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Haplotype-aware modeling of cis-regulatory
effects highlights the gaps remaining in
eQTL data

Nava Ehsan 1, Bence M. Kotis1, Stephane E. Castel2,3, Eric J. Song1,
Nicholas Mancuso 4 & Pejman Mohammadi 1,5,6,7

Expression Quantitative Trait Loci (eQTLs) are critical to understanding the
mechanisms underlying disease-associated genomic loci. Nearly all protein-
coding genes in the human genome have been associated with one or more
eQTLs. Here we introduce amulti-variant generalization of allelic Fold Change
(aFC), aFC-n, to enable quantification of the cis-regulatory effects in multi-
eQTL genes under the assumption that all eQTLs are known and conditionally
independent. Applying aFC-n to 458,465 eQTLs in the Genotype-Tissue
Expression (GTEx) project data, we demonstrate significant improvements in
accuracy over the original model in estimating the eQTL effect sizes and in
predicting genetically regulated gene expression over the current tools. We
characterize some of the empirical properties of the eQTL data and use this
framework to assess the current state of eQTL data in terms of characterizing
cis-regulatory landscape in individual genomes.Notably, we show that 77.4%of
the genes with an allelic imbalance in a sample show 0.5 log2 fold or more of
residual imbalance after accounting for the eQTL data underlining the
remaining gap in characterizing regulatory landscape in individual genomes.
We further contrast this gap across tissue types, and ancestry backgrounds to
identify its correlates and guide future studies.

Genetic variation in the regulatory genomeplays amajor role in human
phenotypic variability and disease susceptibility1. Large-scale expres-
sion quantitative trait loci (eQTL) mapping efforts in the past decade
have identified thousands of common regulatory variants in the
human genome that affect gene regulation2–7. These data are instru-
mental for understanding dosage-driven sources of phenotypic varia-
tion across individuals and interpreting the statistical signals from trait
associated single nucleotide polymorphisms (SNPs) in genome-wide
association studies (GWAS)8–12. For a given eQTL variant the regulatory
effect size can be measured by allelic fold change (aFC), which is the
fold difference between the expression of haplotypes carrying the

reference and the alternative allele13. The aFC estimates quantify
genetic effects on gene expression in an intuitive way and that is
consistent with effect sizes from other assays such as allele-specific
expression analysis, differential expression analysis, and RT-qPCR, and
is mechanistically consistent with cis-regulation. Besides biological
interpretability, aFC estimates have severalmathematically convenient
properties that facilitate downstream analysis, and as such, are used in
a wide range of applications3,4,11,14–19.

With the increasing sample size of eQTL transcriptome profiling
studies, independent cis-eQTL mapping strategies have been devel-
oped to identify multiple eQTL signals for each gene in a
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population3,20–22. Notably, the Genotype-Tissue Expression (GTEx)
consortium recently used a stepwise regression strategy to map con-
ditionally independent cis-eQTL signals in 15,201 RNA-sequencing
samples of 838 post-mortem donors across 49 tissue sites3. This ana-
lysis demonstrated that virtually all protein-coding genes are affected
by common genetic regulatory variants with a considerable level of
allelic heterogeneity (Fig. 1A). With larger eQTL studies already
underway, it is expected that independent cis-eQTL signals will be
mapped for an increasing number of genes7,23,24 (Supplementary Fig. 1).
However, there are currently no methods available for estimating the
aFC effect sizes for multiple independent eQTLs.

Here we introduce a multi-eQTL generalization of the aFC
method, aFC-n, for estimating regulatory effect sizes from indepen-
dent eQTL mapping studies. We benchmark the effect size estimates
by aFC-n against those used in the GTEx v8 release3,13,14 and

characterize their empirical properties and biological correlates. We
assess the completeness of eQTL data in terms of characterizing cis-
regulatory landscape in individual genomes and contrast it across
tissue types, and ancestry backgrounds to identify its correlates and
guide future studies. Finally, we provide tools and resources to esti-
mate effect sizes and impute gene and haplotype-specific expression
using conditional eQTL data.

Results
Multi-variant generalization of allelic effects
Under the aFCmodel, the expression associatedwith the reference (eR)
and the alternative (eA) eQTL alleles in an individual are determined by
a shared basal gene expression, eB, and allele-specific regulatory
activities, kR, and kA such that eR = eBkR, and eA = eBkA. The total gene
expression in an individual is the sum of the two allele-specific

Fig. 1 | aFC-n improves the accuracy of eQTL effect size estimates compared to
aFC-1. A Schematic representation of aFC-n with N cis-eQTLs (v1,:::,vN). Haplotypes
h1 and h2, share basal expression level eB, and eh1 and eh2 are the haplotypic
expression terms. The effect size estimates from aFC-1 and aFC-n for adipose
subcutaneous tissue, for genes with a single ((B); n = 8509), and multiple ((C);
n = 17,166) eQTLs. R denotes Pearson correlation coefficient, Deming regression fit
is shown in green, and the red line is (y = x). Prediction accuracy for gene expression
((D); n = 103), and allelic imbalance ((E); n = 80) in genes with five eQTLs as a
function of the number of eQTLs considered. eQTLs are included in the order they
weremapped. Variance explainedby eQTLs in gene expression ((F); n = 10,358) and

allelic imbalance ((G); n = 8495). The number of genes varies across different bins.
H Variance explained by eQTLs in gene expression aggregated across 49 GTEx
tissues (n = 462,449). I The prediction accuracy for genes associated with two
independent eQTLs as a function of linkage disequilibrium (LD). The regulatory
variants are filtered to address eQTLs with LD≥0.05 (24,930 variant-pair). The
x-axis represents the median LD, among 30 equally sized bins and the y-axis
represents the median R2 for the genes within each bin. The n value denotes the
number of genes. In (D,H) error bars represent bootstrap 95% confidence intervals
of the median.
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expressions. The regulatory effect size, aFC, is δA,R =
kA
kR
, which for a

single eQTL, can be calculated using the previously published aFC
quantification tool, hereafter referred to as aFC-113. Here, we introduce
aFC-n generalizing the model to a haplotype with N independent
eQTLs. The allele-specific expression in aFC-n is ei1 :::iN = eR

QN
n= 1δ

ðnÞ
in ,R

,
where in and δðnÞ

in ,R
are the present allele, and the associated aFC for the

nth eQTL, respectively, and eR is the expression of a haplotype carrying
reference allele for all eQTLs. We infer the maximum likelihood para-
meters for this model under log-normal assumption to estimate aFC
associated with all independent eQTLs affecting a gene using phased
genotypes and gene expression counts (“Methods”).

The aFC-n improves the accuracy of the cis-regulatory effect size
estimates
To validate aFC-n, we used the empirical distribution of the adipose
subcutaneous tissue in GTEx v8 eQTL data to simulate genetic
regulatory effects in 15,167 genes with 1 to 14 eQTLs (Methods). In
this simulation study, aFC-n consistently estimated the effect size
accurately across all genes, when all eQTL variants of a gene were
included in the model (Supplementary Fig. 2). Applying aFC-n to
GTEx project data v8, we estimated regulatory effect sizes for a total
of 458,465 conditionally independent eQTLs from 49 tissues (Sup-
plementary Data 1; Supplementary Fig. 3). As expected, the effect
size estimates from aFC-n were well correlated with the current
effect size estimates from GTEx v8 eQTLs that were calculated using
aFC-1. The correlation ranges from 89 to 98% across tissues for
genes with a single eQTL where the two methods are mathemati-
cally identical, and from 80%-92% for genes with multiple eQTLs
(Fig. 1B, C). We used adipose subcutaneous tissue data to compare
the accuracy of the aFC estimates from the two methods in pre-
dicting gene expression and in predicting allele-specific expression
across GTEx individuals (“Methods”). Since both methods are
agnostic to allele-specific expression data, using allelic imbalance
prediction accuracy allows us to evaluate the quality of the effect
size estimates in an orthogonal way13. We compared the predicted
gene expressions from each set of effect size estimates with the
observed gene expression after log-transformation and PEER
correction3. The predicted allelic imbalance was benchmarked
against the observed logit-transformed haplotype-aggregated alle-
lic expression generated by phASER14,25. Using genes that each have
five conditionally independent eQTLs, we predicted gene and allelic
expression five times each time including the effect size of one
additional eQTL in the prediction. For the effect size estimates from
aFC-1, we observed that including additional eQTLs leads to limited
improvement in gene expression prediction accuracy and no
increase in the prediction accuracy for allelic imbalance beyond
what is achievable by accounting for the top eQTL genotype only. In
contrast, the new effect size estimates by aFC-n delivered pro-
gressively better predictions as more eQTLs were included in the
prediction of both gene and allelic expression (Fig. 1D, E). Next, we
used all genes with eQTLs to compare the overall prediction accu-
racy when all known eQTLs are considered for each gene. The
accuracy gap between the predictions from aFC-n and aFC-1 was
widened progressively in genes with more known eQTLs and overall
the predictions were significantly more accurate for multi-eQTL
genes (ranksum test p-value 3.28×10−27 for gene expression, and
5.07 × 10−8 for allelic imbalance) (Fig. 1F, G). We obtained a similar
pattern for total expression prediction in 49 GTEx tissues (Fig. 1H;
Supplementary Fig. 4; Supplementary Fig. 5).

Different conditionally independent eQTLs for a gene are reg-
ularly in linkage disequilibrium (LD). To further explore the effect of
linkagedisequilibrium (LD) on theperformanceof the aFC-1 and aFC-n,
we simulated effect sizes for 2-eQTL genes with LD ranging from 0 to
0.9 (“Methods”). When eQTL variants within a gene are correlated,
aFC-1 would return biased estimates which leads to a lower

performance for effect size estimation and prediction accuracy in
higher LD, while aFC-n showed consistent performance at all LD values
(Supplementary Fig. 6A, B). Moreover, for 2-eQTL genes in GTEx data,
the prediction accuracy gap between aFC-n and aFC-1 was widened as
eQTLs of a gene are in higher LD (Fig. 1I; Supplementary Fig. 6C),
indicating that considering the regulatory effects of all eQTLs simul-
taneously, as is done in aFC-n, is critical for accurate estimation of
regulatory effect in presence of linkage disequilibriumbetween eQTLs.

Empirical properties of the estimated effect sizes
Next, we used aFC estimates from adipose subcutaneous tissue to
characterize the regulatory effects of the independent eQTLs identi-
fied in GTEx project data. We found that 15.2% of the 25,675 indepen-
dent eQTLs identified in adipose tissue altered the expression of a
haplotype by more than twofold (Supplementary Fig. 7A). In addition,
across all genes, secondary eQTLs (eQTLs were ranked with the order
theyweremapped in stepwise regression3) tended tohave lowerminor
allele frequencies (Supplementary Fig. 7B) and larger regulatory
effects (Fig. 2A, B). However, we found that the eQTLs in genes with
many eQTLs tended to be stronger in general (Fig. 2C). Accounting for
this, we found that for a given gene the relative effect size of the eQTLs
with respect to the average eQTL decreased with the order they were
mapped (Fig. 2D).

Next, we compared the cis-regulatory effects in eQTL and ASE
data. We found that aFC effect sizes estimated from eQTL data were
highly consistent with the median observed allelic imbalance among
individuals that are heterozygous for the top eQTL, with sufficient >10
heterozygous individuals and minimum read coverage 8, (rank corr.
0.76±0.01, Deming regression slope 0.9; Fig. 2E). We further found
that the concordance with the ASE data was decreased for secondary
eQTLs (Fig. 2F) partly due to the decreased minor allele frequency
(Fig. 2A; Supplementary Fig. 7B), and partly due to the drop in haplo-
type phasing accuracy14,25.

The aFC-n improves the prediction of genetically regulated gene
expression
Next, we sought to demonstrate the application of aFC-n in predicting
gene expression levels. Genetically driven gene expression has been
widely used to identify transcriptome-mediated association signals in
complex traits10,26. We used GTEx v6p data from 316 adipose samples
to build a predictive model using 4696 conditionally independent
eQTLs spanning over 3970 protein coding genes (“Methods”) and
evaluated the performance on 265 unseen samples exclusive to GTEx
v8 release. For predicting expression using the aFC model we used
independent eQTLs derived from GTEx v6p data (mean 1.2 eQTLs per
gene). We used elastic net (enet)27 and Sum-of-Single-Effects (SuSiE)28,
two powerful and robustmethods used for predicting gene expression
from genetic data to benchmark the accuracy of predicted gene
expressions from eQTL effect sizes (“Methods”) and for that, we used
(1) all genetic variants in the 1Mb window around each gene meeting
our QC criteria (Fig. 3, Supplementary Fig. 8A, B), and (2) conditionally
independent eQTLs for a gene (Supplementary Fig. 8C, D). Restricting
the comparison to genes with cis-heritability p value < 0.01 present in
eQTL data, we found that the prediction performance of the eQTL
genotypes in the aFC model was higher than the two state-of-the-art
methods in unseen samples.

Consistent with previous reports29–31, we observed a notable
reduction in prediction accuracy among African American ancestry
individuals in all three models (Supplementary Fig. 9A). To alleviate
this issue, we devised a hierarchical extension of the aFC-n model to
allow ancestry-specific aFC estimates when supported by data (Meth-
ods). We found that the ancestry-specific signals identified by this
model were generally false positives driven by low sample sizes and
therefore failing to diminish the performance gap between different
ancestry groups (Supplementary Fig. 9B).
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Majority of the observed allelic imbalance in individual samples
is not described by the current eQTL data
Next, we sought to determine the fraction of genes where the cis-
regulatory landscape is adequately characterized at an individual
level by their genotype at known eQTLs. We used the observed
allelic imbalance in a gene as the ground truth under the rationale

that the ASE data is the net regulatory effect of all heterozygous cis-
acting variants affecting a gene—including those that are not known
eQTLs. Furthermore, allelic imbalance is almost entirely driven by
genetic factors, with heritability estimates above 85%32. Specifically,
for each gene in an individual, we checked if the allelic imbalance is
consistent with predictions from the eQTL data and identified cases

Fig. 3 | The aFC-n improves the predictive accuracy of genetically regulated
geneexpression.Comparingpredictedgene expression from the aFC-n, elasticnet
(enet)27 and SuSiE28 models, using out of sample data. For SuSiE and enet we con-
sidered genes with significant expression cis-heritability. For aFC-n we considered
the model for genes with eQTLs. A The aFC-nmodel outperforms SuSiE and elastic
net for 1923genes sharedby allmodels (subpanel a) in adipose subcutaneous tissue
(median R2 is 0.073 for the aFC-n model and 0.063 for the SuSiE predictive model;
The two-sided Wilcoxon signed-rank test p value: 1.8 × 10−47). For the genes not
shared between models, the performance is much lower for all models (subpanels

b, c). Error bars represent 95% bootstrap confidence intervals of themedian. B The
distribution of themedian R2 relative to themedian of the R2 for aFC-nmodel for 47
tissues for shared genes (two-sided wilcoxon signed rank test p value = 2.6 × 10−9

and 2.4 × 10−9,comparing aFC-n with SuSie and enet, respectively). Comparing aFC-
n with SuSiE and elastic net prediction models, Wilcoxon signed-rank tests are
significant (FDR<0.05) for 46 and 47 tissues, respectively. The p value annotation:
****p ≤ 10–4. Boxplots represent first quartile, median, and third quartiles. Whiskers
represent Q1–1.5* interquartile range (IQR) and, Q3 + 1.5*IQR.

Fig. 2 | Empiricalpropertiesof conditionally independent eQTLeffect sizes.The
absolute effect size as a function of eQTL minor allele frequency (A) and the order
atwhich it was identified for a gene (eQTL rank) (B) in adipose subcutaneous tissue.
C Average eQTL effect size as a function of the total number of eQTLs associated
with a gene. D The eQTL effect size relative to the average eQTL effect for a given
gene as a function of the eQTL rank. (A–D n = 25,682). E The eQTL effect sizes as

estimatedby gene expression andpopulation ASEdata independently. TheDeming
regression fit is shown in green, and the red line is (y = x). F The correlation with the
ASE data progressively decreased for secondary eQTLs (n = 25,682). Error bars
represent 95% bootstrap confidence intervals of the median. The n value denotes
the number of genes.
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where we observed excess imbalance beyond 0.5 and 1 aFC
(“Methods”). We performed power analysis to account for the
confounding effect of limited statistical power in detecting an
excess allelic imbalance in low expressed genes (Supplementary
Fig. 10). Looking at the adipose subcutaneous tissue samples we
found that the number of genes with excess allelic imbalance initi-
ally increased but then it dropped progressively with increased
statistical power at the right end of the axis (Fig. 4A). The unex-
pected drop in spite of the high statistical power to detect allelic

imbalance in these genes is due to a general tendency in highly
expressed genes to be intolerant of genetic variation (Supplemen-
tary Fig. 10D, E)13,15,33. We limited our analysis to protein-coding
genes expressed >1TPM and >80% statistical power to identify 0.5-
fold resolution in log2 aFC scale. We found that on average between
3.2% (Brain - Frontal Cortex (BA9)) and 8.6% (Liver) of the con-
sidered genes across different tissues in an individual showed
excess allelic imbalance beyond what is expected from the geno-
types at known eQTL variants. This constituted on average a 22.6%

Fig. 4 | Individual-level cis-regulatory landscape captured by eQTL data. The
percentage of genes with an excess allelic imbalance after accounting for known
eQTLs asa functionofpower in adipose subcutaneous (A) (seeSupplementaryData
2 for detailed statistics for each individual), and for genes with over 80% power
across all tissue samples (B). Panel (B) shows the fraction of genes with half a fold
excess allelic imbalance with the red bars representing the baseline case where no
eQTL data is considered (see Supplementary Data 1, and 3 for tissue names and the
number of samples/genes per tissue, respectively). The Error bars represent
bootstrap 95% confidence intervals.C The relative decrease in the number of genes
with excess allelic imbalance after incorporating eQTL data (eQTL gain) as a
function of the tissue sample size.D Enrichment of rare variants (5% FDR) increased

with the eQTL gain across tissues. E, F The proportion of genes with excess allelic
imbalance after incorporating eQTLdata (green bars inB) did not show correlation
with the tissue sample size (E) but was highly correlated with the median expected
genetic variation in gene expression in a given tissue. SDG =

ffiffiffiffiffiffiffi
VG

p
where VG is esti-

mated by ANEVA15. For panels (C–F), linear regression fit is shown in black dashed
line along with bootstrap 95% confidence intervals in gray shades. The ρ and p
values represent the two-sided spearman correlation coefficient and associated p-
value, respectively. Boxplot in (A) represent first quartile, median, and third quar-
tiles. Whiskers represent Q1–1.5* interquartile range (IQR) and, Q3+ 1.5*IQR. Out-
liers are hidden for ease of viewing.
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decrease from a baseline scenario where no eQTL knowledge was
available and both haplotypes were expected to be expressed
equally in all genes (Fig. 4B). This decrease represents the gene
regulatory knowledge gained by the GTEx consortium eQTL analy-
sis. As expected, the gain was highly correlated to the sample size of
the tissues as more cis-regulatory variants were identified (Fig. 4C;
Supplementary Fig. 11). The enrichment of rare variants among
genes with excess allelic imbalance (5% FDR) also increased with the
gain across tissues, confirming that with increased statistical power
the eQTL model better captures the common variant regulatory
effects and the excess allelic effects by rare variants (Fig. 4D).
However, we found that in contrast to the relative gain, the absolute
fraction of genes with an excess allelic imbalance in each tissue was
not correlated with the sample size used in the eQTL analysis
(Fig. 4E) but instead was correlated with the median amount of
heritable variation in gene expression (VG) in each tissue as esti-
mated by the analysis of expression variation (ANEVA)15 (Fig. 4F).

Matching sample counts alone will not close the accuracy gap in
African ancestry individuals
GTEx data includesmostly individuals of European descent3. To assess
how well the cis-regulatory landscape of the genes is captured across
different ancestry backgrounds, we further stratified the analysis by
self-reported ancestry for each GTEx donor. Looking at the adipose
subcutaneous tissue samples, we found that the percentage of genes
with excess allelic imbalance was significantly higher among African
Americans suggesting that the eQTL data does not capture the cis-
regulatory landscape in African ancestry individuals as accurately
(ranksum test p value = 2.3 × 10−25 for genes with 80% power; Fig. 5A).
Looking at the tenmost sampled tissues,weobserved that thegaindue
to eQTL data is systematically lower in the African ancestry individuals
in line with the lower sample sizes (Fig. 5B). To exclude the effect of
sample size, we repeated the eQTLmapping using the samenumber of
European and African ancestry individuals for each tissue. We found
that the number of genes with excess allelic imbalance was still higher
in the African ancestry individuals (Wilcoxon signed-rank test, p
value = 0.002; Fig. 5C). While the number of samples used in the eQTL
analysis was identical for both ancestry groups the remaining gap is
likely due to a higher level of regulatory variation and/or referencebias
in ASE data in the African American population (Fig. 5C; Supplemen-
tary Fig. 12) highlighting additional obstacles that impede analysis of
non-European ancestry genomes.

Discussion
With the increasing size of the eQTL studies, many genes are asso-
ciated with multiple eQTL variants. Here we introduced a new multi-
variant method, aFC-n, to estimate the cis-regulatory effect size for
multiple independent eQTLs associatedwith a gene. Applying aFC-n to
GTEx v8 project data we showed that the resulting eQTL effect sizes
are significantly more accurate than the currently available estimates
in predicting the cis-genetic effect on expression, and ASE data. Using
these effect sizes to predict allelic imbalance, we showed that the
current eQTL data is highly consistent with the observed allelic
imbalance at the population level.

We showed that aFC-n provides accurate estimates of cis-
regulatory effects when all regulatory variants affecting a gene are
known and conditionally independent. Violation of these assumptions
can affect the quality of the results. Specifically, we demonstrated how
the LD between two eQTLs affecting the same gene can systematically
erode the performance of the aFC-1. While this experiment demon-
strates the strength of aFC-n by simultaneously estimating all multiple
effect sizes, it also highlights its limitation in cases where one or more
eQTLs are not included in the model. Specifically, when a gene is
affected by other eQTL beyond what is included in the model, the
effect size estimateswill be systematically biased by the contaminating
effect of the LD. Furthermore, aFC-n assumes that eQTL genotypes are
linearly independent which is a critical condition for mathematical
identifiability of the effect sizes and as such inherently satisfied in
conditional eQTL datasets. However, the general application of aFC-n
model on an arbitrary set of SNPs will require the addition of appro-
priate shrinkage penalties to enable parameter inference. Moreover,
aFC-n assumes biologically independent among eQTLs in that it does
not allow for epistatic interactions. While there are many biological
scenarios under which two regulatory variants can have nonadditive
effects, we have previously shown that this assumption is rarely vio-
lated for the eQTL variants identified by stepwise regression
approach3.

The extent of regulatory variation represented by eQTL data
has been previously explored implicitly by heritability analysis32,
and by quantifying the diminishing number of identified eQTLs at a
certain sample size3,4. A comprehensive catalog of the eQTLs is
critical for identifying dosage-driven phenotypic variation and
GWAS interpretation8,9,11. Here we employed the aFC framework to
explicitly assess the eQTL data in representing individual-level
regulatory landscape using ASE data. We found that the current

Fig. 5 | Self-reported ancestry, and the accuracy gap in capturing individual-
level cis-regulatory landscape by eQTL data. The percentage of genes with an
excess allelic imbalance by self-reported ancestry after accounting for known
eQTLs as a function of power in adipose subcutaneous (A) (see Supplementary
Data 4 for detailed statistics for each individual), and for genes with over 80%
power across ten GTEx tissues with largest sample sizes (B, C). AA and EA denote
African American, and European American individuals, respectively. The eQTL data

used in panels (A, B) is from the official GTEx release, while for panel (C) the eQTLs
were mapped using a subset of the samples with equal number of AA and EA
individuals. Error bars in (B, C) represent 95% bootstrap confidence intervals of the
median (see Supplementary Data 5 and Supplementary Data 6 for number of
analyzed samples/genes per tissue/population). Boxplots in panel (A) represent
first quartile, median, and third quartiles. Whiskers represent Q1–1.5* interquartile
range (IQR) and, Q3 + 1.5*IQR. Outliers are hidden for ease of viewing.
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eQTL data from GTEx adequately represented the net cis-regulatory
effects on the majority of the gene haplotypes across tissues.
However, this is mainly due to the fact that most genes in a given
sample do not show significant allelic imbalance. Controlling for the
statistical power and at half a log2 fold resolution, we found that just
over a fifth of the genes with allelic imbalance in a sample is
accounted by the current eQTL data; indicating that a majority of
cis-regulatory genetic variants, likely with low minor allele fre-
quencies, are yet to be mapped. As expected, and in line with the
increased power in eQTL mapping, the tissue types with larger
sample sizes in GTEx data tended to show a higher gain in describing
genes with allelic imbalance. However, the amount of residual reg-
ulatory variation across samples of a given tissue type was not
correlated with the sample size, instead it was strongly correlated
with the total amount of genetic regulatory variation in a given
tissue as estimated by ANEVA. Considering that tissue samples are
from the same individuals, it is implausible that this observation
would be a technical artifact driven by reference bias in ASE data.
We postulate that the adequate sample size for an eQTL study is not
a fixed number and ultimately depends on the specific biological
context being studied.

A similar analysis across European and African American indivi-
duals defined by self-reported ancestry demonstrated that the GTEx
eQTL data offers lower gains in describing allelic imbalance in African
American individuals and is overall less informative. This general issue
is well recognized in the field and is in line with the fact that most
individuals included in the GTEx project are of European ancestry3,34,35.
However, we found that the performance gap between European and
African Americans decreased but did not entirely disappear evenwhen
the sample sizes were matched. This observation was consistent with
the higher amount of variation in ASE data as measured by ANEVA and
in line with the extensive genomic diversity in Africa. However, unlike
the cross-tissue analysis, we cannot rule out a contribution of technical
artifacts due to reference bias. Nevertheless, the de facto performance
gap, which goes beyond the sample size effects, suggest that reaching
the same predictive accuracy in analyzing African American genomes
will likely entail not only improvement in methods and references but
also the inclusion of a relatively higher number of samples to enable
characterization of an inherently more diverse and admixed
population.

Finally, while haplotype-aware eQTLmappingmethods have been
proposed36–38, genome phasing quality remains a bottleneck in cap-
turing the regulatory landscape in human haplotypes. We expect long-
range phasing of the genomes beyond what is currently achievable
using short-read sequencing25 to be a valuable addition to the refer-
ence transcriptomic cohorts such as GTEx, and TOPMed23.
Transcriptome-wide association studies utilize genetically predicted
gene expression to identify phenotypic variations that are likely
mediated through genetically driven gene dosage. Our method is
distinct from the current approaches in that it uses a mechanistic
method to predict gene expression in a haplotype-specific fashion
using a relatively small set of known eQTL variants. We showed that
this model of genetic variation in cis-regulation yielded higher pre-
dictive accuracy than the state-of-the-art gene expression prediction
methods.

Unlike the conventional regression-basedmethods, predictions of
haplotype-level dosage cannot be derived and used to analyze asso-
ciations based on summary statistics. However, others have developed
approximation methods that utilize aFC framework for gene dosage
prediction and related association analyses using summary statistics38.
Increased availability of large-scale genomic datasets on cloud services
such as the UKBB research analysis platform and the NHGRI genomic
data science analysis, visualization, and informatics lab-space (AnVIL)
will facilitate individual-level analysis of genetic data in the
coming years.

Methods
Haplotypic aFC estimation
The expression associated with eQTL alleles on each haplotype is
described with a shared basal gene expression, eB and allele-specific
factors kR, and kA. The regulatory effect size, aFC, is defined as
δA,R =

kA
kR
. Considering the case of N eQTLs acting on the same gene

independently and defining sA,R = log2δA,R, the expression of the hap-
lotype carrying N variants is:

log2ei1 :::iN = log2eR +
XN
n= 1

sðnÞin ,R
ð1Þ

where sðnÞin ,R
is the log aFC associated with the allele in of the nth eQTL,

and eR is the expression of a haplotype carrying reference allele. This
generalized aFC model is used in a variance stabilized non-linear
regression to estimate aFCs associated with all independent eQTL
variants affecting a given gene, simultaneously. Assuming a multi-
plicative noisemodel13, the haplotype aware aFC could be estimated as
the least-squares solution to the following nonlinear equation using a
log-normal noise assumption:

log2e<i1 :::iN>,<j1 :::jN> = log2 2s:h1 + 2s:h2
� �

+ log2eR ð2Þ

where e<i1 :::iN>,<j1 :::jN> is the total gene expressionwhich is the sumof the
two haplotypic counts, and h1 and h2 are binary indicator vectors
representing the phased genotype of each allele, and s is the vector
denoting the log-transformed effect sizes of eQTLs.

To estimate themodel parameters, we used gene expression read
counts. We normalized the counts for library size, added 1 pseudo-
count and log-transformed to stabilize the variance for least-square
fitting. The expressions were corrected for significant linear effects of
identified confounding factors using PEER39, top 5 genotype-based
principal components, sequencing platform (Illumina HiSeq 2000 or
HiSeq X), sequencing protocol (PCR-based or free) and sex. The cor-
rectionwas done in twosteps:first, we regressed the expression vector
of each gene against covariates and selected those with nominally
significant coefficients (p < 0.01). Then we regressed the expression
vector on selected covariates and set the residuals as the corrected
expression vector which was used for effect size calculation13.

The log aFCs for eQTLs were calculated using non-linear least-
squares regression and were constrained to ± log2ð100Þ to avoid out-
liers. The initialization step is a linear fit where the haplotype vector
was used as an independent variable and the adjusted expression was
the dependent variable. The coefficients were used as the initial values
of the vector s in the nonlinear optimization function. This makes the
LM algorithm converge closer to the real value. We used the Python
non-linear least-squaresminimization and curvefitting (LMFIT) library.
We calculated the effect size estimates for GTEx v8 independent
eQTLs. Confidence intervals were calculated to infer 95% confidence
intervals for the aFC estimates. In GTEx v8 data, the range of those
eQTLs whose 95% confidence interval of aFC estimates overlapped
zero varied from 11.6% (kidney-cortex) to 39.5% (cells-cultured-fibro-
blasts) across tissues if PEER correction was not included, and the
range narrowed between 0.9% (Brain-Substantia-nigra) and 2.9%
(Testis) when correcting for confounding variation for aFC estimates.

Conditional independence assumption used in stepwise regres-
sion approach for deriving eQTLs identifies independent signals for
gene expression and chooses the variants that describe the best signal
while controlling for covariates and all other mapped eQTL signals3,4.
This enables us to estimate the regulatory effects by ensuring stability
and identifiability of the model parameters in the optimization
process.
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Simulation scheme
We used simulated data to validate aFC-n implementation and infer-
ence stability. We used 15,167 genes from adipose subcutaneous, their
associated eQTLs (range: 1 to 14 eQTLs per gene), and individual
genotypes for simulation. We synthesized log2 effect sizes for each
eQTL from standard Normal distribution (norm[0,σ=1]). We calculated
the expected haplotypic expression using Eq. (1) and used the
empirical gene expression average for each gene to set eR. Expected
gene expression for each GTEx individual was estimated as the sum of
the two haplotypic counts, and the simulated sequencing read count
for each gene was generated using a Poisson distribution. To generate
simulated ASE data, we calculated the expected reference expression
ratio for each individual as r = eh1

eh1 + eh2
, and simulated discrete read

counts for each haplotype using Binomial distribution. Notably, we did
not include any additional biological variation in our simulated data
beyond genotypic differences among the individuals, and the sam-
pling noise associated with the count nature of the data. This was to
maintain simplicity since the simulations were intended for validating
the code and inference procedure and not for reporting performance
measures which we performed using real GTEx data.

The effect size estimation under different LD levels
To explain the impact of LD structure on effect size estimation, we
usedGTExv8 variant calls3 as the referencepanel andwe selectedpairs
of eQTLs in GTEx data with their LD ranging from 0 to 0.9, (R2 calcu-
lated with PLINK 2.0 “plink --bfile reference-panel --ld SNP1
SNP2”). For each variant we assigned a simulated aFC from a normal
distribution norm[0,σ=1]. That resulted in 2000 pairs of variants (200
for each bin of LD). The simulated expression counts for 839 samples
were calculated using Eq. (2) using a Poisson distribution. The
expressions were log-transformed and normalized to use for calcu-
lating effect size estimates under aFC-n and aFC-1 models.

Imputing gene and allelic expression
The estimated effect sizes were used to predict the cis-genetic effects
on gene expression and allelic imbalance in individuals with phased
genotype data. The evaluation is assessed against gene expression
after log-transformation and PEER correction3 and haplotype-
aggregated allelic expression generated by phASER14,25. To smooth
the haplotype counts, a pseudo-count of 0.5 was added to each
observed haplotype expression and theminimum total coverage to be
included in the calculations was set to 100. This makes the data well
powered to detect allelic imbalance (Supplementary Fig. 10A; Sup-
plementary Fig. 13A). The log-transformed estimated gene expression
and Allelic Imbalance AI for an individual were derived from equation
(Eq. (3)),

log2e<i1 :::iN>,<j1 :::jN> = log2ð2s:h1 + 2s:h2Þ
AI<i1 :::iN>,<j1 :::jN> = s:h1� s:h2,

ð3Þ

Where, h1 and h2 are binary indicator vectors representing the geno-
type of each allele of the individual and s is the vector denoting the log-
transformed effect sizes of eQTLs of interest and s.hi is the sum of
effect sizes for alternative alleles.

To compare the accuracy of cis-regulatory variation described by
the aFC estimates derived by the two methods (aFC-n and aFC-1), we
used the effect sizes of 25,232 and 17,147 eQTL variants in adipose
subcutaneous tissue samples from 581 individuals for gene expression
and allelic expression, respectively. Due to the constraint onminimum
coverage for ASE analysis, the number of individuals taken into
account differs for each gene (Supplementary Fig. 13B). The prediction
accuracy for predicting gene expression log fold-change, and log-
transformed allelic imbalance was measured by coefficient of

determination, R2:

R2 = 1�
P

individualsðobservation� predictionÞ2P
individualsðobservationÞ2

ð4Þ

where the prediction values are log2e<i1 :::iN>,<j1 :::jN> for gene expression,
and AI<i1 :::iN>,<j1 :::jN> for allelic imbalance as provided in Eq. (3), and the
observed values are what is measured for gene expression fold change
from mean, and log-transformed allelic imbalance measured for each
individual in GTEx data. First, the comparison was done based on the
number of eQTLs included for each gene. By using the effect sizes
derived from aFC-n model (Eq. (2)), the median R2 increased as more
variants were taken into account for both gene expression and allelic
imbalance (Fig. 1D, E).

Bothmodels performed similarly for genes with one eQTL but the
portion of total expression variation that could be explained by the
known eQTLs for gene expression and allelic imbalance showed an
increasingpattern for themedianR2, whengenes havemore regulatory
variants (Fig. 1F, G). With an increased number of eQTLs for a gene, we
observed a steadily increasing gap for the prediction accuracy
between aFC-n and aFC-1 in multi-eQTL genes (Fig. 1F). We used a
permutation test to ensure that the improved performance of aFC-n
versus aFC-1 is not driven by overfitting. Specifically, we permuted the
individual sample IDs to decouple genotype and gene expression
variation while retaining the data size, allele frequencies and LD
structure. We found that the R2 for the aFC-n predictions of gene
expression in the permuted dataset remains at zero ruling out sys-
tematic overfitting to the data (Fig. 1F). To further evaluate the effect
sizes on an independent data we used haplotype-aggregated allelic
expression since the trained model is agnostic to allele-specific
expression (Fig. 1G).

The ASE prediction was compared with the read counts with
WASP mapping strategy36 to reduce the mapping bias that is some-
times present in ASE analysis. On average, WASP correction improved
prediction about 7 percent for 9503 genes at a minimum coverage of
100 reads in adipose subcutaneous tissue.

Mapping conditionally independent eQTLs in GTEx v6p data
To perform independent cis-eQTL mapping based on GTEx v6p sam-
ples, gene expression values from tissue samples were log-
transformed and normalized and limited to autosomal genes with
more than 5 reads in at least 10 individuals. The cis-eQTL mapping is
performed using tensorQTL (--mode cis_independent)22, based on
the stepwise regression approach described in3, using WGS-based
genotypes and restricting the analysis to genes that have minor allele
frequency for all eQTLs above 0.01.

Benchmarking gene expression prediction models
To compare aFC-n with gene expression prediction models, we fitted
eQTL data for 316 individuals with measured gene expression in adi-
pose subcutaneous tissue in the GTEx v6 using an elastic net and the
Sum-of-Single-Effects model (i.e. SuSiE). For each gene, we focused on
local genetic variation flanking 0.5Mb up/downstream of the gene
body. We kept only bi-allelic SNPs that exhibited minor allele fre-
quency 0.05 and HWE p-value > 10−5 captured. We then fit elastic net
and SuSiE models to the log-transformed and normalized gene
expression data and restricted the analysis to genes with expression
cis-heritability p-value < 0.01. To evaluate the performance of these
approaches, we computed the out-of-sampleR2 using 265 newly added
individuals in GTEx v8.

Power analysis for ASE prediction
Weperformed power analysis to estimate the fraction of the cases that
the current eQTL data fully described ASE signal. Statistical power
facilitates the interpretation of the results, where the low read counts
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or other features make it less likely to observe significant differences
between the observed and predicted values. Factors that affect the
power of the statistical test are the amount of total count, reference
ratio, and the minimum fold change between the predicted and
observed value.

For this purpose, we simulated the hypothesis (H1) in which the
log(aFC) of data is systematically off from the null hypothesis (H0) by
specific fold change (fc) (Eq. (5)), assuming H0 data is binomial dis-
tributed with null reference ratio r0

logðaFCÞH1 = logðaFCÞH0 ± f c ð5Þ

The log(aFC) is defined as the logit function of the reference ratio
(ri) (Eq. (6)).

logðaFCÞHi = log
ri

1� ri

� �
ð6Þ

One thousand binomial samples were produced from the
hypothesis H1 (500 samples from logðaFCÞH1 = logðaFCÞH0 + f c, and
500 samples from logðaFCÞH1 = logðaFCÞH0 � f c) for different levels of
read coverage and reference ratios. The significant difference between
the generated samples ofH1 and the null hypothesisH0was determined
by the binomial test (nominal p value <0.01), where each gene is tested
against its ownnullmodel describedby reference ratio and read counts.

Power estimation based on simulation for different amount of read
counts and reference ratios considering specific fold changes (ΔaFC) 0.5
and 1 were calculated (Supplementary Fig. 10A). Here is an example to
give an idea of how the fold resolution affects the reference ratios.
Assuming the null hypothesis log2(aFC) to be zero, the r0 is 0.5, the fold
resolution of 0.5 and 1 corresponds to reference ratios of about 0.59 (or
0.41) and 0.67 (or 0.33), respectively (Supplementary Fig. 10B).

Applying power statistics analysis on the GTEx v8 haplotype-
aggregated ASE data, for each individual, the protein-coding genes
with TPM> 1 available at different levels of power (for 0.5- and 1-fold
resolution) were considered for downstream analysis (Supplementary
Fig. 10C). To obtain the fraction of genes available at each level of
power, the significance of ΔaFC (difference of aFCs between the pre-
dicted and observed values), was determined by the binomial test at a
1% p value thresholdwith the cut-off of 0.5 (for 0.5-fold resolution) or 1
(for onefold resolution) for ΔaFC to avoid false positives in high
expressed genes.

Ancestry-specific aFC estimation
We generalized the aFC-n model to calculate ancestry-specific aFC for
European-American and African-American sub-populations using (Eq.
(7)),

log2e<i1 :::iN>,<j1 :::jN> = log2 2ðsE ð1�IÞ+ sAIÞ:h1 + 2ðsE ð1�IÞ+ sAIÞ:h2
� �

+ log2eR ð7Þ

where h1 is a binary vector representing the phased genotype of each
allele and I is an indicator of ancestry background for each individual
with a fixed value (1 for African-Americans and 0 otherwise). The
estimates sE and sA represent the aFC for European and African
populations, respectively. The ancestry-specific aFC was selected for
cases with non-overlapping confidence intervals and for the rest of the
cases we used effect size estimates derived from the standard aFC-
n model.

VG estimation
VG estimates were calculated over GTEx v8 samples by the analysis of
expression variation (ANEVA)15. We analyzed genes with at least 30
reads in at least 6 donors and at least 5000 reads in all individuals in a

target tissue. Themedianof SDG ð
ffiffiffiffiffiffiffi
VG

p
Þwas calculated for tested genes

for each sample and the median of the resulting values was calculated
across tissues (Fig. 4F).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All GTEx protected data are available through the database of Geno-
types and Phenotypes (dbGaP) (accession no. phs000424.v8). Public-
access data, including conditionally independent eQTLs, gene read
counts and haplotype expression matrix, are available on the GTEx
Portal (http://gtexportal.org/) as downloadable files.

The aFC estimates generated in this study that support the effect
sizes for all independent eQTLs in GTEx v8 have been deposited in the
Zenodo database, publicly accessible on https://doi.org/10.5281/
zenodo.10002703. This data is also available on GTEx portal as a
downloadable file.

Code availability
Software for calculating aFC from independent eQTL data is available
online here: https://doi.org/10.5281/zenodo.8412460 and also on
https://github.com/PejLab/aFCn.

Software for calculating predicted ASE and gene expression using
allelic fold change, as well as simulated ASE and gene expression,
employing simulated allelic fold change are available online here:
https://doi.org/10.5281/zenodo.8409098 and also on https://github.
com/PejLab/gene_expr_pred.
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