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Abstract
Purpose Asthenozoospermia is an important cause of male infertility, and the most serious type is characterized by multiple 
morphological abnormalities of the sperm flagella (MMAF). However, the precise etiology of MMAF remains unknown. In 
the current study, we recruited a consanguineous Pakistani family with two infertile brothers suffering from primary infertil-
ity due to MMAF without obvious signs of PCD.
Methods We performed whole-exome sequencing on DNAs of the patients, their parents, and a fertile brother and identified the 
homozygous missense variant (c.1490C > G (p.P497R) in NPHP4 as the candidate mutation for male infertility in this family.
Results Sanger sequencing confirmed that this mutation recessively co-segregated with the MMAF in this family. In silico 
analysis revealed that the mutation site is conserved across different species, and the identified mutation also causes abnor-
malities in the structure and hydrophobic interactions of the NPHP4 protein. Different bioinformatics tools predict that 
NPHP4p.P497R mutation is pathogenic. Furthermore, Papanicolaou staining and scanning electron microscopy of sperm 
revealed that affected individuals displayed typical MMAF phenotype with a high percentage of coiled, bent, short, absent, 
and/or irregular flagella. Transmission electron microscopy images of the patient’s spermatozoa revealed significant anoma-
lies in the sperm flagella with the absence of a central pair of microtubules (9 + 0) in every section scored.
Conclusions Taken together, these results show that the homozygous missense mutation in NPHP4 is associated with MMAF.
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Introduction

Male infertility is one of the leading health concerns in the 
world. In fact, approximately 15% of couples at the age of 
reproductive capacity are unable to conceive after 1 year of 
unprotected sexual contact [1]. More than half of all infertil-
ity cases are caused by male factors, characterized primarily 
by quantitative defects in the sperm [2, 3]. On the other hand, 
there are still approximately 20–40% of male infertility cases 
that are considered to be idiopathic [4]. These unexplained 
cases are thought to be caused by rare genetic mutations affect-
ing the intricate process of spermatogenesis, and mutations 
in more than 1000 genes associated with germ cell enriched 
expression might lead to defective spermatogenesis [5].

Accordingly, asthenozoospermia is a major cause of 
infertility and is defined as a reduction in motility of ejac-
ulated spermatozoa, which occurs due to defects in the 
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ultrastructure of sperm flagella, such as missing of central 
pair (CP) of microtubules or a defect in the arrangement of 
nine peripheral microtubule doublets surrounding CP (9 + 2) 
[6]. The CPs have an important role during spermiogenesis 
in maintaining the overall structure of flagellum, specially 
the absence of CPs leads to an abnormal “9 + 0” configura-
tion of the axoneme, and is found to be the major defect 
occurring in most MMAF cases [7]. The presence of such 
defects has also been observed in affected individuals with 
mutations in genes such as DNAH1, FSIP2, AK7, ARMC2, 
STK33, DNAH8, and QRICH2 [8–14], which were further 
supported with experimental models that indicated struc-
tural defects affecting CPs contribute to the development 
of MMAF [15]. However, these genetic findings account 
for approximately 60% of the MMAF cases [16], and more 
genetic factors need to be studied to understand the patho-
genesis of MMAF thoroughly.

A highly conserved protein, nephrocystin-4 encoded by 
NPHP4, plays a critical role in ciliary function and struc-
ture. An autosomal recessive kidney disorder characterized 
by mutations in NPHP4 is associated with vision or brain 
defects [17]. Recently, Alazami et al. reported the presence 
of NPHP4 homozygous variants that were associated with 
severe male infertility in familial case. This is the first report 
of male infertility associated with NPHP4 [18]. Although 
NPHP4 mutations are associated with male infertility in dif-
ferent ethnicities, however, the underlying genetic causes are 
still not fully understood.

The current study involved a consanguineous Pakistani 
family with two infertile individuals having asthenozoo-
spermia. Based on WES analysis, a homozygous missense 
mutation was identified in the NPHP4 gene (p.P497R). 
The Sanger sequencing of NPHP4 variants confirmed that 
NPHP4 p.P497R was associated with infertility phenotype 
in patients. Further investigations using in silico and elec-
tron microscopy analyses of patient spermatozoa confirmed 
the MMAF phenotype caused by the absence of CPs in 
patient spermatozoa. Till now, it is the first study reporting 
the importance of NPHP4 that regulate the ultrastructure of 
human spermatozoa associated with the formation of CP and 
added a new NPHP4 missense variant to the gene-mutation 
pool associated with male infertility and MMAF.

Material and methods

Clinical information of participants

In present study, we enrolled two male infertile patients 
from a consanguineous Pakistani family. Before beginning 
this study, all family members provided written informed 
consent. The participants completed a detail questionnaire 
regarding their infertility history and physical information. 

To rule out associated disorders, including renal manifes-
tations, renal function test and routine urine examination 
have been performed. Both affected individuals have no 
signs or symptoms of PCD according to clinical observa-
tions. In accordance with WHO guidelines, semen analy-
ses were performed from each patient, including semen 
volume, sperm concentration, sperm motility, and sperm 
morphology [19]. The blood samples of all members of 
the family collected were used to carried out hormonal 
analysis and karyotyping. This study was approved by the 
ethical committee of the University of Science and Tech-
nology of China.

Papanicolaou staining of sperm smears slides

Spermatozoa were smeared on a clean slide and fixed 
with 4% paraformaldehyde followed by three washes with 
1 × PBS. The Papanicolaou staining of the semen smear 
slides was performed as per the WHO protocol, with a 
few modifications noted below [19]. Smear slides were 
initially dehydrated in different concentrations of alcohol 
gradient (90–30% ethanol) and ddH2O for 1 min. Next, 
dipped in solution A (Harris’ hematoxylin) and solution B 
(acidic ethanol) for 4 to 8 min each, followed by washing 
with water after each step. Smear slides were rehydrated 
in 50–95% ethanol, dipped in solution C (Orange G6), 
95% ethanol three times, and in solution D (EA-50 green 
dye), 95–100% ethanol twice before being dehydrated 
in xylene. A natural balsam sealant was used to seal the 
slides, and a cover slip was placed over them. Images 
were taken using a laser scanning confocal microscope 
(Olympus).

Transmission electron microscopy (TEM) 
and scanning electron microscopy (SEM)

To analyze the ultrastructure organization of the patient’s 
spermatozoa, SEM and TEM analyses were carried out 
as described previously [20]. In brief, spermatozoa were 
fixed overnight at 4 °C in 0.1 M phosphate buffer (PB; 
pH 7.4) containing 4% paraformaldehyde, 8% glutaral-
dehyde, and 0.2% picric acid. After a further wash with 
0.1 M buffer for four times, the fixed spermatozoa samples 
were post-fixed with 1% OsO4 and dehydrated, followed 
by infiltration of acetone and epon resin mixture. After 
embedding the samples, ultrathin sections of approxi-
mately 70 nm were cut by an ultrathin microtome before 
staining with uranyl acetate and lead citrate. Tecnai 10 and 
12 Microscopes [21] at 100 kV or 120 kV, or the Hitachi 
H-7650 microscope at 100 kV were used to examine the 
ultrastructure of the samples.
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Whole‑exome sequencing and data analysis

According to the manufacturer, AI Exome Enrichment Kit 
V1 (iGeneTech, Beijing, China) derived libraries were cre-
ated for exome capture of all available family members 
(III:1 III:2 IV:1, IV:2, IV:3, IV:4). The sequencing was 
conducted using the Illumina Hiseq2000 platform (San 
Diego, CA, USA). Filtration of the variants was performed 
as described below. (1) Variants potentially affecting protein 
sequence were retained. (2) Variants with minor allele fre-
quencies (MAF) > 0.01 in any of the public databases, 1000 
Genome project (http:// www. inter natio nalge nome. org/) [22], 
ESP6500 (http:// evs. gs. washi ngton. edu/) [23].

Specifically, variants homozygous in our imputation of 
variant calls from 578 fertile men (41 Pakistanis, 254 Chi-
nese, and 283 Europeans) extracted from ExAC (http:// exac. 
broad insti tute. org) [24] or GnomAD (http:// gnomad. broad 
insti tute. org) [25], and (2) variants potentially predicted 
as non-deleterious by more than half of imputation algo-
rithms [26, 27–34] covering them were excluded. (4) Vari-
ants within genes that are not expressed in the testes were 
excluded. (5) Variants that follow inheritance patterns were 
included. (6) Variants within genes that may be important in 
spermatogenesis based on FertilityOnline or literature were 
included (Figure S1) [35]. A Sanger sequencing analysis of 
genomic DNA from all available family members was per-
formed in order to validate the mutant genes identified by 
WES. In Supplementary Table S1, primers used for Sanger 
sequencing analysis are listed.

In silico analysis

In this study, we aimed to investigate the function and patho-
genicity of the missense mutation p.P497R in NPHP4. The 
NPHP4 genomic sequences were retrieved from the NCBI 
database (http//ncbi.nlm.nih.gov). To predict the patho-
genicity of the identified mutation, we used various online 
pathogenicity prediction bioinformatics tools including 
PolyPhen-1, PolyPhen-2, PROVEAN, SIFT, Align GV-GD, 
FATHMM, PhD-SNP, MAPP, Mutation Assessor, SNAP-2 
and Mutation Taster [28, 30, 36–54]. To assess the stability 
of the NPHP4 protein, we used two bioinformatics tools, 
namely I-Mutant and Mutant Pro [55–58]

The NPHP4 protein structure was obtained from the 
Alphafold protein structure database, a deep-Mind artifi-
cial intelligence system that predicts the three-dimensional 
structure of proteins based on their amino acid sequences. 
To analyze the effect of the mutation on protein structure, 
we used FoldX, and HOPE was employed for automatic 
mutant analysis. The structures were visualized and ana-
lyzed using PyMol [59]. Furthermore, multiple sequence 
alignments of the NPHP4 protein and the evolutionary 

conservation of the mutated residue across different spe-
cies were performed using MEGA7 [60, 61].

Statistical analysis

Student’s t-test was performed for investigation of different 
defects in spermatozoa between control and patients. The 
results were presented as mean ± SEM.

Results

Clinical investigations of affected individuals

The infertility treatment was offered to a consanguineous 
Pakistani family with two male patients suffering from pri-
mary infertility at a local hospital in Abbottabad, Pakistan. 
Both patients (P1:IV:3 and P2:IV:4) have normal height 
and secondary sexual characteristics but failed to produce 
offspring even after trying to conceive during > 6 years of 
marriage (Table 1). These patients have normal visceral 
positions without signs or symptoms of PCD (Figure S2) 
(Table S4). Neither patient had a history of testicular dam-
age, infection, or radiotherapy or chemotherapy. All repro-
ductive hormones tested in the patients (Table 1) were within 
normal ranges. An examination of the chromosomes revealed 
a normal karyotype, and no Y-chromosome microdeletions 
were detected in either patient’s somatic cells. Hormonal 
analyses for both patients showed normal ranges (P1:IV:3 
FSH (10.11 mIU/mL), LH:9.92 mIU/mL), prolactin 14.48 
(ng/mL), testosterone (8.48 ng/mL), and P2:IV:4 FSH (7.30 
mIU/mL), (LH:4.21 mIU/mL), (prolactin 8.1 ng/m) (Table1). 
Both patients (P1:IV:3 and P2:IV:4) as well as one fertile 
brother (IV:5) had semen examination performed accord-
ing to WHO recommendations. As a result of the semen 
analyses, patients IV: 3 (9.50 ± 12.30) and IV: 4 (20 ± 7.07) 
showed reduced motility as compared to control and were 
therefore diagnosed as asthenozoospermia (Table 1). The 
sperm morphology was determined by Pap staining on sperm 
smears slides, and more than 200 spermatozoa were captured, 
and images were taken using a digital Nikon DS-Ri1 cam-
era mounted on a Nikon Eclipse 80i microscope. The sperm 
morphology analysis indicated that 90% of the spermatozoa 
displayed defective sperm flagella, including missing, absent, 
and coiled (Table 1) (Fig. 1B, C), which confirmed the asthe-
nozoospermia phenotype with MMAF.

Identification of a novel homozygous 
missense NPHP4 variant in patients 
with asthenoteratozoospermia

In the clinical investigations of both affected patients, 
asthenozoospermia with MMAF was diagnosed. The 
aim of this study was to identify the genetic causes of 

http://www.internationalgenome.org/
http://evs.gs.washington.edu/
http://exac.broadinstitute.org
http://exac.broadinstitute.org
http://gnomad.broadinstitute.org
http://gnomad.broadinstitute.org
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asthenozoospermia in infertile patients by assessing all the 
available family members, including both patients (IV:3 and 
IV:4), their parents (III:1 and III:2), and one control brother 
(IV:5). Following a series of criteria, genetic variants were 
filtered. A flow chart diagram in Supplementary Figure 1 
presents a complete strategy for analyzing WES data for a 
family. In brief, as the individuals were born to a consan-
guineous family, variants following recessive inheritance 
pattern in the sequenced family members were considered 

of priority. The variants meeting the following conditions 
were given preference: (1) variants potentially affecting 
protein sequence; (2) variants with minor allele frequency 
(MAF) < 0.01 in the 1000 Genomes, ESP6500, ExAC, and 
Genome Aggregation Database; (3) loss-of-function vari-
ants or potentially deleterious missense variants predicted 
by software including Sorting Intolerant From Tolerant, 
PolyPhen-2, and Mutation Taster; (4) variants within genes 
that are not expressed in the testes were excluded; and (5) 

Table 1  Clinical investigations 
of patients carrying the NPHP4 
mutation

Reference values for hormones analysis and Renal Function Tests were established by the local laboratory 
based on the normal individuals of patient’s population. Reference limits (5th centiles and their 95% con-
fidence intervals) according to the World Health Organization standard 2010, and the distribution range of 
morphologically normal spermatozoa observed in fertile individuals
PR progressive motility, NP non-progressive motility

Parameters Reference values Patient IV:3 Patient IV:4 Control IV:5

Age (years) - 46 31 20
Height (cm)/weight (kg) - 165.1/70 170.2/66 170.1/65
BMI 18.5–24.9 25.68 22.78 22.44
Age (y) of marriage
Chest X-ray

- 22
Normal

14
Normal

06
Normal

Ultrasonography
  Left testis size (cm) 3.6–5.5 × 2.1–3.5 3.51 × 2.91 3.84 × 2.88 -
  Right testis size (cm) 3.6–5.5 × 2.1–3.5 3.29 × 2.35 3.69 × 2.23 -

Renal function test
  Urea (mg/dL) 42 31 -
  Creatinine (mg/dL) Upto 1.2 1 1.1 -
  Uric acid (mg/dL) 5 5.2 -
  Urine protein Trace ( +) -

Hormone analysis
  FSH (mIU/mL) 1.0–11 7.3 10.11 -
  LH (mIU/mL) 1.0–8.0 4.21 9.92 -
  Prolactin (ng/mL) 3.00–14.70 8.17 15.48 -
  Testosterone (ng/mL) 3–10 5.18 8.48 -

Semen analysis
  Ejaculate volume (mL)  > 1.5 2.5 ± 0.83 3.16 ± 0.81 3.5
  pH 7.2–7.8 7.65 ± 0.17 7.96 ± 0.08 7.5
  Sperm concentration  (106/mL)  > 15 29.16 ± 7.3 15.16 ± 7.62 28

Motility
  Total motility PR + NP (%)  > 40 20 ± 7.07 9.50 ± 12.30 33
  Progressive motility PR (%)  > 32 6.5 ± 2.73 2.5 ± 4.1 18
  Vitality (%)  > 58 35 ± 14.14 40 42

Morphology
  Normal spermatozoa (%)  > 4 7.42 ± 3.13 5.95 64.9
  Normal head (%)  > 23 61.99 ± 3.00 48.68 67.06
  Normal flagella (%)  > 23 14.36 ± 1.70 18.81 39.71
  Aberrant flagella (%) - 85.63 ± 1.70 81.18 60.2
  Absent flagella (%) - 2.08 ± 0.47 6.93 1.82
  Short flagella (%) - 30.28 ± 5.14 10.23 11.34
  Coiled flagella (%) - 28.24 ± 4.71 37.62 28.36
  Bent flagella (%) - 19.75 ± 4.36 22.12 19.38
  Irregular flagella (%) - 5.26 ± 3.31 4.29 0.7
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Fig. 1  Novel NPHP4 missense variant causes infertility with MMAF 
in Pakistani consanguineous family. A Consanguineous family with 
two asthenozoospermia patients presenting MMAF phenotype. Filled 
symbols, infertile individuals; clear symbols, fertile individuals; dou-
ble horizontal lines, consanguineous marriage; cross line, deceased; 
tetragon, multiple kids. B (a, b) Pap staining of spermatozoa from 
control IV:5 showing normal sperm morphology. Spermatozoa 
from patient IV:3 presenting MMAF phenotype, showing (c) bent, 

(d) short, (e) coiled, (f) irregular, and (g) absent. Spermatozoa from 
patient IV:4 presenting MMAF phenotype showing (h) bent, (i) short, 
(j) coiled, (k) irregular, and (l) absent. Scale bars 10  µm. C Statis-
tical analysis of anomalies of sperm flagella from patient IV:3, IV:4 
and control IV:5. D Scanning electron microscopy analysis (a) sperm 
from control IV:5, showing normal morphology. Sperm pictures from 
patient IV:3 indicated MMAF phenotype, showing (b) absent, (c) 
coiled, (d) short, and (e) bent flagella
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variants within genes that may be important in spermato-
genesis based on FertilityOnline or literature were included. 
Following a detailed WES analysis strategy, a novel variant 
in NPHP4 was identified as the only potentially pathogenic 
variant in this family (c.1490C > G, p.P497R) (Figure S1). 
Subsequently, Sanger sequencing of further confirmed the 
identified mutation, which recessively co-segregating with 
the infertility phenotype in this family (Fig. 2B).

Pathogenicity of the novel mutation and its effect 
on the structure and function of NPHP4

The homozygous mutation at position 497 in exon 12 of 
NPHP4 results in the replacement of the residue proline 
(P) with arginine (R) (Fig. 2A). To assess the pathogenic-
ity of this missense mutation (NPHP4P.497P > R), eleven 
different bioinformatics tools were used, including Poly-
Phen-1, PolyPhen-2, PROVEAN, SIFT, Align GV-GD, 
FATHMM, PhD-SNP, MAPP, Mutation Assessor, SNAP-
2, and Mutation Taster. Nine of these tools predicted the 
mutation to be pathogenic, while one predicted a medium 
effect on NPHP4, as shown in Table S2. The multiple 
sequence alignment results showed that the altered amino 
acid (asparagine) is conserved among different species, 
indicating the functional importance of the  NPHP4P497R 
mutation site (Fig. 2C). As approximately 70 to 80% of dis-
ease-causing variants in amino acid sequences are found in 
the secondary protein structure, it is crucial to understand 
any changes in the tertiary structure of the protein caused 
by the NPHP4P497R mutation. Therefore, the effect of 
this mutation on the protein structure was analyzed using 
HOPE and FoldX. The predicted structure of the mutant 
protein differed from that of the wild-type protein, sug-
gesting that the identified mutation causes abnormalities in 
the structure and conservation of the NPHP4 gene (Fig. 3). 
Additionally, the impact of the proline-to-arginine muta-
tion at position 497 was analyzed (Fig. 3C). Each amino 
acid has unique properties such as size, charge, and hydro-
phobicity. The original wild-type residue and the newly 
introduced mutant residue often differ in these properties. 
The mutant protein’s structure was predicted to be altered 
compared to that of the wild-type protein, indicating that 
the identified mutation caused abnormalities in the NPHP4 
protein’s structure and conservation. The wild-type resi-
due had a neutral charge, while the mutant residue had a 
positive charge. The hydrophobicity of the wild-type and 
mutant residues differed, with the wild-type residue being 
more hydrophobic than the mutant residue. Hydrophobic 
interactions either in the protein core or on the surface 
could be lost due to this change. Prolines are known to have 
a rigid structure that sometimes forces the backbone into 
a specific conformation, which could be required at this 
position. The  NPHP4P497R mutation may change a proline 

with such a function into another residue, thereby disturb-
ing the local structure. The mutant residue is larger, which 
may lead to bumps, and prolines are known to be rigid and 
therefore induce a special backbone conformation, which 
may be required at this position. The mutation can disturb 
this special conformation and cause repulsion of ligands or 
other residues with the same charge. Furthermore, we used 
the Mutant Pro and I-Mutant tools to analyze the effect 
of the mutation on the structural ability of the NPHP4 
protein and predicted a decrease in the protein’s stability 
due to the p.P497R mutation (Table S3). Therefore, the 
p.P497R mutation was possibly pathogenic and responsible 
for infertility in the patients. The results of the analyses 
suggest an essential role of this amino acid in the struc-
ture and function of the NPHP4 protein. Figure 3B shows 
the predicted aggregating regions in the protein structure. 
The empirical protein design force field FoldX was used to 
calculate the difference in the free energy of the mutation 
(ddG, delta delta G). The mutation from Pro to Arg at posi-
tion 497 resulted in a ddG of 0.89 kcal/mol, indicating that 
the mutation has a detrimental effect on the stability of the 
protein, as illustrated in Fig. 3. In addition, we identified 
potential aggregating regions in the protein structure using 
the TANGO algorithm (Fig. 3B). Aggregating regions are 
regions of the protein that have a high propensity to aggre-
gate, which can lead to the formation of insoluble protein 
aggregates and can cause protein misfolding and disease.

MMAF phenotype with loss of central pair confirmed 
by electron microscopy of patient spermatozoa

The notion that sperm mobility is impaired or reduced is 
typically accompanied by an abnormal morphology of the 
sperm. Light microscopy examination of patients’ sperma-
tozoa demonstrated that most of the spermatozoa (around 
90%) had defective sperm flagella, such as missing, absent, 
or coiling with an asthenozoospermia phenotype. A scan-
ning electron microscope was used to examine the sper-
matozoa of P1: IV:3 and the control brother IV:5. SEM 
analysis showed flagellar defects (Fig. 1D) that are com-
patible with Pap staining analysis and are consistent with 
astheno-ozoospermia. Additionally, we examined the ultra-
structure of spermatozoa from the patients by examining 
TEM micrographs. Axonemes with 9 + 0 arrangements of 
microtubules were observed in patients (P1:IV:3) as com-
pared with fertile controls, where the central pair was absent 
in mid-piece, principal, and endpiece sections (Fig. 4A). As 
a result of expanding our observation for a detailed analysis, 
we found that 100% of mid-piece sections, 89% of principal 
piece sections, and 92% of endpiece sections were abnor-
mal (Fig. 4C). In summary, our study revealed that NPHP4 
(c.1490C > G, p.P497R) is associated with central pair loss 
and MMAF in patients with asthenozoospermia.
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Fig. 2  Identification of NPHP4 c.1490C > G homozygous patho-
genic variant that co-segregated in both patients. A The identified 
NPHP4 mutation resulted in the c.1490C > G transversion in the cod-
ing sequence. This mutation (p.P497R) resulted in the replacement of 
proline “P” with arginine “R” at position 497. This (p.P497R) muta-
tion is located in the proline rich domain of NPHP4 protein. B Sanger 
sequencing confirmed two infertile siblings (IV:3 and IV:4) contained 
a homozygous missense mutation (p.P497R) in NPHP4. Both par-

ents (III:1 and III:2) and patients brother IV:5 carried heterozygous 
NPHP4 mutation. Brother (IV:2) is wild type to the identified muta-
tion. Red box showing the position of mutated nucleotides. C Mul-
tiple sequence alignment of the NPHP4 protein across different spe-
cies, yellow color arrow head indicates the position of evolutionary 
conserved mutant residue p.P497R in the patients (IV:3 and IV:4). 
NAT, N-Acyltransferase; MSP, Major sperm protein
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Fig. 3  Effect of mutation on NPHP4 stability Comparison of wild 
type NPHP4 protein structure with its mutant forms. A The structure 
of wild type NPHP4 protein and its mutant having mutation from 
proline to arginine at position 151. B Molecular visualization of the 

WT (left) and variant (right) amino acid. The residues colored in red 
represents the wild type [52] and variant residue (ARG). C The back-
bone, which is the same for each amino acid, is colored red. The side 
chain, which is unique for each amino acid, is colored black
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Discussion

Several factors contribute directly to male infertility, includ-
ing low sperm counts, decreased motility, and abnormal 

sperm morphology [12, 62]. Approximately 80% of male 
infertility cases are caused by impaired sperm motility, 
which is an important factor in normal fertilization. Also, 
sperm morphology plays an imperative role in sperm 

Fig. 4  Ultrastructure of control and patient spermatozoa carry-
ing homozygous missense NPHP4 variant. A Transmission electron 
microscopy (TEM) analysis of sperm tail (a–c) cross-sections of a 
sperm flagellum from patient IV:3 shows a 9 + 0 axoneme lacking 
the CP (red asterisk) in (a) mid piece, (b) principal piece, and (c) 
end piece. (d–f) Cross-sections of the sperm flagellum from a control 
individual IV:5. (d) mid piece, (e) principal piece, and (f) end piece. 
The typical axoneme composed of nine doublets of microtubules 

(DMTs) organized circularly around a central-pair complex (CPC) of 
microtubules (9 + 2). This axoneme is composed of (7) outer dense 
fibers (ODFs) and fibrous sheath [18] containing (2) longitudinal 
columns (LCs) attached by circumferential ribs (CRs). Scale bars 
represent 200 nm [66]. B The number of abnormal cross-sections in 
patient IV:3 and control individual IV:5. C Number of cross-sections 
of mid piece, principal piece and end piece with Absence of central 
pair
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movement, and a problem with sperm morphology contrib-
utes significantly to male infertility [63]. It was found that 
abnormalities in the morphology of spermatozoa resulted 
in wide ranges of phenotypes affecting the head, neck, mid 
piece, or tail of the spermatozoa. The phenotype of multiple 
morphological abnormalities of the sperm flagella (MMAF) 
corresponds to morphological abnormalities of the sperm 
flagellum, such as short, bent, coiled, irregular, or absent 
flagella [8, 64]. Almost all cases of MMAF are accompanied 
by visible ultrastructural defects and/or axonemal disorgani-
zation, resulting in aberrant morphology of sperm flagella 
that further effects motility or even cause sperm immobility 
[8, 65]. WES is widely used to identify the disease-causing 
mutations of human infertility due to the reduced costs of 
next-generation sequencing. In the present study, variants of 
infertile cases were filtered based on their segregation pat-
terns within the families. Thus, the current study identified 
a genetic mutation c.1490C > G (p.P497R) in the NPHP4 
gene in a consanguineous Pakistani family suffering from 
male infertility due to MMAF, which was predicted to be 
deleterious by several in silico software [66].

Mollet et al. reported previously that NPHP4 mutations 
in patients with NPHP represent the leading cause of kid-
ney disease inherited in an autosomal recessive pattern and 
may also be associated with neurological abnormalities 
and/or vision disorders [17]. With the identification of the 
c.1490C > G transversion mutation of NPHP4 in two sib-
lings with MMAF phenotypes, this study expands the range 
of phenotypes associated with NPHP4 variants.

Knockdown of NPHP4 expression is associated with 
abnormal ciliogenesis and altered localization of ciliary pro-
teins [67, 68]. Similarly, a truncating mutation induced by 
N-ethyl-N-nitrosourea (ENU) was shown to recapitulate the 
phenotype observed in 10% of nephronophthisis patients and 
surprise to everyone, it also displayed a unique reproductive 
phenotype not previously observed in humans. Mutant mice 
were infertile, and their sperm count and motility were sig-
nificantly reduced. In particular, sperms from these mutant 
mice were not capable of fertilizing eggs in vitro, indicat-
ing that the cause of infertility extends beyond a reduced 
count and motility of sperms but also to abnormal sperm 
morphology [69]. Therefore, loss of function of Nphp4 was 
strongly suggested to be responsible for reproductive barri-
ers in mice, but the relationship between NPHP4 variants 
and human male infertility must be explored. In our study 
patients, we have also observed a low sperm count and low 
sperm motility as well as an increased frequency of morpho-
logical abnormalities, predominantly multiple morphologi-
cal abnormalities of sperm flagella (MMAF).

A study performed by Alazami et al. recently reported a 
homozygous truncated mutation in NPHP4 (c.2044C > T, 
p.R682*) in a family with cerebello-oculo-renal syndrome 
and infertility in males. Analysis of sperm samples from 

patients revealed a highly viscous, low-volume sample 
containing few motile sperms and significant morpho-
logical abnormalities [18]. In contrast to these reports in 
mice and humans, our patients did not exhibit any other 
disease-related symptoms, such as nephronophthisis or reti-
nal abnormalities, except mild proteinuria on routine urine 
examination. In addition to the decreased sperm count and 
motility, SEM and TEM analyses of sperm from NPHP4 
mutant patients revealed sperm flagella anomalies, particu-
larly the absence of a central pair (9 + 0) of microtubules, 
which might be responsible for the MMAF phenotype. This 
study provides further support for the hypothesis that disor-
ganization of the central pair of microtubules of the axoneme 
is the major factor giving rise to the MMAF phenotype, as 
this type of abnormality has previously been described as 
the most frequent ultrastructural abnormality observed in 
genetically uncharacterized MMAF patients [7, 70].

As a conclusion, we report the occurrence of the NPHP4 
c.1490C > G (p.P497R) mutation in a consanguineous 
Pakistani family with an asthenozoospermia phenotype, 
expanding the phenotypic spectrum of this mutation. This 
study contributes to our understanding of sperm flagellar 
abnormalities, including their etiology and pathophysiology 
associated with MMAF, and provides useful information for 
genetic counseling and the diagnosis of male infertility.
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