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Abstract

The overactivation of the mineralocorticoid receptor (MR) promotes pathophysiological processes related to multiple physi-
ological systems, including the heart, vasculature, adipose tissue and kidneys. The inhibition of the MR with classical MR
antagonists (MRA) has successfully improved outcomes most evidently in heart failure. However, real and perceived risk of
side effects and limited tolerability associated with classical MRA have represented barriers to implementing MRA in settings
where they have been already proven efficacious (heart failure with reduced ejection fraction) and studying their potential
role in settings where they might be beneficial but where risk of safety events is perceived to be higher (renal disease). Novel
non-steroidal MRA have distinct properties that might translate into favourable clinical effects and better safety profiles
as compared with MRA currently used in clinical practice. Randomised trials have shown benefits of non-steroidal MRA
in a range of clinical contexts, including diabetic kidney disease, hypertension and heart failure. This review provides an
overview of the literature on the systemic impact of MR overactivation across organ systems. Moreover, we summarise the
evidence from preclinical studies and clinical trials that have set the stage for a potential new paradigm of MR antagonism.
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SGLT2i Sodium—glucose cotransporter 2
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Introduction

The mineralocorticoid receptor (MR) plays a key role in
human physiology where it regulates fluid, electrolyte and
haemodynamic homeostasis. Overactivation of the MR
has been demonstrated in individuals with chronic kidney
disease (CKD) and individuals with type 2 diabetes mel-
litus [1], and is associated with increased cardiovascular
risk [2-4]. MR overactivation is increasingly recognised to
induce inflammation and fibrosis in organ tissues, contribut-
ing to CKD and CVD progression, beyond the well-known
effects on salt retention and hypertension. The MR has been
a pharmacological target for nearly 70 years, although the
initial use of MR antagonists (MRA) was primarily for diu-
retic purposes [5]. In contemporary practice, MRA play
important therapeutic roles in resistant hypertension [6],
heart failure with reduced ejection fraction (HFrEF) and
heart failure with mildly reduced ejection fraction (HFm-
rEF), where several trials have demonstrated benefits on
morbidity and mortality [7-11]. However, real or perceived
risk of side effects and tolerability issues associated with
traditional steroidal MRA, such as worsening renal function
and hyperkalaemia, often represents a barrier to their use in
clinical practice [12—15]

Novel non-steroidal MRA have emerged as a promising
alternative for targeting MR overactivation, with a better
safety profile than traditional steroidal MRA, and demon-
strated efficacy in patients with CKD and type 2 diabetes
[16—18]. The aim of this review is to provide a comprehen-
sive overview of MR overactivation and the status of non-
steroidal MRA, their mechanisms of action, safety profile
and therapeutic potential to target the systemic impact of
MR overactivation.

Pathophysiology of MR overactivation
Historical overview

At the time of its first successful isolation and crystallisa-
tion in 1953 [19], aldosterone was primarily recognised as
a promotor of renal sodium and fluid retention and potas-
sium excretion [20]. In subsequent years, the compounds
that were initially referred to as ‘aldosterone antagonists’
were increasingly understood to block a receptor (the MR)
with binding affinity for not only aldosterone but also corti-
sol [21-24], and were thus more aptly called MRA. In 1987
an important milestone was reached with the cloning of the

MR gene [25]. Today, it is accepted that mechanisms inde-
pendent of aldosterone can contribute to MR activation, and
that the role of the MR in disease progression goes beyond
its well-known effects on salt and fluid homeostasis, and
involves metabolic, proinflammatory and pro-fibrotic path-
ways [5, 24, 26-28].

Properties of the MR

The MR belongs to the steroid hormone intracellular recep-
tor family [25, 26]. In its inactivated state, the MR is typi-
cally located in the cytoplasm. Its activation following the
binding with its steroidal ligands (in human physiology these
are mainly aldosterone and cortisol) facilitates its transloca-
tion into the cellular nucleus, where it forms complexes with
a wide range of cofactors to regulate transcription [29, 30].
However, the MR also exhibits additional effects through
pathways that are independent of gene transcription [30-34].
The MR is expressed in multiple organs throughout the body
[26], including the kidneys [35-37], heart [36, 38—40], vas-
culature [36, 38, 41, 42], gastrointestinal tract [36], adipose
tissue [43, 44] and central nervous system [36, 45]. The
MR binds with similar affinity to cortisol and aldosterone
in vitro, but its predominant ligands and functions in vivo
are context-dependent according to its location in the body
[26, 29, 30, 36, 46].

Renal and extra-renal effects of MR activation

Role of the MR in the kidney In the kidney, the MR is classi-
cally characterised as a regulator of salt and fluid homeostasis
[47]. This pathway begins with the production and secretion
of aldosterone in the adrenal glands, mediated by activation
of the renin—angiotensin system (RAS) in response to hyper-
kalaemia and hyponatraemia [47]. In renal epithelial cells,
the enzyme 11p-hydroxysteroid dehydrogenase (11p-HSD2)
converts cortisol into cortisone, which does not bind to the
MR, rendering aldosterone its primary ligand [46, 48]. In
the distal nephron, MR activation by aldosterone promotes
transcription and activity of the epithelial sodium channel
(ENaC), resulting in increased sodium and fluid retention
and potassium excretion [30, 47]. While historically this is
the most-attributed function of the renal MR, evidence from
animal models implicates MR activation as an inductor of
oxidative stress in the kidney [37], and a key mediator of
renal inflammation and fibrosis [28, 49-52].

Role of the MR in the heart, immune cells, adipose tissue
and vasculature The potential systemic implications of MR
overactivation become apparent when considering the diverse
roles of the MR in organs other than the kidneys (Fig. 1) [26].
In cardiomyocytes, where the expression of the MR is not
accompanied by the cortisol-converting enzyme 11p-HSD2
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Fig. 1 Role of MR overactivation in cardiorenal disease. ROS, reactive oxygen species. This figure is available as part of a downloadable slideset

[46, 48], cortisol may be a more predominant ligand for the
MR. The first suggestion of MR activation as a promotor of
cardiac fibrosis originated from the work of Selye in 1958
[53], where the administration of a mineralocorticoid agent in
dogs resulted in cardiac necrosis and subsequent fibrotic scar-
ring. Similar findings were later reported in studies of rodents
[54, 55]. Immune cell MR activity may play a role in this
phenomenon; in mice, macrophage-specific deletion of MR
protected against deoxycorticosterone/salt-induced cardiac
fibrosis [56]. More recently, knockout of MR in cardiomyo-
cytes and T cells has been shown to improve post-myocardial
infarction ventricular remodelling [39, 57]. Insulin resistance,
inflammation and adipocyte dysfunction improve with MR
blockade in mice [58—61]. Human adipocytes express MRs
and have the capacity for aldosterone production [62, 63].
The link between MR activation and insulin resistance has
been reported in individuals with primary aldosteronism [64,
65], hypertension [66], CKD [67] and heart failure [63, 68].
In the hypothalamus, MR activation may increase sympa-
thetic drive [69]. The activation of MRs in vascular smooth
muscle cells may contribute to vascular oxidative stress, age-
ing and stiffening [70-72].

Mechanisms of MR overactivation MR overactivation may
arise from both aldosterone-mediated and aldosterone-inde-
pendent pathways, including by cortisol-ligand activation
in cells deficient of the cortisol-converting enzyme 11p-
HSD2, such as cardiomyocytes [46, 48, 73]. The relationship
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between falling GFR and increasing aldosterone levels may
predispose individuals with CKD to MR overactivation [74].
Treatment with RAS-inhibitors, which is recommended in
CKD, hypertension and heart failure, may contribute to
long-term elevated aldosterone levels known as ‘aldosterone
breakthrough’ or ‘aldosterone escape’ in 30-40% of patients
[50, 75-80]. Moreover, adipocyte aldosterone production
may contribute to increased MR activation in obese indi-
viduals [62, 81], which may be reversed by weight loss [82].

Therapeutic targeting of MR overactivation

Steroidal MRA

Steroidal MRA in heart failure Following the development of
the first steroidal MRA in the 1950s [83, 84], spironolactone
became available in 1960 primarily as a diuretic in patients
with oedema, primary aldosteronism and essential hyperten-
sion [24, 85]. In recent decades, the indications of steroidal
MRA have broadened, reflecting the wider implications of
MR inhibition, with perhaps their most far-reaching impact
to date in heart failure [7]. In 1999, the RALES RCT dem-
onstrated a 30% reduction in mortality and a 35% reduction
in risk of hospitalisation due to heart failure with spironolac-
tone vs placebo in 1663 patients with severe HFrEF [9]. Fol-
lowing RALES, several landmark trials have established the
efficacy of the steroidal MRA spironolactone and eplerenone
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in reducing morbidity and mortality in patients with HFrEF
or HFmrEF (Table 1) [8—11].

The findings in HFrEF/HFmrEF have not been convinc-
ingly translated to patients with heart failure and preserved
ejection fraction (HFpEF). The Aldo-DHF trial randomised
422 patients with chronic New York Heart Association
(NYHA) class II-III heart failure with ejection fraction
>50% and diastolic dysfunction to receive spironolactone
or placebo. Spironolactone improved diastolic function, but
had no effect on exercise capacity, symptoms or quality of
life [86]. The subsequent larger TOPCAT trial randomised
3445 patients with symptomatic heart failure and an ejec-
tion fraction >45% to receive spironolactone or placebo, and
barely missed its primary composite endpoint of cardiovas-
cular death, aborted cardiac arrest and heart hospitalisation
due to heart failure [87]. The near-miss in TOPCAT was met
with debate concerning methodological and conduct issues,
leaving many to consider the question of steroidal MRA in
HFpEF yet unanswered [88]. Two ongoing RCTs aim to
resolve the question of steroidal MRA in HFpEF (SPIRIT-
HF: NCT04727073; SPIRRIT-HFpEF: NCT02901184)
(Table 2) [89, 90].

Side-effect profile and barriers to implementation of ste-
roidal MRA in heart failure Spironolactone is structur-
ally similar to progesterone and is a potent but unspecific
antagonist of the MR [91]. Accordingly, gynaecomastia
and breast pain have been known side effects of spirono-
lactone since the 1960s [92]. Such side effects occurred in
10% vs 1% the spironolactone vs placebo arms of RALES
[9]. Compared with spironolactone, eplerenone is a highly
specific steroidal MRA, and accordingly has a more favour-
able anti-androgenic side-effect profile [93]. In the EPHE-
SUS trial, the eplerenone and placebo arms showed simi-
lar rates of gynaecomastia and impotence [10]. Another
limitation of steroidal MRA is the associated increase in
potassium levels and therefore the risk of hyperkalaemic
events [94]. The increase in prescriptions of spironolac-
tone following the publication of RALES led to a higher
incidence of hyperkalaemia in real-world data [95]. While
hyperkalaemia is associated with arrhythmias and mortality
[96-98], part of its prognostic impact in heart failure may
stem from its link with the discontinuation of treatment with
MRA [13, 99]. This hypothesis was behind the rationale for
the DIAMOND trial, which demonstrated that the novel
potassium-binder patiromer facilitated MRA use in patients
with HFrEF with current or previous hyperkalaemia [100].
Despite constituting one of the four pillars of evidence-
based pharmacotherapy for HFrEF [7], real and perceived
risk of hyperkalaemia-related adverse events associated
with steroidal MRA remains a barrier to their widespread
implementation in clinical practice. Even mild degrees
of CKD, where their efficacy on mortality/morbidity has

been proven, are associated with greater underuse [101]. A
recently published post hoc analysis of the EMPHASIS-HF
and TOPCAT trials reported that MRA use was associated
with an approximately 2 ml/min per 1.73 m? initial decline
in eGFR during the initial 4-6 months, but was without
apparent long-term effects on renal function [102]. Routine
care data from different healthcare systems indicate that
only 37-40% of patients with HFrEF receive a steroidal
MRA [13, 14], and discontinuation of treatment is com-
mon [103].

Steroidal MRA in CKD Small trials demonstrating renal ben-
efits of MR blockade in animal models of kidney disease
[104, 105], and of steroidal MRA on reducing proteinuria
in patients with CKD [106, 107], prompted optimism sur-
rounding their potential use in nephrology [108]. A meta-
analysis pooling data from 22 RCTs assessing non-selective
steroidal MRA (1441 participants) and six studies assessing
selective steroidal MRA (925 participants) in the setting of
proteinuric CKD stages [-IV showed beneficial effects on
proteinuria but increased risk of hyperkalaemia and acute
kidney injury, and uncertain effects on GFR [109]. None of
the included studies had a follow-up longer than 12 months.
These findings are in overall agreement with previous meta-
analyses on steroidal MRA in CKD [110, 111]; thus, there
has been insufficient data to estimate effects on hard renal
or mortality endpoints.

Few studies have assessed safety and efficacy of steroidal
MRA in patients on dialysis. The 2014 Dialysis Outcomes
Heart Failure Aldactone Study (DOHAS) randomly assigned
spironolactone in 309 patients with oligoanuric haemodi-
alysis, and showed a striking 60% reduction in the primary
composite outcome of cardiovascular and cerebrovascular
mortality and hospitalisations during the 3 year follow-up
[112]. However, the study was limited by an open-label
design. Two subsequent RCTs, the Spin-D (n=129, 36 week
follow-up) and MiREnDa (n=97, 40 week follow-up) trials,
found that spironolactone compared with placebo resulted in
increases in potassium levels and moderate hyperkalaemia
events, but no significant differences in severe hyperkalae-
mia (potassium >6.5 mmol/l) [113, 114]. While these tri-
als suggested spironolactone to be reasonably safe provided
there is stringent monitoring, there were no effects on left
ventricular mass index or function. A Cochrane meta-analy-
sis summarised the evidence from 16 RCTs including a total
of 1446 patients with CKD requiring dialysis, suggesting
that spironolactone likely reduces cardiovascular and all-
cause mortality in this context (RR 0.37; 95% CI1 0.22, 0.64)
but somehow with an increase in risk of hyperkalaemia (RR
1.41;95% C10.72, 2.78) [115]. The ongoing ALCHEMIST
(NCT01848639) and ACHIEVE (NCT00277693) trials aim
to further establish the safety and efficacy of steroidal MRA
in patients undergoing haemodialysis.
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Non-steroidal MRA

The clearly demonstrated clinical benefits of steroidal
MRA, together with their limited use due to their actual
or perceived safety profile, stimulated research aiming to
inhibit the MR while maintaining a better safety profile.
Among non-steroidal compounds, dihydropyridine-based
antagonists displayed high MR potency and selectivity. The
dihydropyridine-derivative BAY 94-8862 (today known as
finerenone) was identified as a novel non-steroidal MRA
that at least matched spironolactone in its potency, while
displaying unprecedented selectivity to the MR in vitro, and
promising efficacy vs eplerenone in preclinical animal mod-
els in vivo [116].

Distinct characteristics of non-steroidal MRA Beyond its
MR-selectivity and potency, finerenone carries several
attributes that could lead to different clinical effects as
compared with spironolactone and eplerenone (Fig. 2).
First, upon binding the MR, steroidal MRA convey partial
agonism on the MR cofactor recruitment. Since this partial
agonism is less potent than the one exerted by aldosterone,
spironolactone and eplerenone exhibit an antagonistic effect
that is mainly apparent in the presence of aldosterone. In
contrast, finerenone acts as an inverse agonist ligand, i.e.
it reduces MR cofactor recruitment even in the absence of
aldosterone [5, 117]. Second, while the tissue distribution
of steroidal MRA is more concentrated in the kidneys, finer-
enone displays a balanced distribution in the heart and the
kidneys [118], potentially enhancing the inhibition of proin-
flammatory and pro-fibrotic effects of cardiac MR activation.
Third, the shorter plasma ¢, of finerenone (2-3 h) compared
with eplerenone (4-6 h) and spironolactone (long) might
translate into a lower risk for hyperkalaemic events [119].
Several studies in animal models support the idea that the
distinct properties of finerenone might translate into clinical
benefits. Finerenone improved cardiac remodelling, natriu-
retic peptide concentrations and proteinuria to a greater
degree than eplerenone in deoxycorticosterone acetate-/salt-
challenged rats [118]. Finerenone, but not eplerenone, also
improved systolic and diastolic function and reduced natriu-
retic peptides in rats with heart failure induced by coronary
artery ligation [118]. In a mouse model of cardiac fibrosis,
finerenone, but not eplerenone, inhibited macrophage inva-
sion and improved cardiac fibrosis. It also improved global
longitudinal peak strain more than eplerenone [120]. In mice
exposed to kidney ischaemia, finerenone protected against
subsequent renal fibrosis and dysfunction [121, 122]. In a
model of CKD induced by endothelial dysfunction, reduced
oxidative stress appeared to mediate the effect of finerenone
on improved endothelial dysfunction [123]. One recent study
on obese mice showed that finerenone, but not spironolac-
tone, enhanced the activation of brown adipose tissue [124].

@ Springer

Interestingly, in a model of hypertension-induced end-organ
damage, a synergistic effect between the sodium—glucose
cotransporter 2 inhibitor (SGLT21) empagliflozin and finer-
enone was observed in the improvement of proteinuria,
serum creatinine levels, histopathological signs of cardiac
and renal lesions, and mortality [125].

Randomised evidence on non-steroidal MRA

Phase Il trials Following promising preclinical results,
finerenone was investigated in the MR Antagonist Toler-
ability Study (ARTS) Phase II RCT. ARTS part B enrolled
392 patients with HFrEF (ejection fraction <40%), NYHA
class TI-IIT and an eGFR 30-60 ml/min per 1.73 m?, and
randomised the participants to different doses of finerenone
or placebo and active treatment with spironolactone. Dur-
ing the 4 week follow-up, hyperkalaemia occurred less fre-
quently in the finerenone (5.3%) than the spironolactone arm
(12.7%), as did renal impairment (3.8% vs 28.6%). Finer-
enone and spironolactone demonstrated similar improve-
ments in natriuretic peptides and albuminuria [126].

ARTS was followed by the larger ARTS-HF multicen-
tre Phase IIb dose-finding study comparing finerenone with
eplerenone in patients with worsening HFrEF and concomi-
tant moderate CKD and/or type 2 diabetes (i.e. eGFR >30
ml/min per 1.73 m? in type 2 diabetes or 30—60 ml/min
per 1.73 m? without type 2 diabetes). In 1066 randomised
patients, during 90 days follow-up the eplerenone and finer-
enone dose groups showed similar frequency of the primary
outcome (the percentage of patients with >30% reduction in
N-terminal pro-B-type natriuretic peptide [NT-proBNP] at
90 days), as well as of the key safety endpoint of hyperkalae-
mia (4.7% incidence in the eplerenone arm and 3.6-6.3% in
the finerenone dose arms). Despite the short 90 day follow-
up, the exploratory secondary composite endpoint of all-
cause death, cardiovascular hospitalisation or emergency
visit for heart failure was significantly lower (HR 0.56; 95%
CI 0.35, 0.90) in the group assigned to finerenone 10 mg fol-
lowed by up-titration to 20 mg at day 30 vs eplerenone [127].

ARTS-Diabetic Nephropathy (ARTS-DN) compared
finerenone at different doses with placebo in 823 patients
with type 2 diabetes, albuminuria (urinary albumin/creati-
nine ratio [UACR] >3.39 mg/mmol [30 mg/g]), eGFR >30
ml/min per 1.73 m* and with a concomitant RAS blocker
prior to screening. The trial demonstrated a dose-dependent
reduction in UACR with finerenone at the dosages 7.5-20
mg/day, as compared with placebo, ranging from 21% reduc-
tion in the 7.5 mg finerenone group to 38% reduction in the
20 mg finerenone group. In the trial, which excluded patients
with serum potassium >4.8 mmol/l at screening, finerenone
discontinuation due to hyperkalaemia occurred in only 1.8%
of patients at doses 7.5-20 mg/day [128].
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Table 2 Key ongoing and awaited RCTs targeting MR/aldosterone pathways in cardiovascular and renal disease

RCT, Description (estimated enrolment) Projected
NCT number read-out
Steroidal MRA

SPIRIT-HF, NCT04727073 Double-blind RCT comparing spironolactone against placebo in HF and EF >40% 2024

(n=1300)
ALCHEMIST, NCT01848639
(n=825)
ACHIEVE, NCT03020303
(n=2750)

SPIRRIT, NCT02901184
>40% (n=2000)

Non-steroidal MRA

FINEARTS-HF, NCT04435626
>40% (n=6016)

CONFIDENCE, NCT05254002

Double-blind RCT comparing spironolactone against placebo in patients on chronic HD 2024
Double-blind RCT comparing spironolactone against placebo in patients on HD or PD 2025

Open label registry-based RCT on spironolactone initiation in patients with HF and EF 2026

Double-blind RCT comparing finerenone against placebo in patients with HF and EF 2024

Double-blind RCT comparing finerenone and dapagliflozin against finerenone alone 2024

and dapagliflozin alone in patients with DKD (n=807)

CLARION-CKD, NCT04968184 Double-blind RCT comparing KBP-5074 (a novel non-steroidal MRA) against placebo 2025
in patients with uncontrolled hypertension and CKD stages 3b/4 (n=600)

FIND-CKD, NCT05047263
CKD (n=1574)

FIONA, NCT05196035
17 years) with CKD (n=219)

Non-steroidal MR modulators
MIRACLE, NCT04595370

Double-blind RCT comparing finerenone against placebo in patients with non-diabetic 2026

Double-blind RCT comparing finerenone against placebo in children (age 6 months to 2027

Double-blind dose-finding RCT comparing balcinrenone (AZD9977, a novel non- 2023

steroidal MR modulator) in different doses together with daplagliflozin against
dapagliflozin alone in patients with HF, EF <60% and CKD (eGFR 20-60 ml/min

per 1.73m% n=147)
Aldosterone synthase inhibitors
NCT05182840

Double-blind dose-finding RCT comparing BI 690517 (a novel aldosterone synthase 2023

inhibitor) with or without empagliflozin against placebo in patients with CKD

(n=714)

CV, cardiovascular; DKD, diabetic kidney disease; EF, ejection fraction; HD, haemodialysis; PD, peritoneal dialysis; HF, heart failure; NCT

number, ClinicalTrials.gov identifier; T2DM, type 2 diabetes mellitus

Phase Ill trials Two double-blind RCTs were launched as
part of the Phase III programme to assess the safety and
efficacy of finerenone in CKD with type 2 diabetes in terms
of renal (FInerenone in reducing kiDnEy fail.ure and dIsease
prOgression in DKD [FIDELIO-DKD]) and cardiovascular
endpoints (FInerenone in reducinG cArdiovascular moRtal-
ity and mOrbidity in DKD [FIGARO-DKD]) [16, 17].
FIDELIO-DKD enrolled 5734 patients with type 2 dia-
betes and CKD who were treated with a RAS blocker [16].
The CKD inclusion criteria was met if either of the fol-
lowing was fulfilled: (1) persistent moderate albuminuria
(UACR 3.39-33.9 mg/mmol [30-300 mg/g]), eGFR 25-60
ml/min per 1.73 m? and history of diabetic retinopathy; or
(2) persistent severe albuminuria (UACR 33.9-565 mg/mmol
[300-5000 mg/g]), and eGFR 25-75 ml/min per 1.73 m2. As
in previous trials of the finerenone programme, patients were
excluded if serum potassium was >4.8 mmol/l. Another key
exclusion criterion was symptomatic chronic HFrEF, which
comes with a class 1A recommendation for steroidal MRA

[7]. The primary endpoint was the composite of kidney fail-
ure (€GFR <15 ml/min per 1.73 m?, long-term dialysis or
kidney transplantation), a sustained >40% reduction in eGFR,
or death from renal causes. Finerenone was associated with an
18% reduction of the primary outcome vs placebo during 2.6
years median follow-up, with consistent effects across patient
subgroups. Finerenone also reduced by 14% the pre-specified
secondary endpoint of cardiovascular death, nonfatal myocar-
dial infarction, nonfatal stroke or hospitalisation due to heart
failure. Hyperkalaemia leading to treatment discontinuation
was 2.3% with finerenone and 0.9% with placebo [16].

The purpose of the FIGARO-DKD (n=7437) trial was
to preferentially examine cardiovascular, rather than renal,
outcomes. Accordingly, while other inclusion criteria were
similar between FIGARO-DKD and FIDELIO-DKD, the
CKD criterion in FIGARO-DKD was less stringent in select-
ing for renal disease. CKD in FIGARO-DKD was consid-
ered fulfilled if either of the following were met: (1) per-
sistent moderate albuminuria (UACR 3.39-33.9 mg/mmol

@ Springer
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Distinct properties from steroidal MRA

Steroidal MRA

Spironolactone Eplerenone

Non-steroidal MRA
Finerenone

P ST,

o N
MR selectivity + +++
MR potency +++ +++

MR cofactor recruitment Partial agonist Partial agonist

Finerenone

Tissue distribution >> q >> % ==
L, >20 hours 4-6 hours 2-3 hours
Structure Flat Flat Bulky
. N\
Lessons from animal models vs eplerenone:

{Cardiac remodelling
VProteinuria

INT-proBNP
(DOCA-challenged rats)/

vs eplerenone:
IMacrophage invasion
JCardiac fibrosis
tLongitudinal strain
(Rat model of HF)

VEndothelial dysfunction
VOxidative stress
(Rat model of CKD)

{Renal fibrosis
{Renal dysfunction

(Mice with kidney
ischaemia)

. N\
vs spironolactone:
tBrown adipose tissue

(Obese mice) )

Key randomised clinical trials

ARTS-HF ARTS-DN FIDELIO-DKD FIGARO-DKD
Phase Il | n=1066 |Phase Il | n=823 | Phase Il | n=5734 Phase Ill | n=7437
c . Finerenone vs Finerenone vs Finerenone vs Finerenone vs
omparison eplerenone placebo placebo placebo

Patients [HFrEF + CKD/T2DM| T2DM + CKD T2DM + CKD T2DM + CKD

Primary | Similar reduction Kidney failure, CV death, nonfatal

findina | _in NT-proBNP 1 UACR eGFR reduction | ] M, nonfatal stroke

9 or renal death or HF hospitalisation

Fig.2 Distinct characteristics and mechanisms of finerenone vs
classical steroidal MRA. CV, cardiovascular; DOCA, deoxycorti-
costerone acetate; HF, heart failure; MI, myocardial infarction; NT-

[30-300 mg/g]) and eGFR 25-90 ml/min per 1.73 m; or (2)
persistent severe albuminuria (UACR 33.9-565 mg/mmol
[300-5000 mg/g]) and eGFR >60 ml/min per 1.73 m?. The
primary composite outcome (cardiovascular death, nonfatal
myocardial infarction, nonfatal stroke or hospitalisation due
to heart failure) was reduced by 13% in the finerenone arm
during 3.4 years median follow-up. Despite the exclusion of

@ Springer

proBNP, N-terminal pro-B-type natriuretic peptide; T2DM, type 2
diabetes mellitus. This figure is available as part of a downloadable
slideset

patients with HFrEF, a 29% reduction in hospitalisations due
to heart failure was the main driver. Similarly, as in the pre-
vious finerenone trials, incidence of hyperkalaemia-related
discontinuation was low (1.2%) and the rates of adverse
events were similar across study arms [17].

The finerenone in CKD and type 2 diabetes: combined
FIDELIO-DKD and FIGARO-DKD trial programme
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analysis (FIDELITY) was a pooled analysis from both trials,
including data from 13,026 patients and a median follow-
up of 3.0 years. Finerenone reduced risk of the composite
cardiovascular outcome (cardiovascular death, nonfatal myo-
cardial infarction, nonfatal stroke or hospitalisation due to
heart failure) by 14% and of the composite renal outcome
(kidney failure, a sustained >57% decrease in eGFR from
baseline over >4 weeks or renal death) by 23% [18]. The
mean 4 month change in UACR was 32% lower with finer-
enone vs placebo [18]. Benefits with finerenone on heart
failure outcomes (first hospitalisation due to heart failure;
cardiovascular death or first hospitalisation due to heart fail-
ure; recurrent hospitalisations due to heart failure; and car-
diovascular death or recurrent hospitalisations due to heart
failure) were consistent across eGFR and/or UACR catego-
ries [129]. Post hoc analyses from the finerenone Phase III
programme have suggested that finerenone might decrease
the incidence of heart failure [130] and atrial fibrillation
[131]. A pre-specified FIDELIO-DKD subgroup analysis
did not detect any effect modification on the composite car-
diovascular outcome according to history of heart failure
(heart failure: HR 0.73; no heart failure: HR 0.90; p-inter-
action: 0.33) [132]. Importantly, since patients with HFrEF
were excluded from the trial, the patients in the heart failure
group predominantly had HFpEF, where steroidal MRA
have not proven efficacious [87]. The ongoing FINEARTS
(NCT04435626) trial will compare finerenone with placebo
in 6000 patients with HFmrEF or HFpEF, and is expected
to be finalised in 2024. Preclinical models suggested a syn-
ergistic effect with concomitant SGLT2i and finerenone use
[125]. However, a FIDELITY subgroup analysis did not
detect significant interaction with SGLT2i use on the car-
diovascular composite (SGLT2i: HR 0.67; no SGLT2i: HR
0.87; p-interaction: 0.46) or the renal composite (SGLT2i:
HR 0.42; no SGLT2i: HR 0.80; p-interaction: 0.29). How-
ever, only 6.7% of patients received an SGLT?2i at baseline,
and 8.5% initiated during the trial [133]. The ongoing CON-
FIDENCE (NCT05254002) trial will randomly assign 807
patients with type 2 diabetes and CKD to receive SGLT2i
and/or finerenone alone or in combination.

Although to date finerenone has been investigated in the
largest study programme on non-steroidal MRA, there are
other compounds that have been studied in different settings.
Esaxerenone is a non-steroidal MRA that has been approved
in Japan for the treatment of hypertension and DKD [134].
In the 12 week double-blind Phase III RCT ESAX-HTN, 2.5
mg esaxerenone was noninferior and 5 mg esaxerenone was
superior to 50 mg eplerenone in reducing BP in 1001 Japa-
nese patients with essential hypertension, with similar rates
of adverse events across study arms [135]. In ESAX-DN, a
52 week double-blind Phase III RCT enrolling 455 patients
with DKD on RAS inhibitor therapy, esaxerenone improved
albuminuria vs placebo (HR for time to first remission of

albuminuria: 5.13; 95% CI 3.27, 8.04) [136]. A Phase II
dose-finding RCT (n=293) in DKD reported that the non-
steroidal MRA apararenone yielded a dose-dependent
37-53% reduction in albuminuria, whereas the placebo arm
reported a 14% increase [137].

An emerging possibility to target MR activation with a
further improved safety profile may involve MR modulators
that do not affect renal potassium excretion. Balcinrenone
(AZD9977), an MR modulator that showed organ protec-
tion capabilities without affecting urinary sodium/potassium
ratio in animal models [138], is currently being evaluated
vs placebo in the Phase IIb RCT MIRACLE, enrolling 147
patients with heart failure and CKD (NCT04595370).

Aldosterone also has non-MR-mediated actions, which
might not be targetable by the blockage of the MR alone
[139], and therefore aldosterone synthase inhibitors might
represent another therapeutic opportunity. Baxdrostat is a
highly selective aldosterone synthase inhibitor that is being
evaluated in resistant hypertension [140]. Although Phase
II trials BrigHTN (n=248, significant BP lowering effect
vs placebo) [141] and HALO (n=249, no difference in BP
change vs placebo) [142] reported conflicting results, a Phase
III trial is planned to start during 2023. Another aldosterone
synthase inhibitor, BI 690517, is being evaluated with or
without empagliflozin vs placebo for the treatment of CKD,
in a Phase II RCT enrolling 714 patients (NCT05182840).

Conclusion

MR overactivation has deleterious effects on salt and fluid
homeostasis, end-organ inflammation, fibrosis and metabolic
dysregulation. Classical steroidal MRA have achieved tre-
mendous success in improving outcomes in heart failure,
but their adverse effect profile limits their use in clinical
practice. Novel non-steroidal MRA have distinct pharma-
cokinetic and pharmacodynamic properties that potentially
translates into favourable clinical effects and better safety
profile vs steroidal MRA, and might have the potential to
further target the systemic impact of MR overactivation in
cardiorenal and metabolic syndromes.

Supplementary Information The online version of this article contains
a slideset of the figures for download available at https://doi.org/10.
1007/s00125-023-06031-1.
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