; 10g diploid indi-
viduals, from each population for analysis. These datasets
represent the case where phase is known perfectly. We also
create a set of “unphased” datasets from these phased data-
sets by swapping the alleles of each heterozygote to the oppos-
ing haplotype with probability 0.5.

As iHS and nSL are single population statistics, we only an-
alyze Demo 1, Demo 3, and Demo 4 with these statistics, as
Demo 2 and Demo 5 have a constant size history identical to
Demo 1 for Population 0, where the sweeps are simulated.
For XP-EHH and XP-nSL we analyze all five demographic
histories.

For all simulations, we compute the relevant statistics (–ihs,
–nsl, –xpehh, or –xpnsl) with selscan v2.0 using the –trunc-ok
flag. We set –unphased when computing the unphased ver-
sions of these statistics, and we do not set it when computing
the original phased versions. For iHS and XP-EHH, we also
use the –pmap flag to use physical distance instead of a re-
combination map.

2.5 Power and false positive rate

Here we evaluate the power and false positive rate for the
unphased version of iHS, nSL, XP-EHH, and XP-nSL. For
comparison, we also compute the power for the original
phased versions of these statistics in two different ways. We
compute the phased statistics for a set of simulated datasets
where perfect phase is known, and we compute them again
for a set of simulated datasets where we destroy phase infor-
mation (see Section 2.4). As the unphased statistics collapse
genotypes into derived allele counts, there is no functional dif-
ference between these two datasets for these statistics. We
compute power in the same way for each statistic regardless
of underlying dataset analyzed as described below.

To compute power for iHS and nSL, we follow the ap-
proach of Voight et al. (2006). For these statistics, each non-
neutral replicate is individually normalized jointly with all
neutral replicates with matching demographic history in 1%
allele frequency bins. Because extreme values of the statistic
are likely to be clustered along the genome (Voight et al.
2006), we then compute the proportion of extreme scores
( iHSj j > 2 or nSLj j > 2) within 100kbp non-overlapping win-
dows. We then bin these windows into 10 quantile bins based
on the number of scores observed in each window and call
the top 1% of these windows as putatively under selection.
We calculate the proportion of non-neutral replicates that fall
in this top 1% as the power. To compute the false positive
rate, we compute the proportion of neutral simulations that
fall within the top 1%.

To compute power for XP-EHH and XP-nSL, we follow
the approach of (Szpiech et al. 2021). For these statistics, each
non-neutral replicate is individually normalized jointly with
all matching neutral replicates. Because extreme values of the
statistic are likely to be clustered along the genome (Szpiech
et al. 2021), we then compute the proportion of extreme
scores (XP-EHH> 2 or XP-nSL> 2) within 100kbp non-
overlapping windows. We then bin these windows into 10
quantile bins based on the number of scores observed in each
window and call the top 1% of these windows as putatively
under selection. We calculate the proportion of non-neutral
replicates that fall in this top 1% as the power. To compute
the false positive rate, we compute the proportion of neutral
simulations that fall within the top 1%.

3 Results

We find that the unphased versions of iHS and nSL generally
have good power at large sample sizes (Fig. 1A and B,
Supplementary Figs S1, S7, and S8) to detect selection prior to
fixation of the allele, with nSL generally outperforming iHS.
In smaller populations (Supplementary Fig. S1C and D),
power does suffer relative to larger populations
(Supplementary Fig. S1A, B, E, and F). We note that these sta-
tistics struggle to identify soft sweeps when the population is
undergoing exponential growth (Supplementary Fig. S1E and
F). Each of these statistics also have low false positive rates
hovering around 1% (Supplementary Tables S2–S5). These
single-population statistics only perform well for relatively
large samples (Fig. 1A and B, and Supplementary Figs S19,
S25, S26, S31, S32, S37, S43, S44, S55, S61, and S62).

Similarly, we find that the unphased versions of XP-EHH
and XP-nSL have good power as well even for relatively low
sample sizes (Fig. 1C, D, G, and H and Supplementary Figs
S2, S3, S9–S12, S20, S21, S27–30, S38, S39, S45–48, S56,
S57, S63–S66). When the sweep takes place in the smaller of
the two populations (Supplementary Figs S2C, S2D, S20C,
S20D, S38C, S38D, S56C, and S56D), we see a similar de-
crease in power, likely related to the lower efficiency of selec-
tion in small populations. When one population is
undergoing exponential growth (Supplementary Figs S3, S21,
S39, and S57) performance is generally quite good, likely the
result of a larger effective selection coefficient in large popula-
tions. These two-population statistics generally outperform
their single-population counterparts, especially at small dip-
loid sample sizes and for sweeps that have reached fixation re-
cently. Each of these statistics also have low false positive
rates hovering around 1% (Supplementary Tables S2–S5).
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Next, we turn to comparing the performance of these
unphased statistics to their phased counterparts when they
are used to analyze either phased data or unphased data. In
Fig. 1E–H and Supplementary Figs S4–S6, S13–S18, S22–
S24, S31–S36, S40–S42, S49–S54, S58–S60, and S67–S72,
we plot the difference in power between the unphased statis-
tics and the phased counterpart applied to data with phase

known (red lines) or phase scrambled (blue lines). Where
these lines are greater than or equal to 0 indicates that the
unphased statistic performed as well as or better than the
phased counterpart.

We find that iHS tends to underperform the traditional
phased implementations, but nSL tends to perform as well as
the phased versions (Fig. 1E and F and Supplementary Figs

Figure 1. Unphased power. Power curves for unphased implementations of iHS (A), nSL (B), XP-EHH (C), and XP-nSL (D), and power difference between

unphased implementations of iHS (E), nSL (F), XP-EHH (G), and XP-nSL (H) and phased implementations. Blue curves represent the power difference

between the unphased and phased statistics when applied to unphased data (UN). Red curves represent the power difference between the unphased

and phased statistics when applied to perfectly phased data (PH). Values greater than 0 indicate the unphased statistic had higher power. All panels

represent analyses with demographic history Demo 1 and n¼ 100, 50, 20, or 10 diploid samples. For these plots the selection coefficient is set at

s ¼ 0:01, the frequency at which selection began is set at e ¼ 0 (i.e. a hard sweep), and the divergence time in generations is set at td ¼ 2000. f is the

frequency of the adaptive allele at time of sampling, g is the number of generations at time of sampling since fixation.
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S4, S13, S14, S22, S31, S32, S40, S49, S50, S58, S67, and
S68). Although we note noticeable drops in unphased nSL
power for softer sweeps in exponential growth scenarios
(Supplementary Figs S4F, S13F, S14F, S22F, S31F, S32F,
S40F, S49F, S50F, S58F, S67F, and S68F) and for sweeps
near completion in small population sizes (Supplementary
Figs S4E, S13E, S14E, S22E, S31E, S32E, S40E, S49E, S50E,
S58E, S67E, and S68E).

When comparing the unphased versions of XP-EHH and
XP-nSL, we find that they consistently perform as well or bet-
ter than their phased counterparts (Fig. 1G and H and
Supplementary Figs S5, S6, S17, S18, S23, S24, S35, S36,
S41, S42, S53, S54, S59, S60, S71, and S72), except in limited
circumstances where phase is known, and the sweep is fairly
young (sweeping allele at 0.7 frequency) or the divergence
time is further in the past.

4 Discussion

We introduce multi-locus genotype versions of four popular
haplotype-based selection statistics—iHS (Voight et al. 2006),
nSL (Ferrer-Admetlla et al. 2014), XP-EHH (Sabeti et al.
2007), and XP-nSL (Szpiech et al. 2021)—that can be used
when the phase of genotypes is unknown. Although phase
would seem to be a critically important component of any
haplotype-based method for detecting selection, here we show
that, by collapsing haplotypes into derived allele counts (thus
erasing phase information), we can achieve similar power to
using this information. We observed that single-population
statistics such as iHS and nSL require relatively large diploid
sample sizes (n >¼ 100 for iHS, n >¼ 50 for nSL), but the
two-population statistics XP-EHH and XP-nSL perform well
even for diploid sample sizes down to n ¼ 10 per population.
This follows other work that has shown similar patterns with
other haplotype-based statistics for detecting selection (Harris
et al. 2018, Harris and DeGiorgio 2020, DeGiorgio and
Szpiech 2022, Klassmann and Gautier 2022). Importantly,
this approach now opens up the application of several popu-
lar haplotype-based selection statistics (based on extended
haplotype homozygosity) to more species where phase infor-
mation is challenging to know or infer.

For ease of use of these new unphased versions of iHS, nSL,
XP-EHH, and XP-nSL, we implement these updates in the lat-
est v2.0 update of the program selscan (Szpiech and
Hernandez 2014), with source code and pre-compiled bina-
ries available at https://www.github.com/szpiech/selscan.
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