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Abstract

The Illuminating the Druggable Genome (IDG) consortium is a National Institutes of Health 

(NIH) Common Fund program designed to enhance our knowledge of understudied proteins. More 

specifically, proteins unannotated within the three most commonly drug-targeted protein families: 

G-protein coupled receptors, ion channels, and protein kinases. Since 2014, the IDG Knowledge 

Management Center (IDG-KMC) has generated several open-access datasets and resources that 

jointly serve as a highly translational machine learning ready knowledgebase focused on human 

protein-coding genes and their products. The goal of the IDG-KMC is to develop comprehensive 

integrated knowledge for the druggable genome to illuminate the uncharacterized or poorly 

annotated portion of the druggable genome. The tools derived from the IDG-KMC provide either 

user-friendly visualizations or ways to impute the knowledge about potential targets using machine 

learning strategies. In the following protocols, we describe how to use each web-based tool for 

researchers to accelerate illumination in understudied proteins.

Basic Protocol 1: Interacting with the Pharos user interface
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INTRODUCTION

There are approximately 25,000 protein-coding genes (Venter et al., 2001) in the human 

genome. Abnormal protein expression is associated with many human diseases, which 

makes proteins critical targets for therapeutic agents. Approximately 15% of protein-coding 

genes are considered part of the “druggable genome”. This means that these proteins 

can modulate cellular behavior when targeted by experimental small molecule compounds 

(Hopkins and Groom, 2002; Lipinski et al., 2001; Russ and Lampel, 2005; Johns et al., 

2012). Moreover, only a few hundred targets represent the existing clinical pharmacopeia, 

leaving a massive swath of pharmacology that remains unexploited. Therefore, 85% of 

druggable proteins remain to be explored as potential therapeutic targets. Much of the 

druggable genome encodes three critical protein families: non-olfactory G-protein-coupled 

receptors (GPCRs), ion channels, and protein kinases. Critically, we currently lack crucial 

knowledge about the function of many proteins from these families and their roles in health 

and disease. A better understanding of these proteins, structurally or functionally, could shed 

light on new avenues of investigation for basic science and therapeutic discovery (Oprea et 

al., 2018).

In this article, we provide several protocols to guide users through the use of IDG tools 

that accomplish specific computational tasks related to illuminating the druggable genome. 

In Basic Protocol 1, we describe how users can query the Pharos web interface (Sheils 
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et al., 2021) to search for data related to gene targets. Basic Protocol 2 explains how 

to use Harmonizome (Rouillard et al., 2016), a web application that stores gene-attribute 

associations from various sources that can be readily visualized and leveraged for machine 

learning. Basic Protocol 3 describes ARCHS4 (Lachmann et al., 2018), a web application 

that provides easy access to RNA-sequencing data from human and mouse experiments and 

also includes gene landing pages for all human genes with gene function predictions based 

on mRNA co-expression. Basic Protocol 4 describes PrismEXP (Lachmann et al., 2021), a 

machine learning Appyter (Clarke et al., 2021) that improves gene function predictions from 

gene co-expression correlation data by sharding the global gene-gene co-expression matrix 

used by ARCHS4. Basic Protocol 5 teaches the user how to use Geneshot (Lachmann et 

al., 2019), a web application that facilitates querying of biomedical search terms to retrieve 

prioritized lists of genes related to the search terms. In Basic Protocol 6 we introduce TIN-X 

(Cannon et al., 2017), the Target Importance and Novelty eXplorer. We demonstrate to 

users how to query and explore interesting disease-target associations based on novelty 

and importance metrics derived from natural language processing (NLP) of PubMed 

abstracts. Basic Protocol 7 describes DrugCentral (Avram et al., 2021), a comprehensive 

database of approved drugs that includes information relating to drug side effects, mode of 

action, indications, pharmacologic action, and other information. Basic Protocol 8 explains 

REDIAL-2020 (Kc et al., 2021), an ensemble machine learning platform that extends the 

information available in DrugCentral to predict drugs and small molecules that may have 

anti-SARS-CoV-2 activity. In Basic Protocol 9 we discuss Drugmonizome (Kropiwnicki et 

al., 2021), a web application that facilitates drug set enrichment analysis and allows users 

to submit a drug set of interest to retrieve enriched terms that all, or most, of the members 

of the input set share. Basic Protocol 10 describes Drugmonizome-ML (Kropiwnicki et 

al., 2021), an Appyter that extends the information available in Drugmonizome to build 

on-the-fly machine learning models for predicting novel drug and small molecule attributes. 

In a similar vein, Basic Protocol 11 discusses Harmonizome-ML, an Appyter that enables 

users to utilize the datasets from Harmonizome to build machine learning models that 

predict novel gene-attribute associations. Basic Protocol 12 includes a discussion of TIGA 

(Yang et al., 2021), Target Illumination GWAS Analytics, a tool that summarizes gene-trait 

associations derived from genome wide association studies (GWAS) with rational and 

intuitive evidence metrics. In Basic Protocol 13 we describe how users can submit an 

input list of genes or differentially phosphorylated proteins to KEA3 for kinase enrichment 

analysis (Kuleshov et al., 2021) to infer kinases associated with the input list. Basic Protocol 

14 explains how to use DrugShot, an Appyter that allows for the querying of biomedical 

search terms to retrieve known and predicted lists of drugs and small molecules related to 

the query term.

Basic Protocol 1: Interfacing with the Pharos user interface

Pharos is the user interface to the Knowledge Management Center (KMC) for the IDG 

program, providing facile access to most data types collected by the KMC (Nguyen et al., 

2017; Sheils et al., 2020). Given the complexity of the data surrounding any target, efficient 

and intuitive visualization has been a high priority for users to navigate and summarize 

search results and rapidly identify patterns. Underlying the interface is a GraphQL API that 
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provides programmatic access to all KMC data, enabling the incorporation of IDG resources 

with other applications.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Search Targets

1. Navigate to Pharos (https://pharos.nih.gov).

2. To search for a target, click on the search box on the main page or in the top left 

corner of subsequent pages. Enter ‘STAT3’. Note that multiple search types are 

available in the dropdown menu. (Figure 1)

3. It is possible to search by pathway or view a list of diseases or ligands associated 

with a target. Additionally, pressing enter or return will allow a text-based 

search, which will return a list of results featuring ‘stat3’ anywhere in the text.

4. Press ‘enter’, ‘return’ or click the magnifying glass icon to search for the ‘stat3’ 

text string.

5. A list of 81 targets is returned, with ‘STAT3’ being at the top of the list. The rest 

of the targets will have the phrase ‘stat3’ somewhere within the target details. 

(Figure 2)

6. Click on the STAT3 card to view the target details.

View target details

7. Follow the steps from above, or alternatively, click on the STAT3 (Target) option 

from the search box auto-complete. This will navigate directly to the STAT3 

target details page.

8. The target details page is divided into several sections that highlight an area of 

knowledge about the target.

9. Scroll down to the “Protein Summary” section. A brief description of the target, 

as well as several identifiers is available. In addition, the central radar plot charts 

the relative knowledge of a target compared to the rest of TCRD on a 0 to 

1 scale. This data is sourced from the Harmonizome, which will be discussed 

further (Figure 3).
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10. Scroll down to the next section, “IDG Development Level Summary”. Displayed 

here is the current development level . Each level has the criteria listed, as well as 

links to the data for each property (Figure 4).

11. On the left side panel, click on “Disease Associations by Source”. This will 

navigate within the page to a section displaying disease associations from a 

variety of sources.

12. Scroll down to the “Disease Novelty (Tin-x)” section, just below Disease 

Associations. A scatterplot is visible that shows Tin-x data. This data is 

explained in Protocol 6. Briefly, it is natural language processed PubMed 

abstracts that chart a target’s importance to a disease, as well as the novelty 

of that target to the disease. A dense chart indicates a large amount of knowledge 

about a target and its disease associations, whereas a sparser chart would indicate 

that target is not frequently studied and has fewer disease associations (Figure 5).

13. Scroll down to the next section “GWAS Traits”. Here a table of GWAS traits 

is displayed. This list focuses on scoring and ranking protein-coding genes 

associated with traits from genome-wide association studies. This allows both 

the discovery of traits most associated with a target, but also lesser emphasized 

traits (Figure 6).

Finding a list of Understudied targets that share disease associations with 
STAT3

14. From the STAT3 target details page, click on “Disease Associations by Source” 

on the left panel.

15. Click on the “Find Similar Targets” button, directly under the panel header 

(Figure 7).

16. The targets list page is now shown, with a target similarity filter applied, showing 

17,876 targets (Figure 8).

17. To refine this list for targets of interest to the IDG program (mentioned in 

Protocol 1), click on the “Refined (2020)” checkbox in the IDG Target Lists filter 

panel on the left side of the page. The list of targets shown is reduced to 290.

18. To find only dark targets in this list, click the “Tdark” value in the Target 

Development Level filter panel, returning 48 targets (Figure 9).

19. Click on the “click for details…” text on the TMEM63A target card to view a list 

of associated diseases that this target shares with STAT3 (Figure 10).

Download target list

20. Click on the downward facing arrow on the right side of the Targets header 

(Figure 11).

21. A window will pop open displaying a list of fields that can be selected (Figure 

12).
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22. Click on the Associated Diseases checkbox. Note that many fields are 

deactivated, to reduce the overall file size.

23. Click on Name and Target Development Level under the Single Value Fields 

heading.

24. Click the Run Download Query Button. A file download dialog will open. 

Depending on the complexity of the target list and the fields selected, it may take 

some time.

25. After the file is downloaded, this list of targets can be used as a starting point for 

many of the protocols listed below.

GraphQL queries

26. Click on API on the main Pharos header.

27. A code “sandbox” is now visible, allowing testing of GraphQL queries to fetch 

complex data from Pharos. A distinct feature of GraphQL is the ability of the 

consumer to determine the exact fields returned from the query, as opposed to a 

SQL query, where the data returned is determined by the database developer.

28. Click the “Play” button in the top center to run a sample query. A list of Drugs 

associated with DRD2 is returned.

29. Click on the “Docs” tab on the right side of the page. A menu will open up 

that displays the queries available, the inputs required, and the responses and 

properties returned. Click on the “Docs” tab again to close the menu.

30. Replace the text in the left column with this query:

query PaginateData {

 batch(

  filter: {

   facets: [

    { facet: “Target Development Level”, values: [“Tdark”] }

    { facet: “IDG Target Lists”, values: [“Refined (2020)”] }

   ]

   similarity: “(P40763, Associated Disease)”

  }

 ) {

  results: targetResult {

   count

   targets(skip: 0, top: 100) {

    name

    gene: sym

    accession: uniprot

    idgTDL: tdl

    similarityDetails: similarity {
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     commonOptions

     }

    }

   }

  }

 }

31. Press the play button. This query fetches all Dark targets of interest to the IDG 

that share associated diseases with STAT3. Returned is the target name, gene 

symbol, Uniprot id, IDG TDL, and shared associated diseases (Figure 13).

Entire Relational Database Download Page

32. Navigate to the TCRD website (http://juniper.health.unm.edu/tcrd/).

33. Click on the “Downloads” tab on the navigation bar at the top of the page to be 

redirected to a table of downloadable files; ex: MySQL dump of the full TCRD 

(latest.sql.gz).

Basic Protocol 2: Accessing the data in Harmonizome

The Harmonizome resource contains processed datasets detailing functional associations 

between genes/proteins and their attributes extracted from 66 online resources. The 

information from the original datasets was distilled into attribute tables that define 

significant associations between genes and their attributes, where attributes could be 

other genes, proteins, pathways, cell lines, tissues, experimental perturbations, diseases, 

phenotypes, drugs, or other entities depending on the dataset. The Harmonizome web 

application can be accessed from https://maayanlab.cloud/Harmonizome/ (Rouillard et al., 

2016).

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

• Text editor or development environment of choice, such as Visual Studio (https://

visualstudio.microsoft.com/vs/); most updated version of Python

• (https://www.python.org/downloads/ ); Python module for Harmonizome 

(https://maayanlab.cloud/Harmonizome/static/harmonizomeapi.py)
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Protocol steps and annotations

Metadata Search

1. Navigate to the Harmonizome website (https://maayanlab.cloud/Harmonizome/).

2. The front page features a search bar where keywords of interest can be input. 

Click the filter button on the left of the search bar to narrow searches to “genes”, 

“gene sets”, or “datasets” (Figure 14). Type “STAT3” into the search bar and 

click the submit button. The results page includes a single gene landing page for 

STAT3 and 75 gene sets with STAT3 as an attribute (Figure 15).

3. Click on the STAT3 “gene” result to be redirected to a single gene landing 

page (Figure 16). The page includes identifying metadata for the gene, download 

links for accessing functional associations between STAT3 and other attributes, 

and links to other gene-related information from ARCHS4 (Lachmann et al., 

2018). Additionally, a list of functional associations for STAT3 from the various 

processed datasets included in Harmonizome is available (Figure 17). Click the 

“+” button to view associations for STAT3 for any of the datasets.

4. Click on any of the STAT3 “gene set” results. The gene set results page includes 

metadata for the STAT3 gene set, in this case the gene set includes all target 

genes of STAT3. All of the genes included in the gene set are found in the 

“Genes” section (Figure 18). Click on any of the gene symbols to be redirected 

to a single gene landing page.

Download Page

1. Click on the “Download” section on the navigation bar at the top of the page to 

be redirected to a table of all the datasets included in Harmonizome (Figure 19).

2. Click on “Achilles” in the resource column to be redirected to a page with 

identifying metadata for the resource and a list of all datasets derived from the 

resource (Figure 20).

3. Click on “Cell Line Gene Essentiality Profiles” in the dataset column to be 

redirected to a page with identifying metadata for the dataset and links to 

downloadables contained within this dataset (Figure 21). Further down the page 

are links to visualizations of the dataset contents and a table of gene sets (Figure 

22). Click on any of the gene set names to be redirected to a gene set specific 

page.

Visualize

4. Click on the “Visualize” section on the navigation bar at the top of the page and a 

dropdown menu will appear (Figure 23).

5. Click on “Global Heat Map” within the dropdown menu to be redirected 

to an interactive clustergram that visualizes the appearances of each gene in 

Harmonizome. Select different gene classes with the buttons on the left. Switch 

the ordering of the clustergram between “cluster” and “rank” by clicking the 

corresponding button (Figure 24).
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6. Click on “Dataset Heat Maps” or “Gene Similarity Heat Maps” or “Attribute 

Similarity Heat Maps” within the dropdown menu to be redirected to a page 

with a dropdown menu of Harmonizome datasets. Open the dropdown menu and 

select any dataset to generate a hierarchically clustered heat map visualization of 

the dataset (Figure 25).

7. Click on “Dataset Pair Heat Maps” within the dropdown menu to be redirected 

to a page with a dropdown menu of Harmonizome datasets. Open the dropdown 

menu and select a dataset. A second dropdown menu will appear for selecting a 

second dataset to compare. Click visualize to generate a hierarchically clustered 

heat map visualization of the two datasets (Figure 26).

8. Click on “Heat Map with Input Genes” within the dropdown menu to be 

redirected to a page with a dropdown menu of Harmonizome datasets and a 

gene list text box. Click the “Example input” button to populate the fields with 

an example dataset and gene set. Click “Submit” to generate a hierarchically 

clustered heat map visualization of the associations between the uploaded genes 

and biological entities in the dataset (Figure 27).

Predict

9. Click on the “Predict” section on the navigation bar at the top of the page and 

a dropdown menu will appear (Figure 28). Click “Intro” within the dropdown 

menu.

10. The intro page contains information about how machine learning studies were 

devised using the Harmonizome datasets. A table with four separate case studies: 

“Ion Channel Predictions”, “Mouse Phenotype Predictions”, “GPCR-Ligand 

Interaction Predictions”, “Kinase-Substrate Interaction Predictions” contains 

links to view and download tables of predicted associations (Figure 29).

Using the Harmonizome API

11. These are the entity types supported by the Harmonizome API:

DATASET, GENE, GENE_SET, ATTRIBUTE, GENE_FAMILY, NAMING_AUTHORITY, PROTEIN, 

RESOURCE

Open a new or existing Python code file. Import the required Harmonizome API Python 

module at the top of the file:

from harmonizomeapi import Harmonizome, Entity

The Harmonizome object includes several methods to read, parse, and download data from 

the Harmonizome API. The Harmonizome object includes .get().next() and .download() 

methods. For example, to display the datasets available in Harmonizome run the following 

code block:
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entity_list = Harmonizome.get(Entity.DATASET)

more = Harmonizome.next(entity_list)

In order to minimize database queries and request times, the Harmonizome API uses a 

technique called “cursoring” to paginate large result sets. Therefore, the first line in the 

above code block returns the first 100 datasets, whereas the second line continues from 

where the previous entity list left off and retrieves the subsequent 14 datasets that are 

available in Harmonizome. The Harmonizome.get()and Harmonizome.next() methods can 

be used for all entity types supported by the Harmonizome API.

12. To download datasets available in Harmonizome to a local directory 

use the Harmonizome.download() generator function. Alternatively 

Harmonizome.download_df() can be used to download files and load them 

in directly as sparse (with an added sparse=True argument) or dense Pandas 

DataFrames (assumed). The function takes a list of datasets and downloadables 

as arguments. Leaving the datasets argument empty will download all 

datasets by default. Leaving the what argument empty will download all 

downloadables for each dataset by default. In the example code below, the 

“gene_attribute_matrix.txt.gz” downloadable from the “CTD Gene-Chemical 

Interactions” dataset is downloaded, decompressed, and saved to a local directory 

named after the dataset if it hasn’t already been processed:

dl, = Harmonizome.download(datasets=[‘CTD Gene-Chemical Interactions’],

what=[‘gene_attribute_matrix.txt.gz’])

More information regarding the Harmonizome API is available at https://maayanlab.cloud/

Harmonizome/documentation.

Basic Protocol 3: The ARCHS4 Resource

ARCHS4 (Lachmann et al., 2018) is a web resource that provides access to published 

RNA-seq gene and transcript level data from human and mouse experiments. FASTQ files 

from RNA-seq experiments deposited in the Gene Expression Omnibus (GEO) were aligned 

using a cloud-based infrastructure. The ARCHS4 web interface facilitates the exploration of 

the processed data through querying tools, interactive visualizations, and single gene landing 

pages that provide average expression of a specific gene across cell lines and tissues, top 

co-expressed genes, and predicted biological functions and protein–protein interactions for 

each gene based on prior knowledge combined with co-expression.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/
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firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

• Most updated version of R (https://www.r-project.org/); R Studio (https://

www.rstudio.com/); rhdf5 library (https://www.bioconductor.org/packages/

release/bioc/html/rhdf5.html)

Protocol steps and annotations

Metadata Search

1. Navigate to the ARCHS4 web application (https://maayanlab.cloud/archs4/).

2. Click the “Get Started” button on the homepage to proceed to the data search and 

visualization page (Figure 30).

3. The data search and visualization page by default shows an interactive 3D 

t-SNE scatter plot of all the human gene expression samples found in ARCHS4 

(Figure 31). The metadata search field on the left enables querying of specific 

terms which will be highlighted in the 3D scatter plot. Searching for the 

term “Pancreatic Islet” and then clicking on the search button results in the 

highlighting of the relevant samples. The samples that are related to the search 

term cluster in the scatter plot because the samples contain similar expression 

profiles (Figure 32).

4. Any submitted search term will be found in its corresponding section within the 

“Search Result” table below the interactive t-SNE scatter plot visualization. The 

table contains metadata regarding the organism, number of samples, number of 

series, as well as a button to download an R script that can be used to retrieve the 

identified sample files. An X button is also available to delete the query (Figure 

33).

Signature Search

5. Switching to the signature search functionality can be done by clicking on the 

corresponding tab within the “Search” field on the left (Figure 34). The signature 

search uses a set of highly and lowly expressed genes from each sample to 

identify matching samples to the given input.

6. Query the example up and down gene sets by clicking “Try an example”. The 

corresponding samples are highlighted within the scatter plot and are added 

to the “Search Result” table (Figure 35). Note that the previous query of 

“Pancreatic Islet” is still visualized within the scatter plot and listed in the 

“Search Result” table.

Enrichment Analysis

7. Switch to the enrichment search by clicking on the corresponding tab within the 

“Search” field on the left (Figure 36). The enrichment search highlights samples 

that are enriched in gene sets from eight gene set libraries. Select the gene set 

library, gene set of interest within the selected library, and a signature direction.

Kropiwnicki et al. Page 11

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.mozilla.org/en-US/firefox/
https://www.apple.com/safari/
https://www.microsoft.com/en-us/edge
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html
https://www.bioconductor.org/packages/release/bioc/html/rhdf5.html
https://maayanlab.cloud/archs4/


8. Query the example by clicking “Search enriched samples”. The corresponding 

samples are highlighted within the scatter plot and added to the “Search Result” 

table along with the previous queries (Figure 37).

Gene-Centric Visualization

9. Switch to gene-centric searches by clicking on the orange button under the 

“Species” field in the upper left. Use this field to also switch between human and 

mouse samples by clicking the corresponding teal button (Figure 38).

10. The page will now contain an interactive t-SNE scatter plot where each point 

represents a gene instead of a sample (Figure 39).

11. Choose a gene set library and a gene set within the “Search” field on the left 

(Figure 40). Query the default options by clicking “Search genes”.

12. The corresponding samples are highlighted within the scatter plot and added 

to the “Search Result” table under the “Genes” section (Figure 41). The table 

includes the number of genes included in the queried gene set which can be 

clicked to view the gene symbols in the gene set (Figure 42). Additionally, 

the gene set can be submitted to Enrichr (Kuleshov et al., 2016) for gene set 

enrichment analysis by clicking on the Enrichr icon within the table (Figure 43).

Gene Search

13. Single genes can be queried using the autocomplete field within the “Search” 

field on the left. Input a gene of interest, for example SOX2, and click the search 

button (Figure 44).

14. A single gene page is generated for SOX2 (Figure 45). The top of the page 

includes a description of the gene and links to other resources with identifying 

metadata for the gene. The “Functional Annotation Prediction” section contains 

ROC curves and tables of gene sets from six distinct gene set libraries SOX2 

is predicted to be a member of based on co-expression. Known associations are 

marked in teal.

15. The “Most similar genes based on co-expression” section contains a table of the 

top 100 genes that are most similar to SOX2 based on the Pearson correlation 

of their expression across all ARCHS4 samples (Figure 46). The most correlated 

genes from the table can be submitted to Enrichr by clicking the corresponding 

link in the top right.

16. The “Tissue Expression” section contains a dendrogram of tissue types divided 

into organs and cell types. The average expression of SOX2 within a specific 

tissue or a cell type context is visualized as a collection of box plots (Figure 47).

17. The “Cell Line Expression” section contains a dendrogram of various cell lines 

organized by the tissue of origin. The plot visualizes the average expression of 

SOX2 across the cell lines based on data from ARCHS4 (Figure 48).
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Downloading Gene Expression Data from ARCHS4

18. As described in previous steps, after submitting a search within the data search 

and visualization page, the “Search Results” table includes a download link to 

an R script that can be used to retrieve the selected samples. Click the download 

icon to download the script.

19. Open R Studio and copy and paste the R script from the downloaded R file into 

R Studio.

20. Ensure that the “rhdf5” library is installed. Open the console in R Studio and 

input the following:

if (!requireNamespace(“BiocManager”, quietly = TRUE))

    install.packages(“BiocManager”)

BiocManager::install(“rhdf5”)

21. Now run the R script downloaded from ARCHS4 to produce an expression 

matrix for the selected samples that were returned from the search. The 

expression matrix can be used for further analysis, for example, it can be used to 

compute the average expression of a gene in a specific disease, cell line, or tissue 

contexts.

Basic Protocol 4: Making predictions about gene function with PrismExp

PrismEXP is an Appyter (Clarke et al., 2021; Lachmann et al., 2021) that employs machine 

learning to predict gene function using gene-gene mRNA co-expression correlations from 

mRNA-sequencing (RNA-seq) data sourced from ARCHS4, a database composed of human 

and mouse RNA-seq sample gene counts from GEO (Lachmann et al., 2018). The difference 

between gene function predictions made by PrismExp and the gene function prediction 

available from the ARCHS4 website is that the ARCHS4 data is divided first into clusters 

and then gene-gene correlations are computed for each cluster. 51 correlation matrices are 

precomputed and stored in the cloud. At runtime, the correlation data is extracted from the 

cloud storage and a pretrained Random Forest model is applied on the correlation features to 

rank the level of association of a single gene to all gene sets from a user-specified gene set 

library.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).
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Protocol steps and annotations

Navigating the Input Form

1. Navigate to the PrismEXP Appyter (https://appyters.maayanlab.cloud/

PrismEXP/).

2. The Appyter input form includes a “Gene Selection” section with a field for 

inputting a gene symbol of interest for which novel functions will be predicted. 

Additionally, the “GMT Selection” section includes a field for selecting a GMT 

file from which predictions will be made (Figure 49). Click the “Upload” button 

within the “GMT Selection” section to upload a custom GMT file (Figure 50).

3. Click submit on the Appyter input form and a Jupyter Notebook with the input 

parameters will be launched in the cloud.

Gene Function Predictions

4. A Jupyter Notebook will begin executing in the cloud once the input form is 

submitted. The notebook includes an option to download the notebook, toggle 

displaying the code, and running the notebook locally. Additionally, a table of 

contents exists with clickable elements that link to specific sections within the 

notebook (Figure 51).

5. Scroll down to the “Load Gene Correlation” section. The Dataframe displays 

genes that correlate with your query gene in 51 pre-computed correlation 

matrices from ARCHS4 (Figure 52).

6. Scroll down to the “Avg Correlation Scores’’ section. This Dataframe displays 

computed correlation scores to each of the gene set terms from the GMT file 

based on co-expression values between the query gene and each of the genes 

included in the gene set (Figure 53).

7. The average correlation score matrices are used as the input features for the 

PrismEXP model. Scroll down to the “Prediction Validation” section. The ROC 

curve displayed in this section characterizes how well the known annotations for 

this gene were recovered by the PrismEXP model (Figure 54).

8. Scroll down to the “Top Predictions’’ section. The Dataframe displays the top 20 

gene set terms that the query gene is predicted to be associated with. The table 

displays the prediction score from the model, z-score, p-value, and Bonferroni 

corrected p-value (Figure 55).

9. Scroll down to the “Download Files” section. Click on the appropriate link to 

download the prediction table or ROC curve in .pdf or .png format (Figure 56).

Basic Protocol 5: Using Geneshot to illuminate knowledge about under-studied targets

Geneshot is a search engine for querying biomedical terms to retrieve lists of genes most 

associated with the term from PubMed ID (PMID) co-mentions (Lachmann et al., 2019). To 

convert search terms to genes, Geneshot uses one of two resources: GeneRIF and AutoRIF. 

Both GeneRIF and AutoRIF are text files documenting gene-PubMed ID associations. These 
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associations are used to rank genes for a query term based on the number of co-mentions. 

Geneshot further prioritizes other related genes based on co-occurrence and co-expression 

matrices with the genes associated with the term from the literature. Additionally, Geneshot 

includes a gene function prediction feature that prioritizes novel gene set membership for a 

query gene based on co-occurrence or co-expression.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

• Text editor or development environment of choice, such as Visual 

Studio (https://visualstudio.microsoft.com/vs/); most updated version of 

Python (https://www.python.org/downloads/); Python requests library (https://

requests.readthedocs.io/en/master/user/install/)

Protocol steps and annotations

PubMed Query

1. Navigate to the Geneshot homepage (https://maayanlab.cloud/geneshot/).

2. The PubMed Query page includes an input form for submitting search terms 

(Figure 57). The top search bar is for terms that the search should include, 

whereas the lower search bar is for terms that should be omitted from the search. 

Toggle the size of the gene set that will be used to make further predictions with 

the “Top Associated Genes to Make Predictions” filter. Use the toggle bar to 

switch between AutoRIF and GeneRIF (Maglott et al., 2011) as the underlying 

databases for gene-PMID associations. Click “Wound Healing” in the example 

section of the input form to launch a search (Figure 58).

3. The first output from the search is a scatter plot of all genes associated with 

“wound healing” (Figure 59). The x-axis of the scatter plot displays the counts of 

Publications with Search Term, and the y-axis shows the fraction of Publications 

with Search Term / Total Publications. Hover over any point on this plot to 

display the gene name and its corresponding X and Y values.

4. Clicking on any of the points in the scatter plot generates a histogram displaying 

the association of the gene with the search terms based on literature co-mentions 

over time (Figure 60). The number of publications for the selected gene that 

do not match the search term is displayed as pink bars, while the number of 

publications matching the search term and the gene is displayed as blue bars.
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5. Scroll down to view the tables of associated genes and predicted genes (Figure 

61). The left table includes the top genes associated with “wound healing” 

ranked by number of PubMed ID co-mentions. The right table shows the top 200 

genes predicted to be associated with “wound healing” based on co-expression 

with the top 20 genes from the associated table. Each of the tables include a row 

of buttons that, when clicked, filter the genes from each table into a specific gene 

family. Additionally, the genes from each table can be submitted to Enrichr for 

gene set enrichment analysis, and each table itself can be downloaded.

6. To recalculate the predictions, use the drop-down menu above the associated 

table to select a new gene-gene similarity matrix and increase or decrease the 

associated gene set size using the scroll bar. Click the “Recalculate Predictions” 

button to update the prediction table (Figure 62).

Gene Function Predictions

7. Navigate to the Gene Function Prediction page by clicking the corresponding 

link within the navigation bar at the top of the page. This page includes an input 

form for selecting a gene of interest, Enrichr gene set library from which gene 

functions will be sourced from, and a gene-gene similarity matrix from which 

predictions will be calculated (Figure 63). By using functional prediction by 

association, the input gene can be predicted to be a member of gene sets. Click 

the example to launch a query.

8. A table of the top predicted functions and ROC curve of prediction performance 

are generated (Figure 64). Known associations within the table are highlighted in 

blue, whereas previously unknown associations are not highlighted. The table is 

available for download.

Gene Set Augmentation

9. Navigate to the Gene Set Augmentation page by clicking the corresponding 

link within the navigation bar at the top of the page. The input form on this 

page includes a text box for pasting a gene set for augmentation, a drop-down 

menu of gene-gene similarity matrices from which predictions will be calculated, 

and a toggle bar for switching between GeneRIF and AutoRIF for retrieving 

publication counts for each gene (Figure 65).

10. Click on the “mixed genes” example to submit a query. The input genes are first 

sorted into quantiles based on their novelty in the literature (Figure 66).

11. Scroll to the bottom of the page where there is a table with the submitted 

genes on the left, and a table of genes predicted to be associated with the input 

genes based on the selected gene-gene similarity matrix, in this case ARCHS4 

co-expression, on the right (Figure 67). The “user upload” table ranks the genes 

by the amount of PubMed abstracts they are mentioned in, along with their 

novelty. The predicted genes table ranks genes by their similarity score with the 

input gene set. Genes from both tables can be submitted to Enrichr for gene set 

enrichment analysis and each table can be downloaded.
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Geneshot API Example

12. Open a new or existing Python code file. Import the JSON and requests libraries 

at the top of the file as follows.

import json

import requests

13. Call the requests.post method to send a POST request to the URL. The payload 

variable contains the parameters that are sent to the API endpoint specified in 

GENESHOT_URL. In this case the endpoint is /search and the parameters are 

rif, which specifies whether AutoRIF or GeneRIF is used as the association file, 

and term, which specifies the query term for the search.

GENESHOT_URL = ‘https://maayanlab.cloud/geneshot/api/search’

payload = {“rif”: “generif”, “term”: “hair loss”}

response = requests.post(GENESHOT_URL, json=payload)

data = json.loads(response.text)

print(data)

14. Use the json.loads method to view the response as a JSON object containing all 

genes related to the query term.

{

 “PubMedID_count”: 34412,

 “gene_count”: {

   “ABCC6P2”: [

    1,

    0.25

  ],

  “ABI3”: [

   2,

   0.125

  ],

  ...

  },

  “query_time”: 1.121943712234497,

  “return_size”: 298,

  “search_term”: “hair loss”

}

For more information on using the various Geneshot API endpoints, please refer to the API 

documentation (https://maayanlab.cloud/geneshot/api.html).
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Basic Protocol 6: Exploring understudied targets with TIN-X

TIN-X (Target Importance and Novelty eXplorer) (Cannon et al., 2017), is an informatics 

workflow, REST API, and web application used to identify, visualize, and explore protein-

disease associations. TIN-X is based on text mining data processed from scientific literature. 

The TIN-X visualizations plot information for protein-disease associations along two axes, 

specifically “novelty” and “importance.” Briefly, Novelty is used to estimate the scarcity 

of publications about a protein target, whereas Importance estimates the strength of the 

association between that protein and a specific disease.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Browse Diseases

1. Navigate to the TIN-X web app (https://www.newdrugtargets.org/).

2. The default TIN-X mode, “Browse Diseases”, (upper-left) starts with the Disease 

Ontology (Schriml et al., 2019), (DO). The DO hierarchy can then be navigated 

using the left panel (Figure 68). Given this hierarchical nature, a larger number 

of target-disease associations can be text-mined from biomedical literature for 

higher-level terms (e.g., N=13405 for “nervous system disease”), as opposed 

to child terms (e.g., N=9733 for “neurodegenerative disease”, N=4587 for 

“Synucleinopathy,” N=4587 for “Parkinson’s Disease”) or for leaf terms (e.g., 

N=227 for “Early Onset Parkinson’s Disease”).

3. Searching by disease name is also supported. Targets with stronger associations 

(higher Importance) are in the upper part of the plot, while targets with a higher 

number of publications (lower Novelty) are located on the left side of the plot. 

Points situated in the upper-right area of the plot (if any) are most likely to be of 

interest, as they are located at the Pareto frontier, i.e., targets for which a large 

number of published papers mentioning that target also mention the selected 

disease.

4. Targets are colored by Target Development Levels, and can be filtered as such 

(Tclin/Tchem/Tbio/Tdark). They can also be filtered by protein superfamily (e.g. 

kinases). Upon selecting a protein, links to both Pharos and DrugCentral are 

provided for that protein (Figure 69); selecting the titles allows the user to 
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navigate through abstracts or to examine the document of interest in PubMed 

(additional clicks are required).

5. Once the desired level of granularity for diseases is reached, the user 

can examine target-disease associations, which are plotted along the Novelty-

Importance axes in log-log format. To reach “Parkinson’s Disease”, one 

must click Disease of anatomical entity → Nervous System Disease → 
Neurodegenerative disease → Synucleinopathy → Parkinson’s Disease.

6. A highly-ranked gene associated with Parkinson’s Disease is “Synaptogyrin-3” 

(SYNGR3) and is classified as Tdark (Figure 69). While the exact function 

of SYNGR3 is unknown, there is recently published evidence that SYNGR3 

encodes for a synaptic vesicle protein that interacts with a dopamine 

transporter(Egaña et al., 2009). The most novel association (lowest Importance) 

is for “Tripartite motif-containing protein 10” (TRIM10), which is supported 

by one genome-wide association study (Witoelar et al., 2017) focused on the 

overlap between Parkinson’s Disease and autoimmune diseases.

7. Both the “Browse Diseases” and the “Browse Targets” exploratory modes 

support an interactive way to manipulate the number of points displayed on 

the scatter plot. To change the number of plotted points, simply go to the top 

right side of the panel, where a vertical bar is placed between a “+” and a “-” 

sign. Sliding this bar up or down increases or decreases the number of visible 

points within the plot. By default, 300 or fewer points are plotted. Thresholds 

are defined by non-dominated solution (NDS) ranking, a.k.a. Pareto frontier, 

meaning that all hidden points are inferior to those visible in one or both 

variables.

Browse Targets

8. From the upper left menu, “Browse Targets” can be selected. The Drug 

Target Ontology (Lin et al., 2017) hierarchy becomes visible, and can be 

navigated from the left panel (Figure 70). For each protein, Diseases are plotted 

with log–log Importance–Novelty axes and color-coded according to the top 

hierarchical Disease Ontology term (e.g., diseases of anatomical entity, diseases 

of metabolism, etc.).

9. Searching by target name is supported. Diseases with stronger associations 

(higher Importance) are in the upper part of the plot, while diseases with a 

higher number of publications (lower Novelty) are on the left side of the plot. 

Diseases that are likely of most interest are plotted in the upper-right area of the 

plot (Figure 71).

10. The plot, however, remains target-centric. Upon clicking on a point, the disease 

name and protein name are displayed, with appropriate links to Pharos and 

DrugCentral (Figure 72).

11. When selecting a target family (e.g., kinase), the user can drill down to the 

desired level of granularity, before examining disease associations for a specific 
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protein. Starting from Kinase, for example, the user must click Protein kinase 

→ CAMK group → TRIO family → Kalirin, before diseases associated with 

Kalirin (KALRN) are displayed (Figure 70).

12. The top disease (highest Importance, lowest Novelty) associated with KALRN is 

“disease by infectious agent”, followed by “psychotic disorder”. We recommend 

repeated scrolling before identifying a leaf term corresponding to the Disease 

Ontology. For example, next to “psychotic disorder” is “schizophrenia” (a child 

term); this association is supported by 26 publications, including Miller et al. 

(Miller et al., 2017). The most novel association (lowest Importance) is for 

“X-linked nonsyndromic deafness” (Figure 72), supported by Cai et al. (Cai et 

al., 2014). This association is genuine, as the gene name (KALRN) is mentioned 

in the abstract, in relation to the rs333332 SNP.

Sharing and downloading data

13. Whether in “Browse Diseases” or “Browse Targets” mode, the user can share 

data in two ways. First, for any given plot, the specific URL (universal resource 

locator) for that visualization can be copied and shared with third-party users. 

This can be done by clicking on the “Share” button. Second, the data can be 

exported (in comma-separated value format), and thus archived or post-processed 

with third-party software. Exported data includes Novelty and Importance 

scores, in addition to Disease names and identifiers in the “Browse Targets” 

mode, as well as Target names and identifiers in the “Browse Diseases” mode, 

respectively.

Basic Protocol 7: Interacting with the DrugCentral user interface

DrugCentral is an online compendium (Ursu et al., 2017) centered on “active pharmaceutical 

ingredients” and their link to “pharmaceutical products”. DrugCentral distills relevant 

information from “pharmaceutical product” (or formulation) package inserts; while these 

are frequently referred to as “drugs” by patients and medical practitioners, herein we reserve 

the term “drugs” for “active pharmaceutical ingredients”. All data, including downloads, 

related to DrugCentral can be accessed at its designated web portal (https://drugcentral.org/). 

DrugCentral provides information on active ingredients, chemical entities, pharmaceutical 

products, drug mode of action, medical uses (indications, contra-indications and off-label 

uses), pharmacologic action, as well as adverse events (Ursu et al., 2019). As of 2021, 

DrugCentral (Avram et al., 2021) separately stores adverse events for women and men, 

and provides regulatory information extracted from the FDA Orange Book. DrugCentral 

is current (as of the date of the release) with regulatory approvals from the United States 

(US FDA), the European Union (EMA), Japan (PDMA) and, more recently, some drugs 

approved in China and Russia. Limited information on drugs that have been discontinued or 

withdrawn is available, particularly for drugs approved outside the US when package inserts 

and relevant information are not in English.
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Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a 100 Mbps or higher 

(fast) Internet connection.

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Queries Supported by DrugCentral

1. Navigate to the DrugCentral portal (https://drugcentral.org/).

2. The main DrugCentral search bar supports three types of queries: drug, target 

and disease. Each of these will filter and prioritize results according to a 4-level 

ranking system ordered from highest to lowest, as follows:

a. query term matching drug name or synonyms mechanism of action 

target, or drug indication (see below).

b. query term matching disease term in drug contraindications or off-label 

uses, targets listed in drug bioactivity profiles (not MoA targets), or 

pharmacologic action descriptions.

c. query term matching the short drug description text.

d. query term matching full text in the FDA drug labels processed from 

DailyMed (Figure 73).

3. For example, drug query results are sorted to display active ingredients first 

(e.g., omeprazole), followed by related ingredients (e.g., esomeprazole) and 

by other active ingredients that are co-formulated with the queried substance 

into pharmaceutical products. A query by brand name (e.g., prilosec) includes 

other antacids such as sodium bicarbonate, antibiotics such as amoxicillin and 

clarithromycin (co-prescribed with omeprazole to treat stomach ulcers caused 

by Helicobacter pylori) as well as acetyl-salicylic acid, which is combined with 

omeprazole for the prevention of stroke. (Figure 74)

4. Disease names are mappable to multiple terminologies such as Disease 

Ontology, MeSH, SNOMED-CT and MedDRA. Disease term queries first 

retrieve indications, followed by off-label and contra-indications, then other 

sections (e.g., side effects) that contain medical / disease terms. For example, 

the query “Parkinson’s disease” (PD) first lists drugs indicated for PD 

(e.g., ropinirole), followed by drugs indicated in complications of PD (e.g., 

fludrocortisone is indicated for the PD-associated orthostatic hypotension), then 

by drugs that list PD as side-effect (e.g., dimenhydrinate) (Figure 75).

Kropiwnicki et al. Page 21

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.apple.com/safari/
https://www.microsoft.com/en-us/edge
https://drugcentral.org/


5. Target name queries support input as text (e.g., “muscarinic m1”), gene symbol 

(CHRM1) or UniProt (P11229) and SwissProt (ACM1_HUMAN) identifiers. It 

is recommended to use the exact target names adopted by UniProt, though gene/

protein identifiers are preferred.

Queries Supported by DrugCentral: Redial

5. Given its basic science focus, the machine-learning based REDIAL-2020 

platform (Kc et al., 2021), which is also part of DrugCentral, supports queries 

by drug name (e.g., omeprazole), by PubChem compound identifier (e.g., 

4594) or by chemical structure in the SMILES (Weininger, 1988) format (e.g., 

COc1ccc2nc(S(=O)Cc3ncc(C)c(OC)c3C)[nH]c2c1). Regardless of format, all 

input queries for REDIAL-2020 are converted to SMILES format in order to 

predict anti-viral properties (Figure 76). See also Protocol nr 8.

Queries Supported by DrugCentral: L1000

6. The other search interface available in DrugCentral, implemented in R-Shiny 

https://shiny.rstudio.com/) supports browsing and searching for drug names for 

which gene perturbation profiles were recorded across one more of the 81 cell 

lines collected during the LINCS (Library of Integrated Cellular Signatures) 

project. Based on the L1000 perturbation profiles for 1613 drugs, the L1000 

DrugCentral app allows users to query (via drug names) which drugs have the 

most similar gene perturbation profiles, ranked by cell lines (Figure 77).

DrugCentral Drugcards: A step-by-step content guide

7. At its core, DrugCentral is a drug-centric resource. Thus, all queries are likely to 

provide information that is displayed in the form of “drug cards”. Data elements 

identified when searching a drug by name would be thus retrieved in a similar 

manner when searching by target or by disease, as both queries result in lists of 

drug cards.

8. Each drug card can be directly accessed (linked out) by observing the following 

(specific) format:

https://drugcentral.org/drugcard/<DrugcentralStruct.ID>

where “DrugcentralStruct.ID” is the DrugCentral structure ID number. For 

example, DrugcentralStruct.ID=824 resolves to dexamethasone. This manner of 

mining drug cards is not intended for casual users. Rather, this format is intended 

for programmatic access to DrugCentral content (Figure 78).

9. What follows is a “section by section” guide to drug card content, shown by 

section title. These are not intended as comprehensive explanations, but rather as 

brief illustrations of the diverse content available through DrugCentral.

10. “Stem definition” displays International Nonproprietary Names (INN), which are 

associated with “pharmacologically related groups”; that section also displays 
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Chemical Abstract Services (CAS) registry numbers, in addition to DrugCentral 

IDs.

11. “Description” depicts the two-dimensional chemical structure (as well as three 

separate chemical structure file formats), a number of synonyms and computed 

chemical descriptors such as Lipinski’s “rule of 5”. (Lipinski et al., 2001) The 

intellectual property / regulatory status of the drug (if available) is also shown 

under “Status”, with one of 3 options: OFP - off patent; OFM - off market; and 

ONP - on patent, respectively (Avram et al., 2020).

12. “Drug dosage” provides a sample (typically, the “maximum dose strength”) of 

the dosages available for oral / non-oral formulations of the drug.

13. “ADMET Properties” - Absorption, Distribution, Metabolism, Excretion and 

Toxicity - provides experimental ADMET values, when available. These 

properties are half-life, systemic clearance, volume of distribution at steady state 

and fraction unbound, all intravenous pharmacokinetic parameters (Lombardo 

et al., 2018); the fraction excreted unchanged in urine (extent of metabolism), 

water solubility and their composite parameter BDDCS, Biopharmaceutical Drug 

Disposition Classification System, as discussed elsewhere (Benet et al., 2011); 

and MRTD, the Maximum Recommended Therapeutic Daily Dose (Contrera et 

al., 2004).

14. “Approvals” shows the date of approval by regulatory agencies (if available).

15. “FDA adverse event reporting system (Female)”, followed by “FDA Adverse 

Event Reporting System (Male)” lists adverse events, separated by sex, in the 

decreasing order of the likelihood ratio (Huang et al., 2011).

16. “Pharmacologic action” highlights the drug annotations corresponding 

to (sometimes multiple) ATC (Anatomical, Therapeutic and Chemical) 

classification system codes - ATC codes are available at (WHOCC); chemical 

ontology information from ChEBI(EBI Web Team); FDA terminology; and 

MeSH (Medical Subject Headings) terms(MeSH Browser).

17. “Drug use” lists indications, off-label use and contra-indications, mapped to 

SNOMED-CT (Bhattacharyya, 2016) and DOID (Disease ontology - institute for 

genome sciences @ university of Maryland), where available. Drug indications 

and contra-indications are mined from package inserts (drug labels), whereas 

off-label uses are from literature.

18. “Acid dissociation constants calculated using MoKa v3.0.0” shows calculated 

acid/base dissociation constants, as calculated with the MoKa software (Milletti 

et al., 2010).

19. “Orange Book patent data (new drug applications)” and “Orange Book 

exclusivity data (new drug applications)” complement DrugCentral information 

on marketed pharmaceutical formulations by adding FDA Orange Book(Orange 

book: Approved drug products with therapeutic equivalence evaluations) for 

patents, as well as exclusivity data, for new drug applications.
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20. “Bioactivity Summary” distils information from multiple bioactivity databases, 

e.g., ChEMBL (Mendez et al., 2019) and the IUPHAR Guide to Pharmacology 

(Armstrong et al., 2019), in addition to scientific literature and information from 

drug labels. Numeric information is converted to the negative log molar of the 

effective drug concentration at measurement. Mechanism-of-action drug targets 

(Santos et al., 2017) are marked separately.

21. The “External reference” section contains drug identifiers used by other on-

line resources. This section includes identifiers used in medical practice, such 

as the Veterans Health Administration (e.g., VHA unique identifier, VUID), 

the National Drug File reference terminology (NDFRT, (National drug file - 

reference terminology source information, 2016) and RxNorm (RxNorm, 2004), 

as well as identifiers used by PubChem, ChEBI, DrugBank, etc.

22. Last but not least, the “Pharmaceutical products” section provides direct 

links to DailyMed (DailyMed, 2015), while incorporating simple meta-data 

descriptors such as “category” (e.g., prescription vs. over-the-counter), number 

of ingredients, administration route, etc. This section also includes a clickable 

container that captures the full text (no images) of the FDA approved package 

insert.

DrugCentral Target Cards: A step-by-step content guide

23. In Addition to DrugCentral’s Drugcards, a set of Target Cards can be directly 

accessed by observing the following (URL) syntax: https://drugcentral.org/target/

<UniprotAccession.ID>

24. For example, https://drugcentral.org/target/P23975/ resolves to Sodium-

dependent noradrenaline transporter. This method of mining Target Cards is not 

intended for casual users. Rather, this format is intended for programmatic access 

to machine readable Target metadata (Figure 79).

25. What follows is a “section by section” guide to Target card content and target 

metadata.

26. “Description” depicts the Accession ,Swissprot, Organism, Gene & Target class 

followed by Drug relations where the Drugs Bioactivity mechanism-of-actions 

are identified and marked.

27. To retrieve all cross-referenced Drug Central Targetcards cards mapped to 

Uniprot Accession Ids use the following (machine readable) URL syntax (Figure 

80): https://drugcentral.org/static/Drugcentral_uniprot_Mapping.txt

Additional information

28. The “Download Database dump 9/18/2020 (Postgres v10.12)” option contains 

all the information stored in DrugCentral. It requires a new or existing Postgres 

database setup. Users are directed to consult the Postgresql documentation on 

how to install, configure and load database contents. This is also available 
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via public instance at drugcentral:unmtid-dbs.net: 5433, username=“drugman”, 

password=“dosage”, with responsiveness depending on user load.

29. Example queries to extract subsets of data from DrugCentral. Requires a 

local instance of DrugCentral loaded into a PostgreSQL database. To load the 

DrugCentral database dump assuming PostgreSQL is up and running and the 

user has admin privileges, run in PostgreSQL.

#create database drugcentral and then run using the OS shell

$gunzip -c drugcentral.dump.06212018.sql.gz | psql drugcentral

#Example 1: Select Off-patent drugs that bind to “Mast/stem 

cell growth factor #receptor Kit” as mode-of-action target” in 

DrugCentral’s Postgres Db.

-select

 distinct(structures.name) as drug_name

  from

 structures

  join act_table_full on structures.id = act_table_full.struct_id

  Where

   structures.status =‘OFP’ and

 act_table_full.moa = 1 and

 act_table_full.target_name = ‘Mast/stem cell growth factor 

receptor Kit’

#Example 2: Select drugs indicated for seasonal allergic rhinitis 

that have #the lowest LLR for somnolence in males.

 -select

 distinct(structures.name) as drug_name,

   faers_male.*

   from

   structures

   join struct2atc on structures.id = struct2atc.struct_id

   join atc on struct2atc.atc_code = atc.code

   join faers_male on structures.id=faers_male.struct_id

 Where

  atc.l2_name = ‘ANTIHISTAMINES FOR SYSTEMIC USE’ and

  faers_male.meddra_name = ‘Somnolence’ and

  faers_male.llr <= 2*faers_male.llr_threshold

  order by

  faers_male.llr asc

30. To download additional example SQL queries for extracting subsets of data from 

DrugCentral use the following URL: https://unmtid-shinyapps.net/download/

example_query.sql
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Basic Protocol 8: Estimating Anti-SARS-CoV-2 activities with DrugCentral REDIAL-2020

There is currently an urgent need to find effective drugs for treating coronavirus disease 

2019 (COVID-19). DrugCentral REDIAL-2020 (Kc et al., 2020), is a suite of machine 

learning models that forecast activities for live viral infectivity, viral entry, and viral 

replication specifically for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 

in vitro infectivity, and human cell toxicity. This application serves the scientific community 

when prioritizing compounds for in vitro screening and may ultimately accelerate 

identifying novel drug candidates for COVID-19 treatment. REDIAL-2020 consists of 

eleven independently trained machine learning models using high throughput screening 

data from the NCATS COVID19 portal (https://opendata.ncats.nih.gov/covid19/index.html) 

and includes a similarity search module that queries the underlying experimental dataset 

for similar compounds. These models were developed using experimental data generated 

by the following assays: the SARS-CoV-2 cytopathic effect (CPE) assay and its host 

cell cytotoxicity counterscreen, the Spike–ACE2 protein–protein interaction (AlphaLISA) 

assay and its TruHit counterscreen, the angiotensin-converting enzyme 2 (ACE2) enzymatic 

activity assay, the 3C-like (3CL) proteinase enzymatic activity assay, the SARS-CoV 

pseudotyped particle entry (CoV-PPE) assay and its counterscreen (CoV-PPE_cs), the 

Middle-East respiratory syndrome coronavirus (MERS-CoV) pseudotyped particle entry 

assay (MERS-PPE) and its counterscreen (MERS-PPE_cs), and the human fibroblast 

toxicity (hCYTOX) assay (Figure 81).

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a 100 Mbps or higher 

(fast) Internet connection.

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge)

Protocol steps and annotations

Redial: A step-by-step content guide

1. By accessing REDIAL-2020 (http://drugcentral.org/Redial) from any web 

browser, including mobile devices, the submission page is displayed.

2. The web server accepts SMILES, drug names or PubChem CIDs as input. 

Regardless of input, the protocol converts drug names (from DrugCentral) or 

PubChem CIDs into SMILES.

3. The user interface provides a summary of the models, such as model type, which 

descriptor categories were used for training and the evaluation scores. The user 

interface depicts the processes of cleaning the chemical structures (encoded as 

SMILES) before training the machine learning models (Figure 82).
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4. As an example, amodiaquine has been shown to have promising anti-SARS-

CoV-2 behaviour in several papers (Bocci et al., 2020; Si et al., 2021), but its 

mechanism of action has not been well established yet. When given as an input 

to Redial, the webapp opens a new window with the predicted activities.

5. The prediction results table shows that amodiaquine is predicted to be active in 

cytopathic effect experiments while there are no clues on its mechanism (inactive 

in AlphaLISA, ACE2, 3CL assays) (Figure 83).

6. REDIAL-2020 links directly to DrugCentral for approved drugs and to PubChem 

for chemicals (where available), enabling easy access to further information on 

the query molecule (Figure 84).

7. Using REDIAL-2020 estimates, promising anti-SARS-CoV-2 compounds would 

ideally be active in the CPE assay while inactive in cytotox and in hCYTOX.

Queries Supported by Redial

8. Input queries such as drug name and PubChem CID are converted to SMILES 

before processing. Each SMILES string input is subject to four different steps, 

namely, converting the SMILES into canonical SMILES, removing salts (if 

present), neutralizing formal charges (except permanent ones) and standardizing 

tautomers. REDIAL-2020 predicts input compound activity across all eleven 

assays: CPE, cytotox, AlphaLISA, TruHit, ACE2, 3CL, CoV-PPE, CoV-PPE_cs, 

MERS-PPE, MERS-PPE_cs and hCYTOX (Figure 85).

Additional information

1. All of the codes and the trained models are available from: https://doi.org/

10.5281/zenodo.4606720

2. The source code and specific models are available through Github 

at: (https://github.com/sirimullalab/redial-2020), or via Docker Hub (https://

hub.docker.com/r/sirimullalab/redial-2020) for users preferring a containerized 

version. All the pre-ML processing and “data cleaning” scripts are here: https://

github.com/sirimullalab/redial-2020/tree/master/data-cleaning

3. All workflows and procedures were performed using the KNIME platform 10. 

The NCATS data associated with the aforementioned assays were downloaded 

from the COVID-19 portal. https://opendata.ncats.nih.gov/covid19/assays

Basic Protocol 9: Drug Set Enrichment Analysis using Drugmonizome

Drugmonizome (Kropiwnicki et al., 2021) serves processed data extracted from drug and 

small molecule databases available from a variety of online repositories and data portals. 

The processed data is provided in the form of drug set libraries which serve as the 

underlying database for drug set enrichment analysis. Drugmonizome enables users to 

submit lists of drugs and small molecules as the input query. These drug sets are compared 

against various drug set libraries that contain known associations between drugs and their 

attributes, for example, side effects, indications, targets, pathways, induced gene expression 
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signatures, and other attributes. Additionally, Drugmonizome provides options for querying 

metadata associated with drug sets to find relevant drugs, small molecules, and drug sets for 

a given free text query.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Metadata Search

1. Navigate to the Drugmonizome homepage (https://maayanlab.cloud/

drugmonizome/). The metadata search is displayed by default. Using the search 

bar, query terms of interest to identify resources, drug set libraries, drug sets, and 

small molecules contained in Drugmonizome. Example terms are suggested for 

each type of metadata search (Figure 86).

2. Alternate between resource, drug set library, drug set, and small molecule 

metadata searches by clicking the corresponding tab. When performing metadata 

searches for drug sets, use the filter table to query terms within specific 

resources, drug set libraries, and association types.

3. Upon submitting a term of interest using the search bar, a list of results that 

match the term is displayed (Figure 87).

4. Clicking on any term displays a page with identifying metadata for the resource, 

drug set library, drug set, or small molecule. When perusing drug set metadata, a 

search bar exists for querying specific small molecules of interest within the set 

(Figure 88).

Drug Set Enrichment

1. Navigate to the drug set enrichment page by clicking the corresponding tab on 

the website header. The drug set enrichment page includes a search box where a 

list of drugs and small molecules can be pasted. The page also includes several 

example drug sets that are pasted into the box when clicked (Figure 89). As an 

example, click the “69 in vitro COVID-19 hits from a drug screen by Ellinger et 

al.” link to populate the search box with a small molecule set.

Note: Drug and small molecule entities can be queried by name, DrugBank 

IDs, Broad Institute Accession Numbers (BRD-IDs), SMILES strings, and 

InChIKeys.

Kropiwnicki et al. Page 28

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/
https://www.mozilla.org/en-US/firefox/
https://www.apple.com/safari/
https://www.microsoft.com/en-us/edge
https://maayanlab.cloud/drugmonizome/
https://maayanlab.cloud/drugmonizome/


2. Click the “Perform Drug Set Enrichment Analysis” button and a results page of 

all resources with enriched terms is returned. Each of the resources with enriched 

drug set libraries are represented as an icon with the number of enriched terms 

for each resource (Figure 90).

3. Click on any of the resource icons to be redirected to a page with the top 

enrichment results for each drug set library represented by a toggleable bar 

graph or scatter plot. The drug set library enrichment results can be expanded by 

clicking the corresponding button (Figure 91).

4. The expanded page includes the scatter plot, bar graph, and table view of the top 

enriched terms. The table representation displays the top enriched terms and their 

p-values, odds ratio, and corrected q-values. Terms of interest can be queried 

using the search bar above the table. The table is also available for download as 

a .TSV file (Figure 92).

Resources Pages

5. Navigate to the resources page by clicking the corresponding tab on the website 

navigation bar (Figure 93).

6. Each of the drug data resources used to create drug set libraries is catalogued 

on this page. Click on the DrugBank resource card to view metadata specific to 

DrugBank, as well as drug set libraries curated from DrugBank (Figure 94).

7. Click on the “DrugBank Small Molecule Targets” library to be redirected to a 

page with identifying metadata for the drug set library. The metadata for the drug 

set library includes download links for the .DMT files in drug name or InChIKey 

format (Figure 95). Additionally, each of the drug sets included in this library are 

listed below. Clicking on any drug set name redirects to a page with metadata 

specific to the drug set, as well as the set of associated small molecules.

Basic Protocol 10: The Drugmonizome-ML Appyter

A wealth of data from a multitude of sources is readily available for thousands of 

bioactive small molecules in Drugmonizome (Kropiwnicki et al., 2021). The information 

in Drugmonizome can be harnessed to develop machine learning models that utilize 

such data to predict the properties of small molecules that are poorly annotated. The 

Drugmonizome database draws upon a variety of publicly available resources to label each 

small molecule by its associations with pathways, protein targets, induced gene expression 

profiles, chemical features, and other attributes. Drugmonizome-ML is an Appyter (Clarke 

et al., 2021) that executes a machine learning pipeline as a Jupyter notebook using the data 

curated for creating Drugmonizome. Drugmonizome-ML can be used to make predictions 

for indications and other attributes such as drug targets or side effects for poorly annotated 

pre-clinical bioactive small molecules.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection
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Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Input Dataset Selection

1. Navigate to the Drugmonizome-ML Appyter (https://appyters.maayanlab.cloud/

Drugmonizome_ML/). The input form is divided into three sections: input 

dataset selection, target label selection, and machine learning pipeline.

2. Select datasets from Drugmonizome and SEP-L1000 (Kropiwnicki et al., 

2021; Wang et al., 2016) to populate the feature matrix that will be used 

for learning and classification. Each of the datasets’ contents are described 

using tooltips (Figure 96). For the demonstration, select the “LINCS Gene 

Expression Signatures” from the “Transcriptomic and Imaging Datasets” 

subfield and “Morgan Fingerprints” from the “Chemical Fingerprints Generated 

for Compounds from SEP-L1000” subfield.

3. Additional options for pre-processing the feature matrix are available. If 

selecting features from various data sources, it is likely that not all compounds 

will be included across all feature sets, therefore a toggleable option decides 

whether drugs with missing data are retained or dropped from the feature matrix. 

Additionally, because some of the available feature sets are binary association 

matrices, there is the option to apply TF-IDF normalization to account for 

frequency of common and rare features among the small molecules (Figure 97). 

In general, the default settings for these options are recommended.

Target Label Selection

4. In this section, select the positive class label for a binary classification problem. 

There is the option to select an attribute from any of the Drugmonizome 

drug set libraries in an autocomplete field where relevant drug-set labels from 

Drugmonizome are offered as potential class labels (Figure 98). Type any 

characters into the autocomplete field and matching drug-set labels will be 

displayed. For the demonstration, type “neuropathy peripheral (from SIDER Side 

Effects)” into the autocomplete field.

5. Alternatively, upload a newline separated .txt file of compounds to be used as 

positive examples of a class to predict by selecting the “List” option in the 

“Target Label Selection” section. Example .txt files are available for download to 

understand the structure of the file (Figure 99). Choose the drug identifier format 

(drug name or InChI key) that small molecules within the text file are described 

by. InChI Keys are the recommended format.
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6. The “Include stereoisomers” option decides whether to match compounds from 

the feature matrix to the target vector using the first 14 characters of the 

InChIKey (which encodes chemical connectivity) thus including stereoisomers of 

a particular small molecule, or whether to consider only one form of a molecule 

and match by the whole InChIKey.

Machine Learning Pipeline

7. In this section, select data visualization options, machine learning classifiers, 

machine learning hyperparameters, and methods to evaluate the classifier (Figure 

100).

8. Select your preferred data visualization method from the drop-down menu under 

the “Data Visualization Method” field. The default and recommended method is 

UMAP.

9. If applicable, select a dimensionality reduction algorithm from the drop-down 

menu under the “Dimensionality Reduction Algorithm” field.

10. If applicable, select a feature selection method from the drop-down menu under 

the “Machine Learning Feature Selection” field.

11. The “Machine Learning Algorithm” section includes 9 distinct classifiers that 

can be chosen by clicking on the corresponding classifier name. Furthermore, 

each classifier has hyperparameter fields that can be modified. For example, 

select the “Extra Trees classifier”. Input “1250” in the “n_estimators” field. 

Select “entropy” in the “criterion” drop-down menu. Select “log2” in the 

“max_features” drop-down menu. All other hyperparameters can be kept as 

default.

12. Select whether to calibrate algorithm predictions by selecting the appropriate 

choice in the “Calibrate algorithm predictions” field. This setting will calibrate 

the predictions output by the chosen model, eliminating model-imparted bias. It 

is recommended to keep this setting as default.

13. Select a cross-validation method from the drop-down menu under the “Cross-

Validation Algorithm” field. The recommended option is Repeated Stratified 

Group K-Fold because this cross-validation method will maintain class ratios 

across train and validation splits. Furthermore, choose the number of cross-

validation folds and cross-validation repetitions in the subsequent fields. For the 

demonstration, input “10” into the “Number of Cross-Validation Folds” field and 

“3” into the “Number of Cross-Validated Repetitions” field.

14. Choose the primary evaluation metric for assessing the performance of the model 

from the drop-down menu under the “Primary Evaluation Metric” field. The 

default and recommended metric is “roc_auc”.

15. Choose any additional evaluation metrics from the drop-down menu under the 

“Evaluation Metrics” field and these metrics will also be reported for the trained 

model.
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16. Click “Submit” at the bottom of the input form.

Navigating the Drugmonizome-ML Appyter Notebook

17. A Jupyter Notebook will begin executing in the cloud once the input form is 

submitted. The notebook includes an option to download the notebook, toggle 

displaying the code, and run the notebook locally. Additionally, a table of 

contents exists with clickable elements that link to specific sections within the 

notebook (Figure 101).

18. Scroll down to the “Select Input Datasets and Target Classes” section or click on 

the corresponding section from the table of contents. The feature matrix that was 

generated based on the selected features from the input form is displayed. The 

feature matrix is composed of 19,898 compounds and 3026 features from LINCS 

Gene Expression Profiles and TF-IDF normalized Morgan Fingerprints (Figure 

102).

19. Additionally, information is displayed about how the target array is constructed, 

how many compounds from the target array are included in the feature matrix, 

and how many compounds were discarded because they were not included in the 

feature matrix. Unmatched compounds are available for download.

20. Navigate to the “Dimensionality Reduction and Visualization” section to view 

the input feature space using the dimensionality reduction and visualization 

methods that were selected in the input form. Positive class labels are labeled 

within the visualization to demonstrate how the class of interest is clustered in 

the feature space (Figure 103).

21. Navigate to the “Machine Learning” section to view the trained classifier and 

evaluations of the classifier’s performance. The receiver operating characteristic 

curve (Figure 104), precision-recall curve (Figure 105), and confusion matrix 

(Figure 106) are displayed. Click the hyperlinks in the figure headers to 

download the figures.

22. Navigate to the “Examine Predictions” section to view the predictions made 

by the model in addition to the distributions of mean probability estimates and t-

statistics. Figures displaying the distribution of mean cross-validation predictions 

(Figure 107), distribution of t-statistics (Figure 108), a UMAP visualization of 

the feature space with overlaid predictions (Figure 109), and a filterable table of 

the top predicted compounds (Figure 110) are displayed. Click the hyperlinks in 

the figure and table headers to download the corresponding figure or table.

23. Navigate to the “Feature Importance” section to view the most important features 

from the input feature matrix that were used to make predictions. A table of the 

most important features used by the model to make predictions (Figure 111), 

as well as a figure depicting the distributions of average and cumulative sum of 

feature importance (Figure 112) are displayed. Click the hyperlinks in the figure 

and table headers to download the corresponding figure or table.
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Basic Protocol 11: The Harmonizome-ML Appyter

Harmonizome (Rouillard et al., 2016) is a collection of processed datasets that abstract 

knowledge about genes and proteins. Using the processed data from Harmonizome, 

Harmonizome-ML enables interactive imputation of knowledge about the function and other 

properties of genes and proteins using machine learning. Combined with a user-friendly 

interface of an Appyter (Clarke et al., 2021) – a web-based software application enabling 

users to execute bioinformatics workflows without coding – the Harmonizome-ML Appyter 

can be used to build and evaluate machine learning pipelines with Harmonizome data in an 

accessible way. The Harmonizome-ML Appyter asks users to select or upload attributes for 

learning as well as specify a target vector to predict. Users also need to select from various 

machine learning algorithms and performance evaluation methods. Once these options are 

selected, the workflow is executed, and the results are presented as a Jupyter Notebook that 

is shareable and downloadable.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Navigating the input page

1. Navigate to the Harmonizome-ML Appyter (https://appyters.maayanlab.cloud/#/

harmonizome_ml). The input form is divided into two sections: “attribute and 

prediction class dataset selection” and “settings”.

2. In the “Attribute and Prediction Class Selection” section, select attributes by 

clicking on the check box to the left of an attribute of choice; a blue check mark 

indicates that an attribute has been selected. Users may opt to upload a custom 

attribute dataset using the “Browse” button as well. Target selection can be from 

Harmonizome or customized; click on the text for the target selection desired and 

customize the class in the text box below (Figure 113).

3. The “Settings” section includes settings for various algorithms (dimensionality 

reduction, manifold projection, ML feature selection, cross validation, ML 

algorithm, hyperparameter search type, evaluation metrics) that can be 

customized. Simply click on the drop-down menu below an algorithm to view 

and update the options. For example, clicking on the drop-down menu for 

“Dimensionality Reduction Algorithm” displays the following options: PCA, 

truncated SVD, incremental PCA, ICA, and Sparse PCA. Click on the desired 

algorithm to use it for dimensionality reduction (Figure 114).
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4. Once all selections have been made, click on the “Submit” button at the bottom 

of the page to run the analyses and generate the notebook.

Navigating the notebook

5. Each notebook generated by the Harmonizome-ML Appyter includes 

explanations followed by code, data, and figures (both static and interactive). 

To download the notebook, toggle notebook code, or run the notebook locally, 

select the appropriate button at the top of the page. The notebook is divided 

into three sections (which can be accessed through the table of contents on the 

left side of the page): Inputs, Dimensionality Reduction, and Machine Learning 

(Figure 115).

6. Navigate to the “Inputs” section to view the feature matrix Dataframe generated 

from the datasets selected in the input form (Figure 116). Note that some 

Dataframes contain additional columns that can be explored by scrolling left 

to right. The first two Dataframes are individual datasets, whereas the final 

Dataframe displays the concatenated feature matrix that will be used for 

classification.

7. Scroll down to view the target array created from the dataset containing the class 

label to be predicted. Genes that are known to be associated with the class label 

are annotated with a 1, whereas genes not known to be associated with the class 

label are annotated with a 0 (Figure 117).

8. Navigate to the “Dimensionality Reduction” section. The process of 

dimensionality reduction involves transforming data from high-dimensional 

spaces to low-dimensional spaces without losing too much information. The 

input features are reduced using PCA and visualized in a 3D scatter plot (Figure 

118). The reduced features are also projected onto a manifold with T-SNE 

(Figure 119).

9. Navigate to the “Machine Learning” section which features the machine learning 

pipeline assembled from the input form submission. A model is generated and 

trained via the customized pipeline and then used to predict genes that are 

strongly correlated with the target attribute. General explanations for the model’s 

performance are provided with ROC curves and a prediction matrix (Figure 120).

10. The prediction results are provided at the end of the pipeline and can be 

downloaded as a tab-separated (.tsv) file by clicking on “results.tsv” at the end of 

the notebook (Figure 121).

Basic Protocol 12: GWAS target illumination with TIGA

Target Illumination GWAS Analytics (TIGA) (Yang et al., 2021) is a web application that 

facilitates drug target illumination by scoring and ranking protein-coding genes associated 

with traits from genome-wide association studies (GWAS). Similarly, TIGA can score 

and rank traits with the same gene-trait association metrics. Rather than a comprehensive 

analysis of GWAS for all biological implications and insights, this focused application 

provides a rational method by which GWAS findings can be aggregated and filtered for 
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applicable, actionable intelligence, with evidence usable by drug discovery scientists to 

enrich prioritization of target hypotheses. TIGA derives its GWAS summary and metadata 

solely from the NHGRI-EBI GWAS Catalog and study-associated publications. Thus, TIGA 

traits are identified by Experimental Factor Ontology (EFO) terms.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Protocol steps and annotations

Navigating the input page

1. Navigate to the TIGA web app: (https://unmtid-shinyapps.net/shiny/tiga/)

Trait to gene search

2. A trait query may be specified by browsing and selecting from the Traits (ALL) 

tab, or via the Trait query field.

3. To find genes associated with the EFO term “worry measurement” 

(EFO_0009589), begin typing “worry” in the Trait query field, and autosuggest 

will assist in selecting the trait, (Figure 122).

4. TIGA results will be displayed via the HitsTable tab and HitsPlot tab (Figure 

123).

5. The HitsTable is ranked by meanRankScore as a measure of the strength and 

confidence of the inferred gene-trait association.

6. The HitsPlot displays hits with meanRankScore on the horizontal axis, and 

Effect on the vertical axis, either measured by odds ratio (OR) or N_beta (count 

of beta values).

7. Hits are annotated, either in the table as columns or as hover-tooltips, with 

several identifiers, measures, and variables, derived from the aggregated GWAS, 

or annotated from IDG. Target Development Levels (TDLs) are also color coded 

for ease of use, facilitating identification of well-known targets (Tclin) and 

understudied targets (Tdark).

8. From the HitsTable, for a specific gene, the magnifying-glass icon links to the 

TIGA provenance for the corresponding gene-trait association. The provenance 

displays studies and publications supporting the association, with GWAS Catalog 

and PubMed link-outs, respectively (Figure 124).
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Gene to trait search

9. In Gene query mode, TIGA behaves much the same as in Trait query mode, but 

with traits as hits. Data which pertain to gene-trait associations will be the same, 

such as provenance, regardless of query mode.

10. TIGA genes are, as in the Catalog, identified by Ensembl Gene IDs. The Gene 

query field will autosuggest based on gene symbols. Thus, by typing “RAS”, 

autosuggest will assist in selecting “RASA2”, “Ras GTPase-activating protein 

2.”

11. As in Gene query mode, results will be via HitsTable and HitsPlot tabs.

Basic Protocol 13: Prioritizing kinases for lists of proteins and phosphoproteins using 
KEA3

Kinase Enrichment Analysis 3 (KEA3) (Kuleshov et al., 2021) is a web-based server 

application that infers overrepresented upstream kinases whose putative substrates are 

present in a user-inputted list of differentially-phosphorylated proteins. To infer upstream 

kinases, KEA3 uses a collection of kinase-substrate libraries created from processing data 

from several online databases. Kinase enrichment analysis results are provided for each 

kinase-substrate library, as well as two integrated approaches to integrate all libraries: 

MeanRank and TopRank. The gene sets from the kinase-substrate libraries are compared 

to the user-inputted protein list, and the Fisher’s Exact Test is used to compute the 

significance of the overlap to prioritize kinases. The resulting ranked lists of kinases, as 

well as visualizations of the significant kinases as networks, are returned to the users as 

interactive and downloadable figures.

Necessary Resources

Hardware: Desktop or a laptop computer, or a mobile device, with a fast Internet 

connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).

Note that there is a tutorial on navigating KEA3 results (https://maayanlab.cloud/kea3/

templates/tutorial.jsp) from which some of the steps in this protocol have been paraphrased.

Protocol steps and anootations

Submitting a gene set to KEA3

1. Navigate to the KEA3 homepage (https://maayanlab.cloud/kea3/).

2. Gene/protein sets may be submitted to KEA3 in two ways: by uploading the set 

as a plain text file or by pasting a list, one gene/protein name per line, into a text 

box. When submitting genes/proteins using the text box, a checklist below the 
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text box denotes duplicates and confirms valid gene symbols in the input. Once 

uploaded or inputted, click on the “Submit” button to begin the analysis (Figure 

125).

Note that only HGNC-approved gene symbols will be accepted.

Navigating KEA3 results

3. Scroll down to view the “Integrated results” tab which includes bar charts, tables, 

subnetwork visualizations, and a clustergrammer visualization of integrated 

results across all KEA3 libraries using the MeanRank and TopRank methods 

(Figure 126). The MeanRank method calculates the average rank, whereas 

the TopRank method calculates the best scaled rank of each kinase across all 

libraries containing the kinase. The tables can be downloaded in TSV format and 

visualizations can be downloaded in SVG and PNG format. Use the slider above 

each visualization to change the number of top results that are displayed.

4. The Tables tab displays interactive tables of ranked kinases for each individual 

KEA3 library (Figure 127). The tables are organized into kinase-kinase substrate 

interaction libraries, protein-protein interaction libraries, and libraries with all 

associations. Each table displays the top 10 ranked kinases using the Fisher’s 

Exact Test p-value. Click on any of the table headers to re-sort the table. Clicking 

on any of the kinase names will redirect you to a single gene landing page in 

Harmonizome. Access the complete list of kinases by downloading any table in 

TSV format using the download icon.

5. The Networks tab displays global kinase co-regulatory networks generated 

by applying Weighted Gene Co-expression Network Analysis (WGCNA) 

(Langfelder and Horvath, 2008) to ARCHS4 (Lachmann et al., 2018), GTEx 

(Aguet et al., 2020), and TCGA (Tomczak et al., 2015) data in order to visualize 

the top-ranked kinases in the context of the larger human phosphorylation 

network; the top-ranked kinases are highlighted in the network (Figure 128). 

To choose the top-ranked kinases from a specific library, navigate to the “Select 

a library” drop-down menu and click on the desired library. Download each 

network as an SVG or PNG file by selecting the corresponding download button.

6. The Subnetworks tab displays kinase co-regulatory network visualizations which 

have been dynamically generated from the top-ranked kinases in each library 

(Figure 129). An edge between two kinases indicates an interaction supported by 

library evidence from either a kinase-substrate interaction library (directed edge) 

or protein-protein interaction library (undirected edge). Hover over an edge to 

display the library evidence supporting the interaction. Download each network 

as an SVG or PNG by clicking the desired file type in the bottom left corner of 

the graph.

7. The Bar Charts tab provides bar charts showing the -log(p-value) of the 

top-ranked kinases for each individual library (Figure 130). The bar charts 

are organized into kinase-kinase substrate interaction libraries, protein-protein 

interaction libraries, and libraries with all associations. Use the slider above each 
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figure to change the number of top kinases within the figure. Download any 

given chart as an SVG or PNG by selecting the desired file type in the bottom 

left-hand corner of the chart.

8. The Clustergrammer tab uses the Clustergrammer (Fernandez et al., 2017) 

application to provide an interactive clustergram of overlapping substrate targets 

between the input and the top library results (Figure 131). Share, take a snapshot, 

download, or crop the clustergram matrix using the icons in the menu bar on the 

left side of the clustergram. Customize row order and column order by selecting 

one of the options (alphabetically, cluster, rank by sum, rank by variance) under 

“Row Order” and “Column Order”, respectively. Search for rows using the text 

search box. Adjust the dendrogram groups, which show clusters at different 

hierarchical levels and are represented by grey triangles and trapezoids along 

the bottom and right axes, using the grey triangular sliders on the right and 

bottom-left sides of the clustergram.

Note: A tour of Clustergrammer that explains its features in more depth can be 

found here: http://maayanlab.github.io/clustergrammer/scrolling_tour. More details on 

interacting with the clustergram can be found in the Clustergrammer documentation: https://

clustergrammer.readthedocs.io/interacting_with_viz.html).

1. Open a new or existing Python code file. Import the JSON and requests libraries 

at the top of the file.

import json

import requests

2. Call the requests.post method to send a POST request to the URL. The payload 

variable contains the parameters that are sent to the API endpoint specified 

in KEA3_URL. In this case the endpoint is /enrich and the parameters are 

query_name, which specifies the name of the query, and gene_set, which 

specifies the query gene list to be enriched.

KEA3_URL = ‘https://maayanlab.cloud/kea3/api/enrich/’

payload = {“query_name”:”myQuery”, “gene_set”:

[“FOXM1”,”SMAD9”,”MYC”,”SMAD3”,”STAT1”,”STAT3”]}

response = requests.post(KEA3_URL, json=payload)

data = json.loads(response.text)

print(data)

3. Use the json.loads method to view the response as a JSON object containing the 

top enrichment results from various libraries.

{

‘Integrated--meanRank’:

 [{‘Query Name’: ‘myQuery’,

  ‘Rank’: ‘1’,

  ‘TF’: ‘CDK4’,
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  ‘Score’: ‘37.73’,

  ‘Library’:

‘STRING.bind,20;ChengPPI,2;PhosDAll,39;BioGRID,4;HIPPIE,13;ChengKSIN,29;STRIN

G,107;MINT,59;mentha,2;prePPI,137;PTMsigDB,3’,

  ‘Overlapping_Genes’: ‘SMAD3,STAT1,MYC,STAT3,SMAD9,FOXM1’},

  {‘Query Name’: ‘myQuery’,

  ‘Rank’: ‘2’,

  ‘TF’: ‘PDGFRA’,

  ‘Score’: ‘48.38’,

  ‘Library’: 

‘STRING.bind,11;ChengPPI,7;PhosDAll,59;BioGRID,110;HIPPIE,2;STRING,61;mentha,

8;prePPI,129’,

  ‘Overlapping_Genes’: ‘SMAD3,STAT1,MYC,STAT3,SMAD9,FOXM1’},

...

}

Note: More detailed instructions, as well as examples from the command line and in R, can 

be found at the following link: https://maayanlab.cloud/kea3/templates/api.jsp.

Basic Protocol 14: Converting PubMed searches to drug sets with the DrugShot Appyter

PubMed contains millions of publications that co-mention drugs with other biomedical 

terms such as genes or diseases. DrugShot is an Appyter (Clarke et al., 2021) that enables 

users to enter any biomedical search term into an input form to receive ranked lists of 

drugs and small molecules based on their relevance to the search term. DrugShot then 

deploys a Jupyter Notebook in the cloud to display ranked lists of drugs. To achieve 

this, DrugShot cross-references returned PubMed IDs with DrugRIF, a curated resource of 

drug-PMID associations, to produce an associated compound list where each compound 

is ranked according to the total co-mentions with the search term from shared PubMed 

IDs. Additionally, lists of compounds predicted to be associated with the search term are 

generated based on drug-drug co-occurrence in the literature, and drug-drug co-expression 

correlations computed from L1000 drug-induced gene expression profiles. Through its 

search functionality and abstraction of drug sets from different sources, DrugShot facilitates 

hypothesis generation by suggesting small molecules related to any searched biomedical 

term.

Necessary Resources

Hardware

• Desktop or a laptop computer, or a mobile device, with a fast Internet connection

Software

• An up-to-date web browser such as Google Chrome (https://

www.google.com/chrome/), Mozilla Firefox (https://www.mozilla.org/en-US/

firefox/), Apple Safari (https://www.apple.com/safari/), or Microsoft Edge 

(https://www.microsoft.com/en-us/edge).
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Protocol steps and annotations

Query Biomedical Term

1. Navigate to the DrugShot Appyter (https://appyters.maayanlab.cloud/DrugShot/). 

The Appyter input form includes options to query a biomedical term to retrieve 

a prioritized list of small molecules that is augmented using drug-drug similarity 

matrices, or to submit a list of small molecules to be augmented using drug-drug 

similarity matrices.

2. Input a biomedical term into the “Biomedical Term” field. The default string 

used for this demonstration is “Lung Cancer”. Input an integer ranging from 20 

to 200 in the “Associated Drug Set Size” field; this value is used to determine 

the size of the unweighted drug set that is used to predict related compounds. 

The larger the value selected, the broader the resulting predictions will be (Figure 

132).

3. Click submit on the Appyter input form and a Jupyter Notebook with the input 

parameters will be launched in the cloud.

4. The first output element of the notebook is a table of “Top Associated 

Compounds” (Figure 133). This table provides the top-ranked drug and 

compound names associated with the query term (Index Column), the count 

of PubMed publications associating each drug with the search term (Column 1), 

and the fraction of the publications associating the drug and search term divided 

by the total number of publications related to the drug regardless of search term 

(Column 2). Click on the hyperlinked filename below the table title to download 

a .CSV file listing all the associated compounds. This file also includes a Score 

column containing values that are the product of the first two columns.

5. The second output component of this notebook is a scatter plot (Figure 134) of 

the values from the table of “Top Associated Compounds”. The X axis displays 

the integer counts of Publications with Search Term, and the Y axis shows the 

fraction of Publications with Search Term / Total Publications. Hover over any 

point on this plot to display the compound’s name and its corresponding X and Y 

values.

6. An unweighted drug set is created through ranking small molecules from the 

association table by the product of the total associated publications and their 

normalized fraction.

Querying a list of small molecules

7. Alternatively, submit a newline separated .txt file of small molecule names using 

the input form, thereby omitting steps 2–6. The submitted small molecules will 

be used as the unweighted drug set that will be used in subsequent steps (Figure 

135).
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Literature co-mentions predictions

8. A receiver operating characteristic (ROC) curve that describes the ranking of 

associated compounds in the DrugRIF literature co-mentions matrix is output 

(Figure 136). This plot shows the True Positive Rate on the Y axis and the 

False Positive Rate on the x-axis. The predicted compounds are computed using 

average co-mention counts of PubMed IDs between the unweighted drug set, 

and other drugs and small molecules within DrugRIF. The area under the curve 

(AUC) is shown to the right of the plot and hovering over any point on the curve 

displays the associated X and Y values.

9. The literature co-mentions prediction matrix is seeded with the unweighted drug 

set and the top predicted compounds are ranked by their average co-mentions 

with the small molecules in the unweighted drug set. The “average co-mentions” 

values are provided in a table that displays the top 20 predicted compounds 

(Figure 137). Click on the hyperlinked filename below the Table 2 header to 

download the table as a .CSV file.

10. The top 50 co-occurrence predicted compounds are queried using the 

DrugEnrichr API for drug set enrichment analysis. The top 10 enriched terms 

from the downregulated and upregulated GO Biological Processes drug set 

libraries and the SIDER drug set library are displayed as bar plots (Figure 138). 

Click the link below the bar plots to be directed to the DrugEnrichr enrichment 

results page (Figure 139).

Signature similarity predictions

11. A receiver operating characteristic (ROC) curve that describes the ranking of 

associated compounds in the L1000 signature similarity matrix is output (Figure 

140). This plot shows the True Positive Rate on the Y axis and the False 

Positive Rate on the x-axis. The predicted compounds are computed using 

average cosine similarity of drug-induced gene expression signatures between 

the unweighted drug set, and other drugs and small molecules within the co-

expression prediction matrix. The area under the curve (AUC) is shown to the 

right of the plot and hovering over any point on the curve displays the associated 

X and Y values.

12. The signature similarity prediction matrix is seeded with the unweighted drug set 

and the top predicted compounds are ranked by their average cosine similarity to 

the small molecules in the unweighted drug set. The “average cosine similarity” 

values are provided in a table that displays the top 20 predicted compounds 

(Figure 141). Click on the hyperlinked filename below the table header to 

download the table as a .CSV file.

13. The top 50 signature similarity predicted compounds are queried using the 

DrugEnrichr API for drug set enrichment analysis. The top 10 enriched terms 

from the downregulated and upregulated GO Biological Processes drug set 

libraries and the SIDER drug set library are displayed as bar plots (Figure 142) 
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Click the link to be directed to the DrugEnrichr enrichment results page (Figure 

143).

COMMENTARY

Background Information

The IDG consortium has generated several different resources that are available to the 

research community. These resources include experimental data, tools, and reagents from 

the Data and Resource Generating Centers (DRGCs) covering the IDG highlighted protein 

families. These proteins are investigated by compound library screening (in vitro and in 
silico), antibody development, function and activation state profiling, and mouse expression 

profiling. Moreover, illuminating the druggable GPCR-ome is achieved by a two-pronged 

approach of experimental screening of drugs followed by computational screening against 

modeled structures of the GPCR to produce optimized lead compounds. This work has led 

to the discovery of several novel compounds, for example, the small molecule “ogerin” 

binds to GPR68 (Huang et al., 2015). Much of the success of identifying such novel GPCR 

binding compounds is due to development of a novel screening assay, PRESTO-Tango 

(Kroeze et al., 2015), which enables simultaneous investigation of every non-olfactory G 

protein-coupled receptor in the human genome. Additionally, the DRGCs recently gained 

insight into new potential therapeutics to help treat circadian rhythm disorders via the 

melatonin receptors MT1 and MT2 (Stein et al., 2020). The DRGCs also illuminate 

ion channels by utilizing CRISPR technology to map expression profiles, assess channel 

activities, develop antibodies, and generate new mouse lines. This work recently elucidated 

TMEM16C and its involvement in thermoregulation and protection from febrile seizures in 

rodent pups (Wang et al., 2021). Furthermore, discovering the function of the understudied 

druggable kinome includes using Multiplex Inhibitor Beads (MIB) / Mass Spectrometry 

(MS) to identify kinase activation status in response to perturbagens. This approach is 

applied to model cell lines and patient-derived xenografts. These data, along with other 

data collection efforts, are incorporated into the Dark Kinase Knowledgebase (DKK) that 

provides gene-by-gene and network-level information on the dark kinome and its interaction 

with other signal transduction regulatory networks (Berginski et al., 2021). For example, 

recently, the kinase CDC42BPA/MRCKα has been identified as a potential target for brain, 

ovarian, and skin cancers (East and Asquith, 2021). Moreover, the Kinase Chemogenomic 

Set (KCGS) is the most highly annotated set of selective kinase inhibitors available to 

researchers for use in cell-based screens. Recently, the NIH IDG initiative nominated 162 

dark kinases to develop chemical and biological tools to seed research on these understudied 

proteins. Currently, KCGS contains data of 37 inhibitors from the IDG dark kinases, which 

may be helpful and improve initial chemical tools to study these kinases (Wells et al., 2021).

Congruently, the IDG Knowledge Management Center (IDG-KMC) develops bioinformatics 

tools and other digital assets, enabling users to query and visualize the data produced 

by the DRGCs and other sources. The IDG-KMC gathers knowledge covering the 

entire human genome and expanding to model systems, including GWAS studies, 

expression data, compound binding, and patent information via ChEMBL (Mendez et al., 

2019). Furthermore, the IDG-KMC incorporates associated information related to human 

Kropiwnicki et al. Page 42

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein-coding genes, diseases, mouse phenotypes, small molecules and approved drugs 

(perturbagens) that modulate these proteins/genes and diseases. Utilizing these collected 

and annotated databases generates opportunities for machine learning ready platforms. For 

example, using these tools (i.e., combining data on genes, proteins, and RNA molecules 

from fourteen databases and publications), the IDG-KMC developed a machine learning 

algorithm that prioritizes targets for human genes associated with 17 unique types of pain 

and identified thirteen potential IDG family drug targets for migraine drug development and 

four for rheumatoid arthritis (Jeon et al., 2021). Here we provide a collection of step-by-step 

get-started protocols to gain initial access to the resources created by the IDG-KMC. We 

hope that these protocols will facilitate experimental and computational biologists to further 

engage with the unique opportunities offered by the IDG program toward accelerating drug 

and target discovery.

Critical Parameters:

There are several libraries and data sources that IDG-KMC web applications rely on. 

PubMed (https://pubmed.ncbi.nlm.nih.gov/) and DrugCentral (Avram et al., 2021) play an 

important role in several of the protocols. PubMed and DrugCentral are used by IDG-KMC 

web applications as both sources of data and also as external references which users can 

reach from within some IDG-KMC web applications.

The Target Central Resource Database (TCRD) is the central resource behind the 

Illuminating the Druggable Genome Knowledge Management Center (IDG-KMC) (Sheils 

et al., 2021). TCRD contains information about human targets and emphasizes four families 

of targets central to the NIH IDG initiative: GPCRs (note that olfactory GPCRs are treated 

as a separate family), kinases, and ion channels. A unique aim of the KMC is to classify 

the development/druggability level of targets via Target Development Level (TDLs). TDLs 

are currently categorized into four development/druggability levels: Tclin, Tchem, Tbio, 

and Tdark. Tclin targets have activities in DrugCentral with a known mechanism of action. 

Tchem targets have activities in ChEMBL (Mendez et al., 2019), Guide to Pharmacology 

(Armstrong et al., 2019), or DrugCentral that satisfy the activity thresholds, but no approved 

drugs. Tbio targets do not have known drug or small molecule activities that satisfy 

the activity thresholds and satisfy one or more of the following criteria: target is above 

the cutoff criteria for Tdark, the target is annotated with a Gene Ontology Molecular 

Function or Biological Process (The Gene Ontology Consortium, 2019) leaf term(s) with an 

Experimental Evidence code. Tdark targets have limited information or knowledge about 

them. Moreover, TDark currently includes ∼31% of the human proteins that were manually 

curated at the primary sequence level in UniProt, but do not meet any of the Tclin, Tchem 
or Tbio criteria.

Each of the datasets in Harmonizome are compiled from various resources that contain 

information regarding gene-attribute associations. Gene-attribute associations can range 

from chemical perturbations that induce differential expression in select genes (Subramanian 

et al., 2017) to specific genes differentially expressed in cell lines (Cowley et al., 2014; 

Barretina et al., 2012). The evidence for these associations depends on the resource and can 

be from text mining, high-throughput -omics data, and other methods.
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The ARCHS4 resource, and by extension the PrismEXP Appyter, depend on FASTQ files 

generated from RNA-seq experiments deposited in the Gene Expression Omnibus (GEO) 

(Edgar et al., 2002).

Geneshot relies on knowledge about under-studied targets from GeneRIF (Osborne et al., 

2007) and AutoRIF (Lachmann et al., 2019), association files that catalog gene-PubMed 

ID co-mentions. AutoRIF is larger and more comprehensive than GeneRIF, but potentially 

less accurate due to its automated creation. Furthermore, Geneshot generates predictions 

from gene-gene similarity matrices compiled from AutoRIF, GeneRIF, ARCHS4, Enrichr 

(Kuleshov et al., 2016), and Tagger (Pletscher-Frankild and Jensen, 2019).

For TIN-X, Drug Target Ontology (Lin et al., 2017) is used to establish associations between 

drug targets and disease states. TIN-X allows the user to browse diseases based on TDL, 

IDG Family, as well as user-supplied search terms for drug targets associated with the 

disease being considered.

Drugmonizome depends upon drug-attribute associations compiled from various resources. 

These drug-attribute associations are stored as drug set libraries, collections of drug sets that 

describe relationships between biomedical terms and sets of drugs. The drug set libraries 

are categorized into distinct categories that include: drug targets and associated genes; side 

effects, adverse events and phenotypes; gene ontology (GO) and pathway terms; chemical 

structure and sub-structure motifs; and modes of action.

Several of the protocols (namely Protocols 4, 10, 11, and 15) mention Appyters. Appyters 

turn Jupyter Notebooks into functional standalone web applications for bioinformatics 

workflows (Clarke et al., 2021). Each Appyter presents a unique workflow tied to an input 

form that can be modified by the user. Once the user submits the input form options, a 

Jupyter Notebook is executed in the cloud and populated with the selected options. These 

notebooks contain various analyses and publication ready figures that can be shared and 

downloaded by the research community.

GWAS target illumination depends upon GWAS summary and metadata from the NHGRI-

EBI GWAS Catalog with study-associated publications.

TIGA traits are identified by Experimental Factor Ontology (EFO) terms.

The prioritization of kinases for lists of proteins and phosphoproteins with KEA3 makes 

use of individual libraries generated from kinase-substrate interactions and protein-protein 

interactions, plus two integrated libraries, MeanRank and TopRank.

When converting PubMed searches to drug sets with the DrugShot Appyter, DrugRIF 

is used as a background database of drug-PMID associations. Furthermore, drug-drug 

similarity matrices generated from pairwise drug co-mentions from DrugRIF and pairwise 

cosine similarity of drug-induced gene expression profiles from SEP-L1000 (Wang et al., 

2016) are used to predict novel drug-term associations.
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Figure 1. 
Typeahead search results for STAT3 scroll or arrow down to view more options.
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Figure 2. 
Search Targets for STAT3 search results page.
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Figure 3. 
Target details page for STAT3, the radar chart in the center depicts data from Harmonizome.
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Figure 4. 
IDG development level summary section that shows the current development level, and 

criteria met. Links provide the ability to view either the original source, or the relevant data 

in Pharos.
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Figure 5. 
Scatterplot depicting Tin-x data for STAT3. Hovering over a data point opens up a tooltip, 

providing novelty and importance data for the disease.
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Figure 6. 
GWAS traits, and the associated TIGA scatterplot. For a more in depth exploration of this 

data, click “Explore on Target Illumination GWAS Analytics”.
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Figure 7. 
Additional functions available within Pharos are shown within blue buttons. Users can click 

to browse filtered lists for targets similar to the current target, or associated diseases or 

ligands.
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Figure 8. 
List of targets that share associated diseases with STAT3. The Jaccard index is a numerical 

value of the ratio of overlap between the associated diseases of the target in relation to the 

original target (STAT3). The Venn diagram is a visual representation of the ratio with the 

TDL level color coded.
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Figure 9. 
The target list from Figure 8 filtered to display Target Development Level of Tdark, and on 

the Refined(2020) IDG target lists. Click on “Click for details…” to view an expanded list of 

the overlapping values.
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Figure 10. 
Expanded view of the Associated Disease Similarity section of the target card.
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Figure 11. 
Target toolbar illustrating the download button on the right side. To the left of the download 

button is the upload button, which allows for the uploading of custom lists, to explore in the 

Pharos interface.

Kropiwnicki et al. Page 60

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Popup window featuring the query builder which allows for the download of Pharos list data 

as a csv file. Subsequent tabs display the raw SQL query used to generate the data, as well as 

a 10 line preview.
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Figure 13. 
GraphQL sandbox interface. Examples on the left side, and documentation on the right 

allow for highly customizable data requests.
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Figure 14. 
The Harmonizome homepage. The filter dropdown menu on the left selects between 

searching for genes, gene sets, and datasets.
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Figure 15. 
Search result page after querying “STAT3”. One gene page and 75 gene set pages match the 

query term “STAT3”.
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Figure 16. 
STAT3 single gene landing page that includes identifying metadata for the gene, download 

links for retrieving functional association data, and gene-related information from ARCHS4.
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Figure 17. 
Expandable lists of functional associations for STAT3 from each dataset.
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Figure 18. 
STAT3 gene set page from CHEA Transcription Factor Targets dataset.
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Figure 19. 
Download page for datasets included in Harmonizome.
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Figure 20. 
Resource page for Achilles with identifying metadata for the Achilles resource.
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Figure 21. 
Dataset page for “Achilles Cell Line Gene Essentiality Profiles” with identifying metadata 

for the dataset, in addition to download links for files included in this dataset.

Kropiwnicki et al. Page 70

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 22. 
Links to visualizations of the dataset contents and a table of gene sets. Click any of the gene 

sets to be redirected to a gene set specific page.
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Figure 23. 
Dropdown menu of visualization page options.
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Figure 24. 
Global Heat Map visualization organized by gene families and resources. Switch between 

gene families using the buttons on the left. Switch between “Cluster” and “Rank” using the 

toggle on the left. Query a gene of interest using the search bar at the bottom left.
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Figure 25. 
Dataset Heat Maps page. Select a dataset from the dropdown menu and it will be visualized 

as a hierarchically clustered heat map.
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Figure 26. 
Dataset Pair Heat Maps page. Select two datasets to compare from the dropdown menus and 

a hierarchically clustered heat map will be generated.
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Figure 27. 
Heat Map with Input Genes page. Input a list of maximum 500 genes and select a dataset to 

build a hierarchically clustered heat map detailing associations between the input genes and 

biological entities in the dataset.
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Figure 28. 
Dropdown menu of “Predict” options.
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Figure 29. 
Machine learning case studies page with details about the case studies were performed. 

Click on the corresponding buttons to view the tables for each study or download the table of 

predicted associations.
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Figure 30. 
ARCHS4 Homepage.

Kropiwnicki et al. Page 79

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 31. 
Data visualization and search page that includes a 3D interactable scatter plot of gene 

expression data.
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Figure 32. 
3D scatter plot of human gene expression data that includes the term “Pancreatic islet”.
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Figure 33. 
Search results table with Pancreatic islet samples listed in their respective section with 

metadata and options to download an R script to process the samples or delete the query.
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Figure 34. 
Signature search field that allows for querying of up and downregulated genes to identify 

samples that match the input.
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Figure 35. 
Example query from the signature search visualized in the 3D scatter plot. The identified 

samples are added to the “Search Result” table.
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Figure 36. 
Enrichment search field that allows for selection gene set library, gene set within the library, 

and choice of upregulated or downregulated signatures.
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Figure 37. 
Example query from the enrichment search visualized in the 3D scatter plot. The identified 

samples are added to the “Search Result” table.
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Figure 38. 
Selection buttons for switching between human and mouse samples, as well as buttons for 

switching between sample queries and single gene queries.
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Figure 39. 
Scatter plot of single genes instead of samples where the distance between genes quantifies 

similarity of their expression profiles across all samples in ARCHS4.
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Figure 40. “
Search genes by gene set” field where a gene set library and gene set within the library are 

selected to be queried.
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Figure 41. 
Genes from the selected gene set library and gene set are displayed on the scatter plot. The 

genes are added to their respective section in the “Search Result” table.
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Figure 42. 
Clicking on the number of genes in the “Search Result” table displays the genes included in 

the queried gene set.

Kropiwnicki et al. Page 91

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 43. 
Clicking on the Enrichr icon in the “Search Results” table displays gene set enrichment 

analysis results for the genes from the queried gene set.
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Figure 44. 
“Search genes” field populated with the gene symbol “SOX2”.
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Figure 45. 
Single gene page for SOX2 with identifying metadata at the top of the page. Additionally, 

tables of predicted functions from various gene set libraries are depicted along with ROC 

curves to quantify the ability to predict gene sets that SOX2 is a known member of from 

co-expression data.
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Figure 46. 
Table of the top 100 genes most similar to SOX2 based on co-expression. The genes can be 

submitted to Enrichr by clicking the “Upload to Enrichr” button.
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Figure 47. 
Tissue expression atlas for SOX2 that quantifies the expression of SOX2 in various tissue 

types.
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Figure 48. 
Cell line expression atlas for SOX2 that quantifies the expression of SOX2 in various cell 

lines.

Kropiwnicki et al. Page 97

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 49. 
PrismEXP Appyter input form where the user is prompted to input a gene symbol of interest 

and specify a gene set library (in GMT format) to make predictions from.
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Figure 50. 
Alternative input form option for uploading a custom GMT file.
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Figure 51. 
The launched Appyter notebook with options to download the notebook, toggle the code, 

and instructions for running the Appyter locally. Additionally, a table of contents on the left 

allows for easy traversal between sections of the notebook.
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Figure 52. 
Dataframe of 51 correlation matrices, each displaying correlation values between the query 

gene and other mouse genes.
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Figure 53. 
Dataframe of average correlations between each gene set from the specified gene set library 

and the query gene from the previous 51 correlation matrices.
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Figure 54. 
ROC curve that quantifies the ability of the PrismEXP model to retrieve previously known 

associations between gene set annotations and the query gene.
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Figure 55. 
Table of top predicted associations for the query gene.
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Figure 56. 
Download links to prediction table and ROC curve image.
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Figure 57. 
Geneshot homepage. The search bars allow for querying terms to be included and omitted 

from the search. Additional options exist for toggling between GeneRIF and AutoRIF and 

adjusting the gene set size for making predictions.
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Figure 58. 
Submitted search form populated with the term “Wound healing”.
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Figure 59. 
Scatter plot of all genes associated with “wound healing”. Each point represents a gene and 

interacting with any point reveals the gene name, X-axis value, and Y-axis value.
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Figure 60. 
Clicking on any of the points in the scatter plot generates a histogram of associations 

between the gene and “wound healing” over time. The blue bars represent publications 

mentioning the gene and search term, whereas purple bars represent publications mentioning 

just the gene.
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Figure 61. 
Table of top genes associated with “wound healing” ranked by number of publications that 

mention the gene and search term (left). Table of genes predicted to be associated with 

“wound healing” based on co-expression with the literature derived genes (right). Both 

tables can be downloaded and the genes from both tables can be submitted to Enrichr for 

gene set enrichment analysis.
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Figure 62. 
The predicted gene table from the “wound healing” search can be recalculated by selecting a 

different gene-gene similarity matrix for predictions and changing the gene set size derived 

from the associated gene table.
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Figure 63. 
Gene function prediction page. The input form allows for the selection of a query gene, a 

gene set library from which gene sets with functional association terms will be retrieved, and 

a gene-gene similarity matrix from which predictions will be made.
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Figure 64. 
Table of top predicted associations for TNF from the KEGG Pathways gene set library. 

Known functions are highlighted in blue. The ROC curve quantifies the ability of the 

prediction method to retrieve functions that TNF is known to be associated with.
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Figure 65. 
Gene set augmentation page. The text box accepts a list of gene symbols that will be used 

as an unweighted gene set to predict related genes based on the selected gene-gene similarity 

matrix. The source of gene publication data can be changed with a toggle bar between 

GeneRIF and AutoRIF.
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Figure 66. 
The “mixed genes” example query with the quantile counts for each of the queried genes.
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Figure 67. 
Table of queried genes, their publication counts, and novelty (left). Table of top 200 genes 

predicted to be associated with the query gene set, gene publication counts, and similarity 

score with the query gene set (right). Each table can be downloaded and the genes from each 

table can be sent to Enrichr for gene set enrichment analysis.
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Figure 68. 
The TIN-X “Browse Disease” view (left side) with Parkinson’s Disease selected. Targets 

associated with Parkinson’s Disease (right side) are plotted on a log scale of Importance vs 

Novelty, with each data point colored according to its Target Development Level (TDL).
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Figure 69. 
Clicking a target point within the Parkinson’s Disease example, “Synaptogyrin-3” 

(SYNGR3) displays details including the full name and family of the target, Target 

Development Level (TDL), links to Pharos and DrugCentral, and, importantly, links to the 

associated two research articles (bottom).
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Figure 70. 
Starting with the superfamily Kinase, the user can further refine the selection to Protein 

kinase → CAMK group → TRIO family → Kalirin by using the left navigation pane within 

Browse Targets.
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Figure 71. 
Within “Browse Targets”, diseases associated with Kalirin (KALRN) are plotted with log–

log Importance–Novelty axes, and are colored according to the top hierarchical Disease 

Ontology term.
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Figure 72. 
For the example target Kalirin (KALRN), the most novel association (lowest Importance) is 

for “X-linked nonsyndromic deafness”. This detailed view includes the full name and family 

of the target, links to Pharos and DrugCentral, and in this case, the one article responsible 

for this association between KALRN and X-linked nonsyndromic deafness.
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Figure 73. 
DrugCentral homepage. DrugCentral search bar supports three types of queries: drug, target 

and disease.
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Figure 74. 
DrugCentral search results for “Omeprazole” first lists drugs indicated for “Omeprazole” 

(e.g., sodium bicarbonate) followed by drugs indicated in complications.
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Figure 75. 
Drugcentral query result for “Parkinson’s disease” (PD) first lists drugs indicated for PD 

(e.g., ropinirole), followed by drugs indicated in complications of PD (e.g., fludrocortisone 

is indicated for the PD-associated orthostatic hypotension), then by drugs that list PD as 

side-effect (e.g., dimenhydrinate).
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Figure 76. 
DrugCentral Redial query result for Omeprazole. All input queries for REDIAL-2020 are 

converted to SMILES format in order to predict anti-viral properties.
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Figure 77. 
The L1000 search input home page. The L1000 DrugCentral app allows users to query (via 

drug names) which drugs have the most similar gene perturbation profiles, ranked by cell 

lines.
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Figure 78. 
DrugCentral Accession “DrugcentralStruct.ID” for cross referencing DrugCentral drug 

cards.
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Figure 79. 
DrugCentral’s Target Card. Target card depicts Accession, Swissprot, Organism, Gene & 

Target class followed by Drug relations where the Drugs Bioactivity mechanism-of-actions 

are marked.
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Figure 80. 
Uniprot Accession IDs used for crossrefrencing and machine querying DrugCentral 

Targetcards. https://drugcentral.org/static/Drugcentral_uniprot_Mapping.txt
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Figure 81. 
Redial Home page with Search SMILES, drug names and PubChem CIDs enabled.
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Figure 82. 
Redial interface provides a summary of the models, such as model type, which descriptor 

categories were used for training and the evaluation scores. The user interface further depicts 

the processes of cleaning the chemical structures (encoded as SMILES) before training the 

machine learning models.
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Figure 83. 
Redial prediction results table with example search term “amodiaquine”. Amodiaquine is 

predicted to be active in cytopathic effect experiments while there are no clues on its 

mechanism (inactive in AlphaLISA, ACE2, and 3CL assays).
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Figure 84. 
REDIAL links directly to DrugCentral for approved drugs and to PubChem for chemicals 

(where available), enabling easy access to further information on the query molecule.
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Figure 85. 
REDIAL-2020 results page predicting compound activity across all eleven assays: CPE, 

cytotox, AlphaLISA, TruHit, ACE2, 3CL, CoV-PPE, CoV-PPE_cs, MERS-PPE, MERS-

PPE_cs, and hCYTOX.
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Figure 86. 
Drugmonizome metadata search page with drug set search enabled.
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Figure 87. 
Drugmonizome metadata search page with example term “Headache” queried using the 

search bar.
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Figure 88. 
Drug set page that includes identifying metadata for the drug set and the small molecules 

included in the drug set. The search bar can be used to query specific drugs or small 

molecules of interest.
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Figure 89. 
Drug set enrichment page with the “Ellinger et al.” example drug set pasted into the search 

box.
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Figure 90. 
Enrichment results page after submitting the “Ellinger et al.” example drug set. Each 

resource is represented by an icon and the number of enriched drug sets from each resource 

are displayed above the icon.
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Figure 91. 
After clicking on the SIDER resource, the top enriched terms from both drug set libraries 

from SIDER are displayed side by side. Bar charts and scatter plots visualize the top 

enriched terms. The view for a particular library can be expanded by clicking the “expand” 

button.
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Figure 92. 
Expanded view for the SIDER Side Effects drug set library. This view includes the bar chart 

of top enriched terms, scatter plot of top enriched terms, and table of top enriched terms with 

each of their p-values, odds ratios, overlap sizes, and corrected q-values.
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Figure 93. 
The resource page listing all drug data resources included in Drugmonizome.
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Figure 94. 
Expanded view of the DrugBank resource with identifying metadata and drug set libraries 

curated from DrugBank.
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Figure 95. 
Expanded view of the DrugBank Small Molecule Targets drug set library with metadata that 

include download links for the DMT file in drug name and InChIKey formats. All drug sets 

included in the library are listed below and each drug set can be expanded to view drug set 

specific metadata and the list of small molecules included in the drug set.
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Figure 96. 
Input dataset selection section of the Drugmonizome-ML Appyter. Each input dataset is 

annotated with tooltips.
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Figure 97. 
Toggleable options for deciding whether to retain or drop drugs with missing data and 

TF-IDF normalization.
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Figure 98. 
Target label selection with “Attribute” selected. The autocomplete field can be populated 

with search terms that match to drug-set labels in Drugmonizome which will be used as the 

positive class to predict.
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Figure 99. 
Target label selection with “List” selected. Newline separated .txt files can be uploaded 

with small molecules that are part of a positive class to predict. The drug identifier format 

drop-down menu allows specification of how small molecules are catalogued within the 

uploaded file (names or InChI key).
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Figure 100. 
Machine learning pipeline section with methods for data visualization, machine learning 

classifier selection, hyperparameter settings, and metrics to evaluate the classifier.
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Figure 101. 
(1) To learn more about Appyters, click any of the header tabs to navigate to information 

pages. (2) Clickable options to download the Jupyter Notebook, toggle code when viewing 

the notebook, as well as the option to run the notebook locally. (3) Table of contents with 

clickable elements that link to a specific section within the notebook.
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Figure 102. 
Input dataset visualized in Dataframe format. The number of matched compounds in the 

target vector is displayed, along with a downloadable .txt file of unmatched compounds.
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Figure 103. 
Dimensionality Reduction and Visualization Section with input feature space visualized 

using UMAP.
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Figure 104. 
Receiver Operating Characteristic (ROC) curves of classifier performance after cross-

validation splits.
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Figure 105. 
Precision-recall (PR) curves of classifier performance after cross-validation splits.
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Figure 106. 
Confusion matrix for cross-validation predictions from the trained classifier.
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Figure 107. 
Mean probability distribution for classifier predictions including compounds with known 

positive labels, unknown class labels, and a simulated null distribution.
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Figure 108. 
T-statistic distribution for classifier predictions including compounds with known positive 

labels, unknown class labels, and a simulated null distribution.
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Figure 109. 
UMAP dimensionality reduction of the input feature space with predicted compounds 

overlayed. The color of each point corresponds to the mean predicted probability, whereas 

the size of the point corresponds to the significance of the probability.

Kropiwnicki et al. Page 158

Curr Protoc. Author manuscript; available in PMC 2024 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 110. 
Table of the top predicted compounds ranked by prediction probability.
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Figure 111. 
Feature importance table.
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Figure 112. 
Feature importance graphs with distribution scores for each feature and a cumulative 

distribution score across all features.
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Figure 113. “
Attribute and Prediction Class Dataset Selection” section of the input form. Two datasets are 

selected to be used as features in the classifier algorithm. Hovering over tool tips displays 

information about each dataset. There is also an option to upload custom attribute datasets. 

The Target Selection subsection allows for selection of a class for the classifier to predict.
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Figure 114. 
Settings section including a variety of scikit-learn options for building the classifier as well 

as options for visualizing and evaluating classifier performance and predictions.
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Figure 115. 
Options to download the appyter notebook, toggle the code, and run the notebook locally. A 

table of contents on the left allows for navigating the various sections of the notebook.
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Figure 116. 
The input feature datasets visualized as Dataframes. The first and second Dataframes 

describe the “CCLE Cell Lines Gene Expression Profiles” and “ENCODE Transcription 

Factors Targets” datasets, respectively. The final Dataframe represents the concatenated 

feature matrix composed of the previous two datasets.
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Figure 117. 
Target array created from the “DISEASES Text-mining Gene-Disease Association Evidence 

Scores” dataset which contains the class label “cancer DOID:162”. Genes in the target array 

associated with the class label are marked with a 1, whereas genes that are not known to be 

associated with the class label are marked with a 0.
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Figure 118. 
3D scatter plot of PCA reduced input features with genes associated with the target label are 

colored yellow.
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Figure 119. 
T-SNE visualization of the PCA reduced features.
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Figure 120. 
Receiver operating characteristic (ROC) curves and prediction matrix displaying model 

performance across cross-validation splits.
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Figure 121. 
Table of top genes predicted to be associated with the class label. The results table is 

available for download by clicking the “results.tsv” link.
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Figure 122. 
TIGA gene plot for trait “worry measurement” (EFO_0009589).
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Figure 123. 
TIGA gene hitlist for trait “worry measurement” (EFO_0009589).
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Figure 124. 
TIGA provenance for trait “worry measurement” (EFO_0009589) associated gene 

Musculoskeletal embryonic nuclear protein 1 (MUSTN1), with two studies and associated 

publications, with GWAS Catalog and PubMed link-outs, respectively.
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Figure 125. 
KEA3 homepage with gene input box. HGNC gene symbols can be pasted into the text box 

or a newline separated .txt file containing the input gene list can be uploaded.
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Figure 126. 
Snippet of the integrated results tab showing the top enriched kinases using the MeanRank 

and TopRank methods through a variety of tables and visualizations.
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Figure 127. 
Tables tab showing the top enriched kinase results from the kinase-subtrate interaction 

libraries. Each table can be re-sorted by clicking the table headers for each table. Specific 

terms of interest can be queried in any of the search bars within each table.
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Figure 128. 
Networks tab displaying human kinome regulatory networks that were produced by applying 

Weighted Gene Co-expression Network Analysis (WGCNA) to ARCHS4, GTEx, and 

TCGA datasets. Kinases are colored by tissue type based on the highest correlation between 

the kinase and parent WGCNA module.
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Figure 129. 
Subnetworks tab displaying the kinase-kinase co-regulatory networks showing the top-

ranked kinases from enrichment results for kinase-substrate interaction libraries.
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Figure 130. 
Bar charts tab displaying the -log(p-value) of top-ranked kinases from the kinase-substrate 

interaction libraries.
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Figure 131. 
This interactive visualization highlights the relationships between the most common kinase-

subtrate associations detected as overlapping with the input. Each column represents a 

protein set from a KEA3 library, while the rows are putative substrates from the input list 

which overlap with proteins within each of the KEA3 library sets. Rows and columns can be 

sorted by sum to observe the KEA3 sets with the most substrates.
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Figure 132. 
Biomedical Term input form with “Lung Cancer” input in the Biomedical Term field. The 

associated drug set size is 50, therefore the unweighted drug set will include 50 small 

molecules.
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Figure 133. 
Table of Top 20 Associated Compounds. This table provides the top-ranked drug and 

compound names associated with the query term (Column 1); the count of PubMed 

publications associating each drug with the search term (Column 2); and the fraction of 

the count from Column 2, divided by the total number of publications related to that drug 

(Column 3).
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Figure 134. 
Scatter Plot of Drug Frequency in Literature. The X axis displays the integer counts 

of Publications with Search Term, and the Y axis shows the fraction of Publications 

with Search Term / Total Publications. Hovering over any point on this plot displays the 

compound’s name and its corresponding X and Y values.
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Figure 135. 
List input form where newline separated .txt files of small molecule names are uploaded for 

drug set augmentation.
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Figure 136. 
Receiver operating characteristic curve for rankings of unweighted drug set in co-occurrence 

matrix. The area under the curve (AUC) is shown to the right of the plot, and hovering over 

any point on the curve displays the associated X and Y values.
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Figure 137. 
Table of top 20 predicted compounds predicted from DrugRIF co-occurrence. Click on the 

hyperlinked filename below the table header to download a .CSV file listing the complete 

ranked set of predicted compounds and their associated similarity scores.
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Figure 138. 
Bar plots of top 10 enriched terms across three separate drug set libraries after drug set 

enrichment analysis of the top 50 co-occurrence predicted drugs using the DrugEnrichr API. 

Colored bars correspond to terms with significant p-values (<0.05). An asterisk (*) next to a 

p-value indicates the term also has a significant adjusted p-value (<0.05).
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Figure 139. 
DrugEnrichr link to drug enrichment analysis results from querying the top 50 co-

occurrence predicted compounds.
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Figure 140. 
Receiver operating characteristic curve for rankings of unweighted drug set in co-expression 

matrix. The area under the curve (AUC) is shown to the right of the plot, and hovering over 

any point on the curve displays the associated X and Y values.
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Figure 141. 
Table of top 20 predicted compounds predicted from L1000 co-expression. Click on the 

hyperlinked filename below the table header to download a .CSV file listing the complete 

ranked set of predicted compounds and their associated similarity scores.
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Figure 142. 
Bar plots of top 10 enriched terms across three separate drug set libraries after drug set 

enrichment analysis of the top 50 co-expression predicted drugs using the DrugEnrichr API. 

Colored bars correspond to terms with significant p-values (<0.05). An asterisk (*) next to a 

p-value indicates the term also has a significant adjusted p-value (<0.05).
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Figure 143. 
DrugEnrichr link to drug enrichment analysis results from querying the top 50 co-expression 

predicted compounds.
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